Skip to main content Accessibility help

Evaluating a Crop Circle active sensor-based in-season nitrogen management algorithm in different winter wheat cropping systems

  • L. Zhou (a1), G. Chen (a1), Y. Miao (a1), H. Zhang (a1), Z. Chen (a2), L. Xu (a1) and L. Guo (a1)...


The objective of this study was to evaluate the performance of a Crop Circle sensor-based precision nitrogen (N) management (PNM) strategy in different winter wheat cropping systems under on-farm conditions in North China Plain (NCP). Four farmer’s fields were selected for on-farm experiments in Laoling County, Shandong Province of NCP in 2015-2016. In each field, the PNM strategy was evaluated in two winter wheat cropping systems: farmer’s conventional management (FCM) and regional optimum crop management (ROCM). In each cropping system, there were two N management strategies: 1) FCM or ROCM; 2) PNM. The results indicated that the PNM strategy significantly increased partial factor productivity (PFP) by 29% in the FCM system, but did not have any significant improvement in the ROCM system. The ROCM system, using either regional optimum N management or PNM, significantly increased both grain yield and PFP than the FCM system.


Corresponding author


Hide All

These authors contributed equally to this work.



Hide All
Cao, Q, Cui, Z, Chen, X, Khosla, R, Dao, TH and Miao, Y 2012. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculutre 13, 4561.
Cao, Q, Miao, Y, Feng, G, Gao, X, Li, F, Liu, B et al. 2015. Active canopy sensing of winter wheat nitrogen status: an evaluation of two sensor systems. Computers and Electronics in Agriculture 112, 5467.
Cao, Q, Miao, Y, Shen, J, Yu, W, Yuan, F, Cheng, S, Huang, S, Wang, H, Yang, W and Liu, F 2016. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precision Agriculture 17, 136154.
Cao, Q, Miao, Y, Li, F, Gao, X, Liu, B, Lu, D et al. 2017. Developing a new crop circle active canopy sensor-based precision nitrogen management strategy for winter wheat in north china plain. Precision Agriculture 18, 218.
Chen, X, Cui, Z, Fan, M, Vitousek, P, Zhao, M, Ma, W et al. 2014. Producing more grain with lower environmental costs. Nature 514 (7523), 486489.
Diacono, M, Rubino, P and Montemurro, F 2013. Precision nitrogen management of wheat. a review. Agronomy for Sustainable Development 33 (1), 219241.
Li, F, Miao, Y, Zhang, F, Cui, Z, Li, R, Chen, X et al. 2009. In-season optical sensing improves nitrogen-use efficiency for winter wheat. Soil Science Society of America Journal 73 (5), 15661574.
Miao, Y, Mulla, DJ, Hernandez, JA, Wiebers, M and Robert, PC 2007. Potential impact of precision nitrogen management on corn yield, protein content, and test weight. Soil Science Society of America Journal 71 (5), 14901499.
Miao, Y, Stewart, BA and Zhang, F 2011. Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development 31, 397414.
Yao, Y, Miao, Y, Cao, Q, Wang, H, Gnyp, ML, Bareth, G et al. 2014. In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (11), 44034413.
Yao, Y, Miao, Y, Huang, S, Gao, L, Ma, X, Zhao, G et al. 2012. Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development 32 (4), 925933.
Zhao, G, Miao, Y, Wang, H, Su, M, Fan, M, Zhang, F et al 2013. A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crops Research 154 (3), 2330.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed