Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T15:59:17.423Z Has data issue: false hasContentIssue false

Modified sensory encoding during auditory hallucinations: case report and proposed mechanisms

Published online by Cambridge University Press:  04 January 2019

B. van Sweden*
Affiliation:
Dept Clin Neurophysiol Medical Centre St.-Jozef, Bilzen, Belgium University Hospital Maastricht, The Netherlands
H. Bryon
Affiliation:
Dept psychiatry Medical Centre St.-Jozef, Bilzen, Belgium
M. Maes
Affiliation:
Dept Psychiatry & Neuropsychology, Maastricht University, The Netherlands
*
E. van Haevermaetestraat 38 B-9030 Ghent Belgium fax.: 00-32-89 50 90 79 tel.: 00-32-89 50 91 11

Summary

A patient is presented showing an altered oddball response while suffering from auditory hallucinations. The nontarget stimulus evokes a compound negative potential encompassing a normal early N1 component and an additional negativity within the categorization N2 range. These findings are discussed in reference to impaired mismatch processes and the deranged monitoring of inner speech theory, proposed in schizophrenia.

Type
Articles
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bick, PA, Kinsbourne, N. Auditory hallucinations and subvocal speech in schizophrenic patients. Am J Psychiatry 1987;144:222225.Google Scholar
2. Mc Guire, PK, Silbersweig, DA, Wright, I, Murray, RM, David, AS, Frackowiak, RSJ, Frith, CG. Abnormal monitoring of inner speech : a physiological basis for auditory hallucinations. Lancet 1995;346:596600.Google Scholar
3. Tiihonen, J, Hari, R, Naukarinen, H, Riman, R, Jousmaki, V, Kajiala, M. Modified activity of the human auditory cortex during auditory hallucinations. Am J Psychiatry 1992;149:255257.Google Scholar
4. Baribeau - Brown, J, Picton, TW, Gosselin, JY. Schizophrenia: a neurophysiological evaluation of abnormal information processing. Science 1983;219:874876.Google Scholar
5. Begleiter, HP. Porjesz B. Chow CL. Auditory brainstem potentials in alcoholics. Science 1981;211:10641066.Google Scholar
6. Javitt, DC, Domeshka, P, Grochowski, S, Ritter, W. Impaired mismatch negativity generation reflects widespread dysfunction of working memory in schizophrenia. Arch Gen Psychiatry 1995;52:550558.Google Scholar
7. Catts, CV, Shelley, AM, Ward, PB, Liebert, B, McConoghy, N, Andrews, S, Michie, PT. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 1995;152:213219.Google Scholar
8. van, Sweden B, van, Erp MG, Mesotten, F. Auditory information processing in schizophrenia. Neuropsychobiol 1997;35:191196.Google Scholar
9. Naätänen, R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sciences 1990;13:201288.Google Scholar
10. Olney, JW, Farber, MB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995;52:9981007.Google Scholar
11. Devinsky, O, Morrel, MY, Vogt, BA. Contributions of anterior cingulate cortex to behavior. Brain 1995;118:279306.Google Scholar
12. Fuster, Y.M. Network memory. Tins 1997;20:451459.Google Scholar
13. Silbersweig, DA, Stern, E, Frith, C, Cahill, C, Holmes, A, Grootoonk, Sylke, Seaward, J, Me Kenna, P, Chua, SE, Schnorr, L., Jones, T, Frackowiak, R.S.J. A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995;378:176179.Google Scholar
14. Sergent, Y. Brain-imaging studies of cognitive functions. Tins 1994;17:221227.Google Scholar
15. Jeanmonod, D, Magnin, M, Morel, A. Low-treshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 1996;119:363375.Google Scholar