Skip to main content Accessibility help
×
Home

A Constitutive Model for the Creep Behavior of Offwhite Marbles

  • X. D. Song (a1) and J. H. Ren (a2)

Abstract

This paper reports an improved constitutive model for the shear creep behavior of offwhite marbles which are selected from slope and underground cavern and contain green schist’s weak structural planes. The shear creep behavior of the samples is characterized using the rheological tests. Based on the experimental measurements on mechanical properties under different normal stress conditions, an improved model is proposed to analyze the experimental results. It is demonstrated from a further discussion that such model can reflect the non-linear creep characteristics of structural planes, and especially, it is suitable for description of the viscoelastic and viscoplastic deformation behavior of structural planes.

Copyright

Corresponding author

Corresponding author. URL:http://lxy.ysu.edu.cn/lxy/tec-detail.php?id=15&way=listEmail: songxd@ysu.edu.cn

References

Hide All
[1]Boukharov, G. N. and Chanda, M. W., The three processes of brittle crystalline rock creep, Int. J. Rock. Mech. Min. Sci., 32(4) (1995), pp. 325335.
[2]Fujii, Y. and Kiyama, T., Circumferential strain behaviour during creep tests of brittle rocks, Int. J. Rock. Mech. Min. Sci., 6 (1999), pp. 323337.
[3]Maranini, E. and Brignoli, M., Creep behavior of a weak rock: experimental characterization, Int. J. Rock. Mech. Min. Sci., 36(1) (1999), pp. 127138.
[4]Ding, X. L., Jian, L. and Liu, X. Z., Experimental study on creep behaviors of hard structural plane in TGP s permanent lock regions, Journal of Yangtze River Scientific Research Institute, 08 (2000), pp. 3033.
[5]Xu, P. and Xia, X. L., A study on the creep model of rock mass discontinuity of the Three Gorges Project, Journal of Yangtze River Scientific Research Institute, 03 (1992), pp. 4245.
[6]Li, Y. S. and Xia, C. C., Time-dependent tests on intact rocks in uniaxial compression, Int. J. Rock. Mech. Min. Sci., 37(3) (2000), pp. 467475.
[7]Okubo, S., Nishimatsu, Y. and Fukui, K., Complete creep curves under uniaxial compression, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr, 28(1) (1991), pp. 7782.
[8]Jing, L., Nordlund, E. and Stephansson, O., A 3D constitutive model for rock joints with anisotropic friction and stress dependency in shear stiffness, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 31(2) (1994), pp. 173178.
[9]Yin, F., The Creep of Potash Rock from New Brunswick, Canada: University of Manitoba, 1998.
[10]Zhu, M. L., Zhu, Z. D. and Li, J. Z. etc., Preliminary study of non-stationary shear rheo-logical model of wall rock of long, large and deep-buried tunnel, Chinese. J. Rock. Mech. Eng., 27(7) (2008), pp. 14361441.
[11]Sterpi, D. and Gioda, G., Visco-plastic behavior around advancing tunnels in squeezing rock, Rock. Mech. Rock. Eng., 23(3) (2007), pp. 292299.
[12]Xu, W. Y. and Yang, S. Q., Test study on shear rheological behavior of jointed rock mass and the model investigations, Chinese. J. Rock. Mech. Eng., 24 (2005), pp. 55365542.
[13]Heege, T. J. H., de Bresser, J. H. P. and Spiers, C. J., Rheological behavior of synthetic rock salt: the interplay between water, dynamic recrystallization and deformation mechanisms, J. Struct. Geol., 27(6) (2005), pp. 948963.
[14]Fabre, G. and Pellet, F., Creep and time-dependent damage in rgillaceous rocks, Int. J. Rock. Mech. Min. Sci., 43(6) (2006), pp. 950960.
[15]Sterpi, D. and Gioda, G., Visco-plastic behavior around advancing tunnels in squeezing rock, Rock. Mech. Rock. Eng., 23(3) (2007), pp. 292299.

Keywords

Related content

Powered by UNSILO

A Constitutive Model for the Creep Behavior of Offwhite Marbles

  • X. D. Song (a1) and J. H. Ren (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.