Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T08:07:39.376Z Has data issue: false hasContentIssue false

Evidence for enhanced sensitivity for pentagastrin in panic disorder patients

Published online by Cambridge University Press:  18 September 2015

H.J.G.M. van Megen*
Affiliation:
de afdeling Biologische psychiatrie van het Acad. Ziekenhuis Utrecht
H.G.M. Westenberg
Affiliation:
de afdeling Biologische psychiatrie van het Acad. Ziekenhuis Utrecht
J.A. Den Boer
Affiliation:
de afdeling Biologische psychiatrie van het Acad. Ziekenhuis Utrecht
*
Academisch ziekenhuis Utrecht, afd. Biologische Psychiatrie, Heidelberglaan 100, 3584 CX Utrecht

Summary

We studied the effects of pentagastrin, an analogue of the cholecystokinin tetrapeptide (CCK4), in 15 patients with panic disorder and 15 healthy controls. Three different intravenous dosages of pentagastrin (0.1, 0.3 and 0.6 μ/kg) and placebo (saline) were investigated. Subjects were randomly allocated to two of the four dosage groups and tested on two separate occasions, one week apart, using a double-blind incomplete block design. A total of 59 intravenous injections were carried out. The panic rate with pentagastrin, irrespective of the dosage, was 55% (12/22) for patients and 5% (1/22) for controls. None of the subjects panicked with saline. The frequency of panic attacks between the three pentagastrin doses in patients was not different. One control subject had a panic-like attack at the highest dose of pentagastrin. These findings concur with previous studies on the panicogenic effect of CCK4 and pentagastrin and suggest a greater sensitivity for CCK agonists in patients suffering from panic disorder than in healthy controls.

Type
Research Article
Copyright
Copyright © Scandinavian College of Neuropsychopharmacology 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literatuur

1.Fried, M, Schwizer, W, Beglinger, C, Keller, U, Jansen, JB, Lamers, CB. Physiological role of cholecystokinin on postprandial insulin secretion and gastric meal emptying in man. Studies with the cholecystokinin receptor agonist loxiglumide. Diabetol 1991; 34: 721–6.CrossRefGoogle Scholar
2.Rehfeld, JF. Neural Cholecystokinin: one or multiple transmitters? short review. J Neurochem 1985; 44(no.1): 110.CrossRefGoogle Scholar
3.Dourish, CT, Ruckert, AC, Tattersall, FD, Iversen, SD. Evidence that decreased feeding induced by systemic injection of cholecystokinin is mediated by CCK-A receptors. Eur J Pharmacol 1989; 173: 233–4.CrossRefGoogle ScholarPubMed
4.Morley, JE, Levine, AS, Kneip, NJ, Grace, M. The effects of vagotomy on the satiety effects of neuropeptides and nalaxone. Life Sci 1982; 30: 1943–7.CrossRefGoogle Scholar
5.Vanderhaegen, JJ, Signeau, JC, Gepts, W. New peptide in the vertebrate CNS reacting with gastrin antibodies. Nature 1975; 257: 604–5.CrossRefGoogle Scholar
6.Moran, TH, Robinson, PH, Goldrich, MS, McHugh, PR. Two brain cholecystokinin receptors: Implications for behavioral actions. Brain Res 1986; 362: 175–9.CrossRefGoogle ScholarPubMed
7.Megen, HJGM van, Boer, JA den, Westenberg, HGM. Neuropeptiden en angst. Acta Neuropsychiat 1992; 4,2: 2530.Google Scholar
8.Dodd, PR, Kelly, JS. The action of cholecystokinin and related peptides on the pyramidal neurons of mammalian hippocampus. Brain Res 1981; 205: 337–50.CrossRefGoogle ScholarPubMed
9.Beinfelt, MC, Palkovits, M. Distribution of cholecystokinin in the hippothaamus and the limbic system of the rat. Neuropeptides 1981;2:123–9.CrossRefGoogle Scholar
10.Bradwejn, J, de Montigny, C. Benzodiazepines antagonize cholecystokinin induced activation of the rat hippocampal neurons. Nature 1984; 312: 363–4.CrossRefGoogle Scholar
11.Sinton, CM. Cholecystokinin and cholecystokinin antagonist enhance postsynaptic excitability in the dentate gyrus. Peptides 1988;9:1049–53.CrossRefGoogle ScholarPubMed
12.Harro, J, Pold, M, Vasar, E. Anxiogenic-like action of caerulein, a CCK-8 agonist in mouse: influence of acute and subchronic diazepam treatment. Naun-Schiedeb Arch Pharmacol 1990; 341: 62–7.Google ScholarPubMed
13.Daugé, V, Steimes, P, Derrien, M, Beau, N, Roques, BP, Feger, J. CCK-8 effects on motivational and emotional states of rats involve CCK-A receptors of the ostero-median part of the nucleus accumbens. Pharm Biochem Behav 1989; 34:157–63.CrossRefGoogle Scholar
14.Hughes, J, Boden, P, Costall, B, Domeney, A, Kelly, E, Horwell, DC, Hunter, JC, Pinnock, RD, Woodruff, GN. Development of a class of selective cholecystokinin Type B receptor antagonists having potent anxiolytic activity. Proc natl Acad Sci 1990; 87: 6728–32.CrossRefGoogle ScholarPubMed
15.Harro, J, Vasar, E. Cholecystokinin-induced anxiety: How is it reflected in studies on exploratory behaviour? Neurosci biobeh Rev 1991; 15: 473–7.CrossRefGoogle Scholar
16.Montigny, C de. Cholecystokinin tetrapeptide induces panic like attacks in healthy volunteers. Arch gen Psych 1989; 46; 511–7.CrossRefGoogle ScholarPubMed
17.Bradwejn, J, Koszycki, D, Meterissian, G. Cholecystokinin tetrapeptide induces panic attacks in pations with panic disorder. Can J Psych 1990; 35: 83–5.CrossRefGoogle Scholar
18.Abelson, JL, Nesse, RM. Cholecystokinin-4 and panic. Arch gen Psychiatry 1990; 47: 395.CrossRefGoogle ScholarPubMed
19.American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-III-R). Washington, DC: APA, 1987.Google Scholar
20.Chambless, DL, Caputo, GC, Bright, P, Gallanghar, R. Assesment of fear of fear in agoraphobics: the body sensations questionnaire and the agoraphobic cognition questionnaire. J consul clin Psychiat 1984; 6: 1090–7.CrossRefGoogle Scholar
21.Cowley, DS, Hyde, TS, Dager, SR, Dunner, DL. Lactate infusion: the role of baseline anxiety. Psych Res 1987; 21: 169.CrossRefGoogle ScholarPubMed
22.Liebowitz, MR, Gorman, JM, Fyer, AJ, Levitt, M, Dillon, D, Levy, Get al.Lactate provocation of panic attacks. II Biochemical and physiological findings. Arch gen Psych 1985; 42: 709–19.CrossRefGoogle ScholarPubMed
23.Charney, DS, Heninger, GR, Redmond, DE. Yohimbine induced and increased noradrenergic function in humans: effects of diazepam and clonidine. Life Sci 1983; 33: 1929.CrossRefGoogle ScholarPubMed
24.Boer, JA den, Westenberg, HGM, Klompmakers, AA, van Lint, LEM. Behavioral biochemical and neuroendocrine concomitants of lactate-induced panic anxiety. Biol Psychiat 1989; 26: 612–22.CrossRefGoogle Scholar
25.Boer, JA den, Westenberg, HGM. Effects of a seretonin and noradrenaline re-uptake inhibitor in panic disorder, a double blind comparative study with fluvoxamine and maprotiline. Int Clin Psychopharm 1988; 3: 5974.CrossRefGoogle Scholar
26.Kahn, RS, Asnis, GM, Wetzler, S, Praag, HM van. Neuroendocrine evidence for serotonin receptor hypersensitivity in panic disorder. Psychopharmacol 1988; 96: 360–4.CrossRefGoogle ScholarPubMed
27.Boer, JA den, Westenberg, HGM. Behavioral, neuroendocrine, and biochemical effects of 5-Hydroxytryptophan administration in panic disorder. Psychiat Res 1990; 31: 267–78.CrossRefGoogle Scholar
28.Lesch, KP, Wiesmann, M, Hoh, A, Müller, T, Disselkamp-Tietze, J, Osterheide M, Schulte HM. 5-HT1a receptor-effector system responsivity in panic disorder. Psychopharmacol 1992; 106: 111–7.CrossRefGoogle Scholar
29.Fuller, RW. Serotonerge stimulation of pituitary-adrenocortical function in rats. Neuroendocrinol 1981; 32: 118–27.CrossRefGoogle Scholar
30.Abelson, JL, Nesse, RM, Vinik, A. Stimulation of corticotropin release by pentagastrin in normal subjects and patients with panic disorder. Biol Psychiat 1991; 29: 1220–3.CrossRefGoogle ScholarPubMed