Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:20:37.272Z Has data issue: false hasContentIssue false

Cocaine-use disorder and childhood maltreatment are associated with the activation of neutrophils and increased inflammation

Published online by Cambridge University Press:  27 February 2023

Giselle A. Funchal
Affiliation:
Laboratory of Immunobiology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
Jaqueline B. Schuch
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Aline Zaparte
Affiliation:
Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil LSU Health New Orleans School of Medicine, Pulmonary/Critical Care & Allergy/Immunology, New Orleans, LA, USA
Breno Sanvicente-Vieira
Affiliation:
Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
Thiago W. Viola
Affiliation:
Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
Rodrigo Grassi-Oliveira
Affiliation:
Developmental Cognitive Neuroscience Lab, School of Medicine, Brain Institute of the Rio Grande do Sul (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Moisés E. Bauer*
Affiliation:
Laboratory of Immunobiology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil National Institute of Science and Technology – Neuroimmunomodulation (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil
*
Author for correspondence: Moisés E. Bauer, Email: mebauer@pucrs.br

Abstract

Background:

Cocaine-use disorder (CUD) has been associated with early life adversity and activated cellular immune responses. Women are most vulnerable to complications from chronic substance disorders, generally presenting an intense feeling of abstinence and consuming significant drug amounts. Here, we investigated neutrophil functional activities in CUD, including the formation of neutrophil extracellular traps (NETs) and related intracellular signalling. We also investigated the role of early life stress in inflammatory profiles.

Methods:

Blood samples, clinical data, and history of childhood abuse or neglect were collected at the onset of detoxification treatment of 41 female individuals with CUD and 31 healthy controls (HCs). Plasma cytokines, neutrophil phagocytosis, NETs, intracellular reactive oxygen species (ROS) generation, and phosphorylated protein kinase B (Akt) and mitogen-activated protein kinases (MAPK)s were assessed by flow cytometry.

Results:

CUD subjects had higher scores of childhood trauma than controls. Increased plasma cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-12, and IL-10), neutrophil phagocytosis, and production of NETs were reported in CUD subjects as compared to HC. Neutrophils of CUD subjects also produced high levels of intracellular ROS and had more activated Akt and MAPKs (p38/ERK), which are essential signalling pathways involved in cell survival and NETs production. Childhood trauma scores were significantly associated with neutrophil activation and peripheral inflammation.

Conclusion:

Our study reinforces that smoked cocaine and early life stress activate neutrophils in an inflammatory environment.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Rodrigo Grassi-Oliveira and Moisés E. Bauer have contributed equally as senior authors.

References

Adams, C, Conigrave, JH, Lewohl, J, Haber, P and Morley, KC (2020) Alcohol use disorder and circulating cytokines: a systematic review and meta-analysis. Brain, Behavior, and Immunity 89, 501512.Google Scholar
Agarwal, K, Manza, P, Chapman, M, Nawal, N, Biesecker, E, Mcpherson, K, Dennis, E, Johnson, A, Volkow, ND and Joseph, PV (2022) Inflammatory markers in substance use and mood disorders: a neuroimaging perspective. Frontiers in Psychiatry 13, 863734.Google Scholar
Andersen, SL and Teicher, MH (2009) Desperately driven and no brakes: developmental stress exposure and subsequent risk for substance abuse. Neuroscience & Biobehavioral Reviews 33(4), 516524.Google Scholar
Araos, P, Pedraz, M, Serrano, A, Lucena, M, Barrios, V, García-Marchena, N, Campos-Cloute, R, Ruiz, JJ, Romero, P, Suárez, J, Baixeras, E, De La Torre, R, Montesinos, J, Guerri, C, Rodríguez-Arias, M, Miñarro, J, Martínez-Riera, R, Torrens, M, Chowen, JA, Argente, J, Mason, BJ, Pavón, FJ and Rodríguez de Fonseca, F (2015) Plasma profile of pro-inflammatory cytokines and chemokines in cocaine users under outpatient treatment: influence of cocaine symptom severity and psychiatric co-morbidity. Addiction Biology 20(4), 756772.Google Scholar
Baldwin, GC, Buckley, DM, Roth, MD, Kleemp, EC and Tashkin, DP (1997) Acute activation of circulating polymorphonuclear neutrophils following in vivo administration of cocaine: a potential etiology for pulmonary injury. Chest 111(3), 698705.CrossRefGoogle ScholarPubMed
Baldwin, GC, Roth, MD and Tashkin, DP (1998) Acute and chronic effects of cocaine on the immune system and the possible link to AIDS. Journal of Neuroimmunology 83(1-2), 133138.Google Scholar
Barth, CR, Funchal, GA, Luft, C, D.E.Oliveira, JR, Porto, BN and Donadio, MVF (2016) Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology 46(4), 964970.Google Scholar
Bauer, ME and Teixeira, AL (2019) Inflammation in psychiatric disorders: What comes first? Annals of the New York Academy of Sciences 1437, 5767.Google Scholar
Becker, JB (2016) Sex differences in addiction. Dialogues in Clinical Neuroscience 18(4), 395402.Google Scholar
Bernhard, S, Hug, S, Stratmann, AEP, Erber, M, Vidoni, L, Knapp, CL, Thomaß, BD, Fauler, M, Nilsson, B, Ekdahl, KN, Föhr, K, Braun, CK, Wohlgemuth, L, Huber-Lang, M and Messerer, DAC (2021) Interleukin 8 elicits rapid physiological changes in neutrophils that are altered by inflammatory conditions. Journal of Innate Immunity 13(4), 225241.CrossRefGoogle ScholarPubMed
Bertoni, N, Burnett, C, Cruz, MS, Andrade, T, Bastos, FI, Leal, E and Fischer, B (2014) Exploring sex differences in drug use, health and service use characteristics among young urban crack users in Brazil. International Journal for Equity in Health 13(1), 111.Google Scholar
Brinkmann, V, Reichard, U, Goosmann, C, Fauler, B, Uhlemann, Y, Weiss, DS, Weinrauch, Y and Zychlinsky, A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663), 15321535.Google Scholar
Brinkmann, V and Zychlinsky, A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? The Journal of Cell Biology 198(5), 773783.Google Scholar
Brunt, TM, Van Den Berg, J, Pennings, E and Venhuis, B (2017) Adverse effects of levamisole in cocaine users: a review and risk assessment. Archives of Toxicology 91(6), 23032313.Google Scholar
Cabral, GA (2006) Drugs of abuse, immune modulation, and AIDS. Journal of Neuroimmune Pharmacology 1(3), 280295.Google Scholar
Cacciola, JS, Alterman, AI, Habing, B and Mclellan, AT (2011) Recent status scores for version 6 of the Addiction Severity Index (ASI-6). Addiction 106(9), 15881602.Google Scholar
Cain, DW and Cidlowski, JA (2017) Immune regulation by glucocorticoids. Nature Reviews Immunology 17(4), 233247.Google Scholar
Coelho, R, Viola, TW, Walls-Bass, C, Brietzke, E and Grassi-Oliveira, R (2014) Childhood maltreatment and inflammatory markers: a systematic review. Acta Psychiatrica Scandinavica 129(3), 180192.Google Scholar
Cone, EJ, Hillsgrove, M and Darwin, WD (1994) Simultaneous measurement of cocaine, cocaethylene, their metabolites, and “crack” pyrolysis products by gas chromatography-mass spectrometry. Clinical Chemistry 40(7), 12991305.Google Scholar
Dantzer, R, O'connor, JC, Freund, GG, Johnson, RW and Kelley, KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 9(1), 4656.Google Scholar
Delafuente, JC and Devane, CL (1991) Immunologic effects of cocaine and related alkaloids. Immunopharmacology and Immunotoxicology 13(1-2), 1123.Google Scholar
Elman, I, Karlsgodt, KH and Gastfriend, DR (2001) Gender differences in cocaine craving among non-treatment-seeking individuals with cocaine dependence. The American Journal of Drug and Alcohol Abuse 27(2), 193202.Google Scholar
Fischer, B and Coghlan, M (2007) Crack use in North American cities: the neglected ‘epidemic’. Addiction 102(9), 13401341.Google Scholar
Fousert, E, Toes, R and Desai, J (2020) Neutrophil Extracellular Traps (NETs) take the central stage in driving autoimmune responses. Cells 9(4), 120.Google Scholar
Fox, HC, D’sa, C, Kimmerling, A, Siedlarz, KM, Tuit, KL, Stowe, R and Sinha, R (2012) Immune system inflammation in cocaine dependent individuals: implications for medications development. Human Psychopharmacology 27(2), 156166.Google Scholar
Francke, IDA, Viola, TW, Tractenberg, SG and Grassi-Oliveira, R (2013) Childhood neglect and increased withdrawal and depressive severity in crack cocaine users during early abstinence. Child Abuse and Neglect 37(10), 883889.Google Scholar
Friedman, H, Newton, C and Klein, TW (2003) Microbial infections, immunomodulation, and drugs of abuse. Clinical Microbiology Reviews 16(2), 209219.Google Scholar
Funchal, GA, Jaeger, N, Czepielewski, RS, Machado, MS, Muraro, SP, Stein, RT, Bonorino, CBC and Porto, BN (2015) Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils. PloS One 10(4), e0124082.Google Scholar
Furman, D, Campisi, J, Verdin, E, Carrera-Bastos, P, Targ, S, Franceschi, C, Ferrucci, L, Gilroy, DW, Fasano, A, Miller, GW, Miller, AH, Mantovani, A, Weyand, CM, Barzilai, N, Goronzy, JJ, Rando, TA, Effros, RB, Lucia, A, Kleinstreuer, N and Slavich, GM (2019) Chronic inflammation in the etiology of disease across the life span. Nature Medicine 25(12), 18221832.Google Scholar
Grassi-Oliveira, R, Cogo-Moreira, H, Salum, GA, Brietzke, E, Viola, TW, Manfro, GG, Kristensen, CH and Arteche, AX (2014) Childhood Trauma Questionnaire (CTQ) in Brazilian samples of different age groups: findings from confirmatory factor analysis. PLOS ONE 9(1), e87118.CrossRefGoogle ScholarPubMed
Hosseinzadeh, A, Thompson, PR, Segal, BH and Urban, CF (2016) Nicotine induces neutrophil extracellular traps. Journal of Leukocyte Biology 100(5), 11051112.Google Scholar
Hyman, SM, Paliwal, P, Chaplin, TM, Mazure, CM, Rounsaville, BJ and Sinha, R (2008) Severity of childhood trauma is predictive of cocaine relapse outcomes in women but not men. Drug and Alcohol Dependence 92(1-3), 208216.Google Scholar
Kampman, KM, Volpicelli, JR, Mcginnis, DE, Alterman, AI, Weinrieb, RM, D.'angelo, L and Epperson, LE (1998) Reliability and validity of the cocaine selective severity assessment. Addictive Behaviors 23(4), 449461.Google Scholar
Kendler, KS, Bulik, CM, Silberg, J, Hettema, JM, Myers, J and Prescott, CA (2000) Childhood sexual abuse and adult psychiatric and substance use disorders in women: an epidemiological and cotwin control analysis. Archives of General Psychiatry 57(10), 953959.Google Scholar
Kessler, F, Cacciola, J, Alterman, A, Faller, S, Souza-Formigoni, ML, Cruz, MS, Brasiliano, S and Pechansky, F (2012) Psychometric properties of the sixth version of the Addiction Severity Index (ASI-6) in Brazil. Revista Brasileira de Psiquiatria 34(1), 2433.Google Scholar
Kluwe-Schiavon, B, Tractenberg, SG, Sanvicente-Vieira, B, Rosa, CSO, Arteche, AX, Pezzi, JC and Grassi-Oliveira, R (2015) Propriedades psicométricas da Cocaine Selective Severity Assessment (CSSA) em mulheres usuárias de crack. Jornal Brasileiro de Psiquiatria 64(2), 115121.Google Scholar
Kolaczkowska, E and Kubes, P (2013) Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13(3), 159175.CrossRefGoogle ScholarPubMed
Levandowski, ML, Viola, TW, Prado, CH, Wieck, A, Bauer, ME, Brietzke, E and Grassi-Oliveira, R (2016) Distinct behavioral and immunoendocrine parameters during crack cocaine abstinence in women reporting childhood abuse and neglect. Drug and Alcohol Dependence 167, 140148.Google Scholar
Levandowski, ML, Viola, TW, Wearick-Silva, LE, Wieck, A, Tractenberg, SG, Brietzke, E, Bauer, ME, Teixeira, AL and Grassi-Oliveira, R (2014) Early life stress and tumor necrosis factor superfamily in crack cocaine withdrawal. Journal of Psychiatric Research 53, 180186.Google Scholar
Levite, M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta physiologica (Oxford, England) 216(1), 4289.Google Scholar
Ligabue, KP, Schuch, JB, Scherer, JN, Ornell, F, Roglio, VS, Assunção, V, Rebelatto, FP, Hildalgo, MP, Pechansky, F, Kessler, F and Von Diemen, L (2020) Increased cortisol levels are associated with low treatment retention in crack cocaine users. Addictive Behaviors 103, 106260.Google Scholar
Liu, C, Teo, MHY, Pek, SLT, Wu, X, Leong, ML, Tay, HM, Hou, HW, Ruedl, C, Moss, SE, Greenwood, J, Tavintharan, S, Hong, W and Wang, X (2020) A multifunctional role of leucine-rich a-2-glycoprotein 1 in cutaneous wound healing under normal and diabetic conditions. Diabetes 69(11), 24672480.Google Scholar
Lood, C and Hughes, GC (2017) Neutrophil extracellular traps as a potential source of autoantigen in cocaine-associated auto immunity. Rheumatology (United Kingdom) 56, 638643.Google Scholar
Mehrpouya-Bahrami, P, Moriarty, AK, De Melo, P, Keeter, WC, Alakhras, NS, Nelson, AS, Hoover, M, Barrios, MS, Nadler, JL, Serezani, CH, Kaplan, MH and Galkina, EV (2021) STAT4 is expressed in neutrophils and promotes antimicrobial immunity. JCI Insight 6(14), e141326.CrossRefGoogle ScholarPubMed
Miller, AH and Raison, CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology 16(1), 2234.Google Scholar
Moreira, FP, Medeiros, JR, Lhullier, AC, Souza, LD, Jansen, K, Portela, LV, Lara, DR, Da Silva, RA, Wiener, CD and Oses, JP (2016) Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. Drug and Alcohol Dependence 158, 181185.Google Scholar
Moreno, SE, Alves-Filho, JC, Alfaya, TM, Silva, JSD, Ferreira, SH and Liew, FY (2006) IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture. The Journal of Immunology 177(5), 32183224.Google Scholar
Mukunda, BN, Callahan, JM, Hobbs, MS and West, BC (2000) Cocaine inhibits human neutrophil phagocytosis and phagolysosomal acidification in vitro. Immunopharmacology and Immunotoxicology 22(2), 373386.Google Scholar
Mutua, V and Gershwin, LJ (2020) A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clinical Reviews in Allergy & Immunology 61, 194211.Google Scholar
Narvaez, JCM, Magalhães, PV, Fries, GR, Colpo, GD, Czepielewski, LS, Vianna, P, Chies, JAB, Rosa, AR, Von Diemen, L, Vieta, E, Pechansky, F and Kapczinski, F (2013) Peripheral toxicity in crack cocaine use disorders. Neuroscience Letters 544, 8084.Google Scholar
Neumann, A, Brogden, G and Von Köckritz-Blickwede, M (2020) Extracellular traps: an ancient weapon of multiple kingdoms. Biology 9(2), 3434.Google Scholar
Parker, H, Dragunow, M, Hampton, MB, Kettle, AJ and Winterbourn, CC (2012) Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology 92(4), 841849.CrossRefGoogle ScholarPubMed
Rasquinha, MT, Sur, M, Lasrado, N and Reddy, J (2021) IL-10 as a Th2 cytokine: differences between mice and humans. Journal of Immunology 207(9), 22052215.Google Scholar
Restrepo, CS, Carrillo, JA, Martínez, S, Ojeda, P, Rivera, AL and Hatta, A (2007) Pulmonary complications from cocaine and cocaine-based substances: imaging manifestations. Radiographics 27(4), 941956.CrossRefGoogle ScholarPubMed
Roth, MD, Tashkin, DP, Choi, R, Jamieson, BD, Zack, JA and Baldwin, GC (2002) Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. The Journal of Infectious Diseases 185(5), 701705.Google Scholar
Saitoh, T, Komano, J, Saitoh, Y, Misawa, T, Takahama, M, Kozaki, T, Uehata, T, Iwasaki, H, Omori, H, Yamaoka, S, Yamamoto, N and Akira, S (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host & Microbe 12(1), 109116.Google Scholar
Sanvicente-Vieira, B, Rovaris, DL, Ornell, F, Sordi, A, Rothmann, LM, Niederauer, JPO, Schuch, JB, Von Diemen, L, Kessler, FHP and Grassi-Oliveira, R (2019) Sex-based differences in multidimensional clinical assessments of early-abstinence crack cocaine users. PLoS ONE 14(6), 119.Google Scholar
Scheidell, JD, Quinn, K, Mcgorray, SP, Frueh, BC, Beharie, NN, Cottler, LB and Khan, MR (2018) Childhood traumatic experiences and the association with marijuana and cocaine use in adolescence through adulthood. Addiction 113(1), 4456.Google Scholar
Sinha, R, Talih, M, Malison, R, Cooney, N, Anderson, GM and Kreek, MJ (2003) Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states. Psychopharmacology 170(1), 6272.Google Scholar
Slopen, N, Koenen, KC and Kubzansky, LD (2012) Childhood adversity and immune and inflammatory biomarkers associated with cardiovascular risk in youth: a systematic review. Brain, Behavior, and Immunity 26(2), 239250.Google Scholar
Soder, HE, Berumen, AM, Gomez, KE, Green, CE, Suchting, R, Wardle, MC, Vincent, J, Teixeira, AL, Schmitz, JM and Lane, SD (2020) Elevated neutrophil to lymphocyte ratio in older adults with cocaine use disorder as a marker of chronic inflammation. Clinical Psychopharmacology and Neuroscience: The Official Scientific Journal of the Korean College of Neuropsychopharmacology 18(1), 3240.Google Scholar
Song, J, Park, DW, Moon, S, Cho, H-J, Park, JH, Seok, H and Choi, WS (2019) Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. BMC Infectious Diseases 19(1), 968.Google Scholar
Sorvillo, N, Cherpokova, D, Martinod, K and Wagner, DD (2019) Extracellular DNA net-works with dire consequences for health. Circulation Research 125(4), 470488.Google Scholar
Tatsiy, O and Mcdonald, PP (2018) Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Frontiers in Immunology 9, 2036.Google Scholar
Torres-Platas, SG, Cruceanu, C, Chen, GG, Turecki, G and Mechawar, N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behavior and Immunity 42, 5059.Google Scholar
Tyrka, AR, Burgers, DE, Philip, NS, Price, LH and Carpenter, LL (2013) The neurobiological correlates of childhood adversity and implications for treatment. Acta Psychiatrica Scandinavica 128(6), 434447.CrossRefGoogle ScholarPubMed
Veras, FP, Pontelli, MC, Silva, CM, Toller-Kawahisa, JE, De Lima, M, Nascimento, DC, Schneider, AH, Caetité, D, Tavares, LA, Paiva, IM, Rosales, R, Colón, D, Martins, R, Castro, IA, Almeida, GM, Lopes, MIF, Benatti, MN, Bonjorno, LP, Giannini, MC, Luppino-Assad, R, Almeida, SL, Vilar, F, Santana, R, Bollela, VR, Auxiliadora-Martins, M, Borges, M, Miranda, CH, Pazin-Filho, A, Da Silva, LLP, Cunha, L, Zamboni, DS, Dal-Pizzol, F, Leiria, LO, Siyuan, L, Batah, S, Fabro, A, Mauad, T, Dolhnikoff, M, Duarte-Neto, A, Saldiva, P, Cunha, TM, Alves-Filho, JC, Arruda, E, Louzada-Junior, P, Oliveira, RD and Cunha, FQ (2020) SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. The Journal of Experimental Medicine 217(12), e20201129.Google Scholar
Wright, HL, Lyon, M, Chapman, EA, Moots, RJ and Edwards, SW (2021) Rheumatoid arthritis synovial fluid neutrophils drive inflammation through production of chemokines, reactive oxygen species, and neutrophil extracellular traps. Frontiers in Immunology 11, 584116.Google Scholar
Yang, H, Biermann, MH, Brauner, JM, Liu, Y, Zhao, Y and Herrmann, M (2016) New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Frontiers in Immunology 7, 302302.Google Scholar
Yousefi, S, Simon, D, Stojkov, D, Karsonova, A, Karaulov, A and Simon, H-U (2020) In vivo evidence for extracellular DNA trap formation. Cell Death & Disease 11(4), 115.Google Scholar
Zaparte, A, Schuch, JB, Viola, TW, Baptista, TAS, Beidacki, AS, Prado, DO, Sanvicente-Vieira, CH, Bauer M.E., B and Grassi-Oliveira, R (2019) Cocaine use disorder is associated with changes in Th1/Th2/Th17 cytokines and lymphocytes subsets. Frontiers in Immunology 10, 2435.Google Scholar
Zaparte, A, Viola, TW, Grassi-Oliveira, R, Morrone, MD, Moreira, JC and Bauer, ME (2015) Early abstinence of crack-cocaine is effective to attenuate oxidative stress and to improve antioxidant defences. Psychopharmacology 232(8), 14051413.Google Scholar
Zuluaga, P, Sanvisens, A, Martínez-Cáceres, E, Teniente, A, Tor, J and Muga, R (2017) Over-expression of CD8. Drug and Alcohol Dependence 180, 713.Google Scholar
Supplementary material: File

Funchal et al. supplementary material

Funchal et al. supplementary material 1

Download Funchal et al. supplementary material(File)
File 14.9 KB
Supplementary material: Image

Funchal et al. supplementary material

Funchal et al. supplementary material 2

Download Funchal et al. supplementary material(Image)
Image 574.4 KB
Supplementary material: Image

Funchal et al. supplementary material

Funchal et al. supplementary material 3

Download Funchal et al. supplementary material(Image)
Image 198.2 KB