Skip to main content Accessibility help
×
Home

Statistical tools to select for robustness and milk quality

  • E. Strandberg (a1), M. Felleki (a1) (a2), W. F. Fikse (a1), J. Franzén (a1) (a3), H. A. Mulder (a4), L. Rönnegård (a1) (a2), J. I. Urioste (a1) (a5) and J. J. Windig (a6)...

Abstract

This work was part of the EU RobustMilk project. In this work package, we have focused on two aspects of robustness, micro- and macro-environmental sensitivity and applied these to somatic cell count (SCC), one aspect of milk quality. We showed that it is possible to combine both categorical and continuous descriptions of the environment in one analysis of genotype by environment interaction. We also developed a method to estimate genetic variation in residual variance and applied it to both simulated and a large field data set of dairy cattle. We showed that it is possible to estimate genetic variation in both micro- and macro-environmental sensitivity in the same data, but that there is a need for good data structure. In a dairy cattle example, this would mean at least 100 bulls with at least 100 daughters each. We also developed methods for improved genetic evaluation of SCC. We estimated genetic variance for some alternative SCC traits, both in an experimental herd data and in field data. Most of them were highly correlated with subclinical mastitis (>0.9) and clinical mastitis (0.7 to 0.8), and were also highly correlated with each other. We studied whether the fact that animals in different herds are differentially exposed to mastitis pathogens could be a reason for the low heritabilities for mastitis, but did not find strong evidence for that. We also created a new model to estimate breeding values not only for the probability of getting mastitis but also for recovering from it. In a progeny-testing situation, this approach resulted in accuracies of 0.75 and 0.4 for these two traits, respectively, which means that it is possible to also select for cows that recover more quickly if they get mastitis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Statistical tools to select for robustness and milk quality
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Statistical tools to select for robustness and milk quality
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Statistical tools to select for robustness and milk quality
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Bishop, SC, Woolliams, JA 2010. On the genetic interpretation of disease data. PLoS One 5(1), e8940.
Felleki, M, Lee, D, Lee, Y, Gilmour, AR, Rönnegård, L 2012. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models. Genetics Research 94, 307317.
Fikse, WF, Rönnegård, L, Mulder, HA, Strandberg, E 2012. Genome-wide assocation study for genetic heterogeneity for milk yield and somatic cell score. In Proceedings of the Annual meeting of the European Federation of Animal Science (EAAP), p. 239. Wageningen Academic Publishers, Bratislava.
Franzén, J, Thorburn, D, Urioste, JI, Strandberg, E 2012. Genetic evaluation of mastitis liability and recovery through longitudinal analysis of transition probabilities. Genetics, Selection, Evolution 44, 10.
Hill, WG, Mulder, HA 2010. Genetic analysis of environmental variation. Genetics Research 92, 381395.
Ibanez-Escriche, N, Varona, L, Sorensen, D, Noguera, JL 2008a. A study of heterogeneity of environmental variance for slaughter weight in pigs. Animal 2, 1926.
Ibanez-Escriche, N, Moreno, A, Nieto, B, Piqueras, P, Salgado, C, Gutierrez, J 2008b. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice: signs of correlated canalised response. Genetics Selection Evolution 40, 279293.
Lee, Y, Nelder, JA 2006. Double hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society: Series C (Applied Statistics) 55, 139185.
Mulder, HA, Bijma, P 2005. Effects of genotype by environment interaction on genetic gain in breeding programs. Journal of Animal Science 83, 4961.
Mulder, HA, Bijma, P 2006. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction. Journal of Dairy Science 89, 17271739.
Mulder, HA, Bijma, P, Hill, WG 2008. Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genetics, Selection, Evolution 40, 3759.
Mulder, HA, Veerkamp, RF, Ducro, BJ, van Arendonk, JAM, Bijma, P 2006. Optimization of dairy cattle breeding programs for different environments with genotype by environment interaction. Journal of Dairy Science 89, 17401752.
Mulder, HA, Rönnegård, L, Fikse, F, Veerkamp, RF, Strandberg, E 2011. Estimation of genetic variation in macro- and micro-environmental sensitivity. In Proceedings of the European Association for Animal Production, Stavanger, Norway, p. 108.
Mulder, HA, Rönnegård, L, Fikse, F, Veerkamp, RF, Strandberg, E 2012. Estimation of genetic variance in macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genetics, Selection, Evolution (accepted).
Rönnegård, L, Valdar, W 2011. Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics 188, 435447.
Rönnegård, L, Felleki, M, Fikse, F, Mulder, H, Strandberg, E 2010. Genetic heterogeneity of residual variance – estimation of variance components using double hierarchical generalized linear models. Genetics, Selection, Evolution 42, 8.
Rönnegård, L, Felleki, M, Fikse, F, Mulder, HA, Strandberg, E 2012. Variance component and breeding value estimation for environmental sensitivity in Swedish Holstein dairy cattle. Journal of Dairy Science 96, 26272636.
Sorensen, D, Waagepetersen, R 2003. Normal linear models with genetically structured residual variance heterogeneity: a case study. Genetical Research 92, 207222.
Urioste, JI, Franzén, J, Strandberg, E 2010. Phenotypic and genetic characterization of novel somatic cell count traits from weekly or monthly observations. Journal of Dairy Science 93, 27572764.
Urioste, JI, Franzén, J, Windig, JJ, Strandberg, E 2012. Genetic relationships among mastitis and alternative somatic cell count traits in the first three lactations of Swedish Holsteins. Journal of Dairy Science 95, 34283434.
Vandenplas, J, Bastin, C, Gengler, N, Mulder, HA 2012. Genetic variance in environmental sensitivity for milk and milk quality in Walloon Holstein cattle. In Proceedings of the Annual Meeting of the European Federation of Animal Science (EAAP), p. 15. Wageningen Academic Publishers, Bratislava.
Windig, JJ, Mulder, HA, Bohthe-Wilhelmus, DI, Veerkamp, RF 2011. Simultaneous estimation of genotype by environment interaction accounting for discrete and continuous environmental descriptors in Irish dairy cattle. Journal of Dairy Science 94, 31373147.

Keywords

Statistical tools to select for robustness and milk quality

  • E. Strandberg (a1), M. Felleki (a1) (a2), W. F. Fikse (a1), J. Franzén (a1) (a3), H. A. Mulder (a4), L. Rönnegård (a1) (a2), J. I. Urioste (a1) (a5) and J. J. Windig (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed