Hostname: page-component-594f858ff7-jtv8x Total loading time: 0 Render date: 2023-06-07T09:11:50.676Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Effect of transcranial direct current stimulation on in-vivo assessed neuro-metabolites through magnetic resonance spectroscopy: a systematic review

Published online by Cambridge University Press:  30 April 2021

Harleen Chhabra*
Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
Vani Holebasavanahalli Thimmashetty
Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
Venkataram Shivakumar
Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
Ganesan Venkatasubramanian
Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
Janardhanan C. Narayanswamy
Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
Author for correspondence: Dr. Harleen Chhabra, Email:



Previous studies have examined the effect of transcranial direct current stimulation (tDCS) on the in-vivo concentrations of neuro-metabolites assessed through magnetic resonance spectroscopy (MRS) in neurological and psychiatry disorders. This review aims to systematically evaluate the data on the effect of tDCS on MRS findings and thereby attempt to understand the potential mechanism of tDCS on neuro-metabolites.


The relevant literature was obtained through PubMed and cross-reference (search till June 2020). Thirty-four studies were reviewed, of which 22 reported results from healthy controls and 12 were from patients with neurological and psychiatric disorders.


The evidence converges to highlight that tDCS modulates the neuro-metabolite levels at the site of stimulation, which, in turn, translates into alterations in the behavioural outcome. It also shows that the baseline level of these neuro-metabolites can, to a certain extent, predict the outcome after tDCS. However, even though tDCS has shown promising effects in alleviating symptoms of various psychiatric disorders, there are limited studies that have reported the effect of tDCS on neuro-metabolite levels.


There is a compelling need for more systematic studies examining patients with psychiatric/neurological disorders with larger samples and harmonised tDCS protocols. More studies will potentially help us to understand the tDCS mechanism of action pertinent to neuro-metabolite levels modulation. Further, studies should be conducted in psychiatric patients to understand the neurological changes in this population and potentially unravel the neuro-metabolite × tDCS interaction effect that can be translated into individualised treatment.

Review Article
© The Author(s), 2021. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



These authors have made equal contributions to the paper.


Agarwal, SM, Bose, A, Shivakumar, V, Narayanaswamy, JC, Chhabra, H, Kalmady, SV, Varambally, S, Nitsche, MA, Venkatasubramanian, G, Gangadhar, BN (2016) Impact of antipsychotic medication on transcranial direct current stimulation (tDCS) effects in schizophrenia patients. Psychiatry Research, 235, 97103.CrossRefGoogle ScholarPubMed
Agarwal, SM, Shivakumar, V, Bose, A, Subramaniam, A, Nawani, H, Chhabra, H, Kalmady, SV, Narayanaswamy, JC, Venkatasubramanian, G (2013) Transcranial direct current stimulation in schizophrenia. Clinical Psychopharmacology and Neuroscience 11, 118125.CrossRefGoogle Scholar
Antal, A, Alekseichuk, I, Bikson, M, Brockmöller, J, Brunoni, AR, Chen, R, Cohen, LG, Dowthwaite, G, Ellrich, J, Flöel, A, Fregni, F, George, MS, Hamilton, R, Haueisen, J, Herrmann, CS, Hummel, FC, Lefaucheur, JP, Liebetanz, D, Loo, CK, Mccaig, CD, Miniussi, C, Miranda, PC, Moliadze, V, Nitsche, MA, Nowak, R, Padberg, F, Pascual-Leone, A, Poppendieck, W, Priori, A, Rossi, S, Rossini, PM, Rothwell, J, Rueger, MA, Ruffini, G, Schellhorn, K, Siebner, HR, Ugawa, Y, Wexler, A, Ziemann, U, Hallett, M, Paulus, W (2017) Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology 128, 17741809.CrossRefGoogle ScholarPubMed
Antonenko, D, Schubert, F, Bohm, F, Ittermann, B, Aydin, S, Hayek, D, Grittner, U, Flöel, A (2017) tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. The Journal of Neuroscience 37, 40654073.CrossRefGoogle ScholarPubMed
Antonenko, D, Thielscher, A, Saturnino, GB, Aydin, S, Ittermann, B, Grittner, U, Flöel, A (2019) Towards precise brain stimulation: is electric field simulation related to neuromodulation? Brain Stimulation 12, 11591168.CrossRefGoogle ScholarPubMed
Auvichayapat, P, Aree-Uea, B, Auvichayapat, N, Phuttharak, W, Janyacharoen, T, Tunkamnerdthai, O, Boonphongsathian, W, Ngernyam, N, Keeratitanont, K (2017) Transient changes in brain metabolites after transcranial direct current stimulation in spastic cerebral palsy: a pilot study. Frontiers in Neurology 8, 366.CrossRefGoogle ScholarPubMed
Auvichayapat, P, Keeratitanont, K, Janyachareon, T, Auvichayapat, N (2018) The effects of transcranial direct current stimulation on metabolite changes at the anterior cingulate cortex in neuropathic pain: a pilot study. Journal of Pain Research 11, 23012309.CrossRefGoogle Scholar
Auvichayapat, N, Patjanasoontorn, N, Phuttharak, W, Suphakunpinyo, C, Keeratitanont, K, Tunkamnerdthai, O, Aneksan, B, Klomjai, W, Boonphongsathian, W, Sinkueakunkit, A, Punjaruk, W, Tiamkao, S, Auvichayapat, P (2020) Brain metabolite changes after anodal transcranial direct current stimulation in autism spectrum disorder. Frontiers in Molecular Neuroscience 13, 70.CrossRefGoogle ScholarPubMed
Bachtiar, V, Johnstone, A, Berrington, A, Lemke, C, Johansen-Berg, H, Emir, U, Stagg, CJ (2018) Modulating regional motor cortical excitability with noninvasive brain stimulation results in neurochemical changes in bilateral motor cortices. The Journal of Neuroscience 38, 73277336.CrossRefGoogle ScholarPubMed
Bachtiar, V, Near, J, Johansen-Berg, H, Stagg, CJ (2015) Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. Elife 4, e08789.CrossRefGoogle ScholarPubMed
Bai, X, Guo, Z, He, L, Ren, L, Mcclure, MA, Mu, Q (2019) Different therapeutic effects of transcranial direct current stimulation on upper and lower limb recovery of stroke patients with motor dysfunction: a meta-analysis. Neural Plasticity 2019, 1372138.CrossRefGoogle ScholarPubMed
Barron, HC, Vogels, TP, Emir, UE, Makin, TR, O’shea, J, Clare, S, Jbabdi, S, Dolan, RJ, Behrens, TE (2016) Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron 90, 191203.CrossRefGoogle ScholarPubMed
Brunoni, AR, Nitsche, MA, Bolognini, N, Bikson, M, Wagner, T, Merabet, L, Edwards, DJ, Valero-Cabre, A, Rotenberg, A, Pascual-Leone, A, Ferrucci, R, Priori, A, Boggio, PS, Fregni, F (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimulation 5, 175195.CrossRefGoogle ScholarPubMed
Carlson, HL, Ciechanski, P, Harris, AD, Macmaster, FP, Kirton, A (2018) Changes in spectroscopic biomarkers after transcranial direct current stimulation in children with perinatal stroke. Brain Stimulation 11, 94103.CrossRefGoogle ScholarPubMed
Chang, CC, Kao, YC, Chao, CY, Tzeng, NS, Chang, HA (2020) Examining bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex coupled with bilateral extracephalic references as a treatment for negative symptoms in non-acute schizophrenia patients: A randomized, double-blind, sham-controlled trial. Progress in Neuro-Psychopharmacology & Biological Psychiatry 96, 109715.CrossRefGoogle ScholarPubMed
Clark, VP, Coffman, BA, Trumbo, MC, Gasparovic, C (2011) Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a ¹H magnetic resonance spectroscopy study. Neuroscience Letters 500, 6771.CrossRefGoogle ScholarPubMed
Cucca, A, Sharma, K, Agarwal, S, Feigin, AS, Biagioni, MC (2019) Tele-monitored tDCS rehabilitation: feasibility, challenges and future perspectives in Parkinson’s disease. Journal of NeuroEngineering and Rehabilitation 16, 20.CrossRefGoogle ScholarPubMed
Dickler, M, Lenglos, C, Renauld, E, Ferland, F, Edden, RA, Leblond, J, Fecteau, S (2018) Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder. Neuropharmacology 131, 5157.CrossRefGoogle ScholarPubMed
Dwyer, GE, Craven, AR, Hirnstein, M, Kompus, K, Assmus, J, Ersland, L, Hugdahl, K, Grüner, R (2018) No effects of Anodal tDCS on local GABA and Glx levels in the left posterior superior temporal gyrus. Frontiers in Neurology 9, 1145.CrossRefGoogle ScholarPubMed
Ekhtiari, H, Tavakoli, H, Addolorato, G, Baeken, C, Bonci, A, Campanella, S, Castelo-Branco, L, Challet-Bouju, G, Clark, VP, Claus, E, Dannon, PN, Del Felice, A, Den Uyl, T, Diana, M, Di Giannantonio, M, Fedota, JR, Fitzgerald, P, Gallimberti, L, Grall-Bronnec, M, Herremans, SC, Herrmann, MJ, Jamil, A, Khedr, E, Kouimtsidis, C, Kozak, K, Krupitsky, E, Lamm, C, Lechner, WV, Madeo, G, Malmir, N, Martinotti, G, Mcdonald, WM, Montemitro, C, Nakamura-Palacios, EM, Nasehi, M, Noël, X, Nosratabadi, M, Paulus, M, Pettorruso, M, Pradhan, B, Praharaj, SK, Rafferty, H, Sahlem, G, Salmeron, BJ, Sauvaget, A, Schluter, RS, Sergiou, C, Shahbabaie, A, Sheffer, C, Spagnolo, PA, Steele, VR, Yuan, TF, Van Dongen, JDM, Van Waes, V, Venkatasubramanian, G, Verdejo-García, A, Verveer, I, Welsh, JW, Wesley, MJ, Witkiewitz, K, Yavari, F, Zarrindast, MR, Zawertailo, L, Zhang, X, Cha, YH, George, TP, Frohlich, F, Goudriaan, AE, Fecteau, S, Daughters, SB, Stein, EA, Fregni, F, Nitsche, MA, Zangen, A, Bikson, M, Hanlon, CA (2019) Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neuroscience & Biobehavioral Reviews 104, 118140.CrossRefGoogle ScholarPubMed
Filmer, HL, Ehrhardt, SE, Bollmann, S, Mattingley, JB, Dux, PE (2019) Accounting for individual differences in the response to tDCS with baseline levels of neurochemical excitability. Cortex 115, 324334.CrossRefGoogle ScholarPubMed
Foerster, BR, Nascimento, TD, Deboer, M, Bender, MA, Rice, IC, Truong, DQ, Bikson, M, Clauw, DJ, Zubieta, JK, Harris, RE, Dasilva, AF (2015) Excitatory and inhibitory brain metabolites as targets of motor cortex transcranial direct current stimulation therapy and predictors of its efficacy in fibromyalgia. Arthritis & Rheumatology 67, 576581.CrossRefGoogle ScholarPubMed
Fregni, F, El-Hagrassy, MM, Pacheco-Barrios, K, Carvalho, S, Leite, J, Simis, M, Brunelin, J, Nakamura-Palacios, EM, Marangolo, P, Venkatasubramanian, G, San-Juan, D, Caumo, W, Bikson, M, Brunoni, AR (2020) Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation (tDCS) in neurological and psychiatric disorders. International Journal of Neuropsychopharmacology 24, 256313.CrossRefGoogle Scholar
García-Larrea, L, Peyron, R, Mertens, P, Gregoire, MC, Lavenne, F, Le Bars, D, Convers, P, Mauguière, F, Sindou, M, Laurent, B (1999) Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain 83, 259273.CrossRefGoogle ScholarPubMed
Gowda, SM, Narayanaswamy, JC, Hazari, N, Bose, A, Chhabra, H, Balachander, S, Bhaskarapillai, B, Shivakumar, V, Venkatasubramanian, G, Reddy, YCJ (2019) Efficacy of pre-supplementary motor area transcranial direct current stimulation for treatment resistant obsessive compulsive disorder: a randomized, double blinded, sham controlled trial. Brain Stimulation 12, 922929.CrossRefGoogle ScholarPubMed
Harris, AD, Wang, Z, Ficek, B, Webster, K, Edden, RA, Tsapkini, K (2019) Reductions in GABA following a tDCS-language intervention for primary progressive aphasia. Neurobiology of Aging 79, 7582.CrossRefGoogle ScholarPubMed
Hone-Blanchet, A, Edden, RA, Fecteau, S (2016) Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biological Psychiatry 80, 432438.CrossRefGoogle ScholarPubMed
Hunter, MA, Coffman, BA, Gasparovic, C, Calhoun, VD, Trumbo, MC, Clark, VP (2015) Baseline effects of transcranial direct current stimulation on glutamatergic neurotransmission and large-scale network connectivity. Brain Research 1594, 92107.CrossRefGoogle ScholarPubMed
Jalali, R, Chowdhury, A, Wilson, M, Miall, RC, Galea, JM (2018) Neural changes associated with cerebellar tDCS studied using MR spectroscopy. Experimental Brain Research 236, 9971006.CrossRefGoogle ScholarPubMed
Kim, S, Stephenson, MC, Morris, PG, Jackson, SR (2014) tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. Neuroimage 99, 237243.CrossRefGoogle Scholar
King, BR, Rumpf, JJ, Verbaanderd, E, Heise, KF, Dolfen, N, Sunaert, S, Doyon, J, Classen, J, Mantini, D, Puts, NaJ, Edden, RaE, Albouy, G, Swinnen, SP (2020) Baseline sensorimotor GABA levels shape neuroplastic processes induced by motor learning in older adults. Human Brain Mapping 41, 36803695.CrossRefGoogle ScholarPubMed
Kuo, MF, Grosch, J, Fregni, F, Paulus, W, Nitsche, MA (2007) Focusing effect of acetylcholine on neuroplasticity in the human motor cortex. The Journal of Neuroscience 27, 1444214447.CrossRefGoogle ScholarPubMed
Lee, J, Yoon, YB, Wijtenburg, SA, Rowland, LM, Chen, H, Gaston, FE, Song, IC, Cho, KIK, Kim, M, Lee, TY, Kwon, JS (2018) Lower glutamate level in temporo-parietal junction may predict a better response to tDCS in schizophrenia. Schizophrenia Research 201, 422423.CrossRefGoogle Scholar
Marquardt, L, Kusztrits, I, Craven, AR, Hugdahl, K, Specht, K, Hirnstein, M (2020) A multimodal study of the effects of tDCS on dorsolateral prefrontal and temporo-parietal areas during dichotic listening. European Journal of Neuroscience 53, 449459.CrossRefGoogle ScholarPubMed
Mccambridge, AB, Stinear, JW, Byblow, WD (2018) Revisiting interhemispheric imbalance in chronic stroke: a tDCS study. Clinical Neurophysiology 129, 4250.CrossRefGoogle ScholarPubMed
Medeiros, LF, De Souza, IC, Vidor, LP, De Souza, A, Deitos, A, Volz, MS, Fregni, F, Caumo, W, Torres, IL (2012) Neurobiological effects of transcranial direct current stimulation: a review. Frontiers in Psychiatry 3, 110.CrossRefGoogle ScholarPubMed
Monte-Silva, K, Kuo, MF, Hessenthaler, S, Fresnoza, S, Liebetanz, D, Paulus, W, Nitsche, MA (2013) Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation 6, 424432.CrossRefGoogle ScholarPubMed
Nitsche, MA, Cohen, LG, Wassermann, EM, Priori, A, Lang, N, Antal, A, Paulus, W, Hummel, F, Boggio, PS, Fregni, F, Pascual-Leone, A (2008) Transcranial direct current stimulation: State of the art 2008. Brain Stimulation 1, 206223.CrossRefGoogle ScholarPubMed
Nitsche, MA, Grundey, J, Liebetanz, D, Lang, N, Tergau, F, Paulus, W (2004) Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cerebral Cortex 14, 12401245.CrossRefGoogle ScholarPubMed
Nwaroh, C, Giuffre, A, Cole, L, Bell, T, Carlson, HL, Macmaster, FP, Kirton, A, Harris, AD (2020) Effects of transcranial direct current stimulation on GABA and Glx in children: a pilot study. PLoS One 15, e0222620.CrossRefGoogle ScholarPubMed
O’shea, J, Boudrias, MH, Stagg, CJ, Bachtiar, V, Kischka, U, Blicher, JU, Johansen-Berg, H (2014) Predicting behavioural response to TDCS in chronic motor stroke. Neuroimage 85 (Pt 3), 924933.CrossRefGoogle ScholarPubMed
Palm, U, Brunelin, J, Wulf, L, Mondino, M, Brunoni, AR, Padberg, F (2020) Transcranial direct current stimulation (tDCS) for obsessive-compulsive disorder: a new treatment option? Fortschritte der Neurologie-Psychiatrie 88, 451458.Google ScholarPubMed
Patel, HJ, Romanzetti, S, Pellicano, A, Nitsche, MA, Reetz, K, Binkofski, F (2019) Proton magnetic resonance spectroscopy of the motor cortex reveals long term GABA change following anodal transcranial direct current stimulation. Scientific Reports 9, 2807.CrossRefGoogle ScholarPubMed
Rae, CD, Lee, VH, Ordidge, RJ, Alonzo, A, Loo, C (2013) Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics. International Journal of Neuropsychopharmacology 16, 16951706.CrossRefGoogle ScholarPubMed
Rango, M, Cogiamanian, F, Marceglia, S, Barberis, B, Arighi, A, Biondetti, P, Priori, A (2008) Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study. Magnetic Resonance in Medicine 60, 782789.CrossRefGoogle Scholar
Reidler, JS, Mendonca, ME, Santana, MB, Wang, X, Lenkinski, R, Motta, AF, Marchand, S, Latif, L, Fregni, F (2012) Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects. The Journal of Pain 13, 450458.CrossRefGoogle ScholarPubMed
Ryan, K, Wawrzyn, K, Gati, JS, Chronik, BA, Wong, D, Duggal, N, Bartha, R (2018) 1H MR spectroscopy of the motor cortex immediately following transcranial direct current stimulation at 7 Tesla. PLoS One 13, e0198053.CrossRefGoogle ScholarPubMed
San-Juan, D, Espinoza López, DA, Vázquez Gregorio, R, Trenado, C, Fernández-González Aragón, M, Morales-Quezada, L, Hernandez Ruiz, A, Hernandez-González, F, Alcaraz-Guzmán, A, Anschel, DJ and Fregni, F (2017) Transcranial direct current stimulation in mesial temporal lobe epilepsy and hippocampal sclerosis. Brain Stimulation 10, 2835.CrossRefGoogle ScholarPubMed
Simis, M, Reidler, JS, Duarte Macea, D, Moreno Duarte, I, Wang, X, Lenkinski, R, Petrozza, JC, Fregni, F (2015) Investigation of central nervous system dysfunction in chronic pelvic pain using magnetic resonance spectroscopy and noninvasive brain stimulation. Pain Practice 15, 423432.CrossRefGoogle ScholarPubMed
Sonmez, AI, Camsari, DD, Nandakumar, AL, Voort, JLV, Kung, S, Lewis, CP, Croarkin, PE (2019) Accelerated TMS for depression: a systematic review and meta-analysis. Psychiatry Research 273, 770781.CrossRefGoogle ScholarPubMed
Stagg, CJ, Best, JG, Stephenson, MC, O’shea, J, Wylezinska, M, Kincses, ZT, Morris, PG, Matthews, PM, Johansen-Berg, H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience 29, 52025206.CrossRefGoogle ScholarPubMed
Talsma, LJ, Broekhuizen, JA, Huisman, J, Slagter, HA (2018) No evidence that baseline prefrontal cortical excitability (3T-MRS) predicts the effects of prefrontal tDCS on WM performance. Frontiers in Neuroscience 12, 481.CrossRefGoogle ScholarPubMed
Tremblay, S, Lafleur, LP, Proulx, S, Beaulé, V, Latulipe-Loiselle, A, Doyon, J, Marjańska, M, Théoret, H (2016) The effects of bi-hemispheric M1-M1 transcranial direct current stimulation on primary motor cortex neurophysiology and metabolite concentration. Restorative Neurology and Neuroscience 34, 587602.CrossRefGoogle ScholarPubMed
Wilke, S, List, J, Mekle, R, Lindenberg, R, Bukowski, M, Ott, S, Schubert, F, Ittermann, B, Flöel, A (2017) No effect of anodal transcranial direct current stimulation on gamma-aminobutyric acid levels in patients with recurrent mild traumatic brain injury. Journal of Neurotrauma 34, 281290.CrossRefGoogle ScholarPubMed