Skip to main content Accessibility help
×
Home
Spoof Surface Plasmon Metamaterials
  • Cited by 3

Spoof Surface Plasmon Metamaterials

Metamaterials offer the possibility to control and manipulate electromagnetic radiation. Spoof surface plasmon metamaterials are the focus of this Element of the Metamaterials Series. The fundamentals of spoof surface plasmons are reviewed, and advances on plasmonic metamaterials based on spoof plasmons are presented. Spoof surface plasmon metamaterials on a wide range of geometries are discussed: from planar platforms to waveguides and localized modes, including cylindrical structures, grooves, wedges, dominos or conformal surface plasmons in ultrathin platforms. The Element closes with a review of recent advances and applications such as Terahertz sensing or integrated devices and circuits.

  • Copyright

  • COPYRIGHT: © Materials Research Society 2018

References

Hide all
[1] Smith DR , Pendry JB , Wiltshire MCK . Metamaterials and negative refractive index. Science, 2004;305(5685):788–92. CrossRef | Google Scholar
  • PubMed
  • [2] Pendry JB . Photonics: metamaterials in the sunshine. Nature Materials. 2006;5(8):599–600. CrossRef | Google Scholar
  • PubMed
  • [3] Shelby RA , Smith DR , Schultz S . Experimental verification of a negative index of refraction. Science, 2001;292(5514):77–9. CrossRef | Google Scholar
  • PubMed
  • [4] Schurig D , Mock JJ , Justice BJ , et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006;314:977. CrossRef | Google Scholar
  • PubMed
  • [5] Cui, TJ , Smith, DR , Liu, RP . Metamaterials: Theory, Design and Applications . 1st ed. Springer, 2009. Google Scholar
    [6] Liu Y , Zhang X . Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 2011;40(5):2494–507. CrossRef | Google Scholar
  • PubMed
  • [7] Raether H . Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988. CrossRef | Google Scholar
    [8] Maier SA . Plasmonics Fundamentals and Applications. Boston, MA: Springer, 2007. CrossRef | Google Scholar
    [9] Barnes WL , Dereux A , Ebbesen TW . Surface plasmon subwavelength optics. Nature, 2003;424(6950):824–30. CrossRef | Google Scholar
  • PubMed
  • [10] Ozbay E . Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006 Jan;311(5758):189–93. CrossRef | Google Scholar
  • PubMed
  • [11] Gramotnev DK , Bozhevolnyi SI . Plasmonics beyond the diffraction limit. Nature Photonics, 2010;4(2):83–91. CrossRef | Google Scholar
    [12] Zhang S , Fan W , Minhas B , Frauenglass A , Malloy K , Brueck S . Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Physical Review Letters, 2005;94(3):037402. CrossRef | Google Scholar
  • PubMed
  • [13] Zhang S , Fan W , Panoiu NC , Malloy KJ , Osgood RM , Brueck SRJ . Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005;95(13):137404. CrossRef | Google Scholar
  • PubMed
  • [14] Pendry JB , Martín-Moreno L , García-Vidal FJ . Mimicking surface plasmons with structured surfaces. Science, 2004;305(5685):847–8. CrossRef | Google Scholar
  • PubMed
  • 108[15] García-Vidal FJ , Martín-Moreno L , Pendry JB . Surfaces with holes in them: new plasmonic metamaterials. Journal of Optics A: Pure and Applied Optics. 2005;7(2):S97–S101. CrossRef | Google Scholar
    [16] Shalaev VM . Optical negative-index metamaterials. Nature Photonics. 2007;1(1):41–8. CrossRef | Google Scholar
    [17] Cai WS , Shalaev VM . Optical Metamaterials: Fundamentals and Applications. 1st ed. New York, NY: Springer, 2009. Google Scholar
    [18] Wegener M , Linden S . Shaping optical space with metamaterials feature. Physics Today. 2010;63:32–6. CrossRef | Google Scholar
    [19] Pendry JB , Holden AJ , Stewart WJ , Youngs I . Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters. 1996;76(25):4773–6. CrossRef | Google Scholar
  • PubMed
  • [20] Pendry JB , Holden AJ , Robbins DJ , Stewart WJ . Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999;47(11):2075–2084. CrossRef | Google Scholar
    [21] Wiltshire MCK , Pendry JB , Young IR , Larkman DJ , Gilderdale DJ , Hajnal JV . Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001;291(5505):849. CrossRef | Google Scholar
  • PubMed
  • [22] Soukoulis CM , Linden S , Wegener M . Negative refractive index at optical wavelengths. Science, 2007;315(5808):47–9. CrossRef | Google Scholar
  • PubMed
  • [23] Lezec HJ , Dionne JA , Atwater HA . Negative refraction at visible frequencies. Science, 2007;316(5823):430–2. CrossRef | Google Scholar
  • PubMed
  • [24] Yao J , Liu Z , Liu Y , et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 2008;321(5891):930. CrossRef | Google Scholar
  • PubMed
  • [25] Valentine J , Zhang S , Zentgraf T , et al. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008;455(7211):376–9. CrossRef | Google Scholar
  • PubMed
  • [26] Fang N , Lee H , Sun C , Zhang X . Subdiffraction-limited optical imaging with a silver superlens. Science, 2005;308(5721):534–7. CrossRef | Google Scholar
    [27] Taubner T , Korobkin D , Urzhumov Y , Shvets G , Hillenbrand R . Near-field microscopy through a SiC superlens. Science, 2006;313(5793):1595. CrossRef | Google Scholar
  • PubMed
  • [28] Zhang X , Liu Z . Superlenses to overcome the diffraction limit. Nature Materials, 2008;7(6):435–41. CrossRef | Google Scholar
  • PubMed
  • [29] Zhang S , Park YS , Li J , Lu X , Zhang W , Zhang X . Negative Refractive Index in Chiral Metamaterials. Physical Review Letters, 2009;102(2):023901. CrossRef | Google Scholar
  • PubMed
  • [30] Gansel JK , Thiel M , Rill MS , et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009;325(5947):1513–5. CrossRef | Google Scholar
  • PubMed
  • 109[31] Kaelberer T , Fedotov VA , Papasimakis N , Tsai DP , Zheludev NI . Toroidal dipolar response in a metamaterial. Science, 2010;330(6010):1510–12. CrossRef | Google Scholar
    [32] Kabashin AV , Evans P , Pastkovsky S , et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials, 2009;8(11):867–71. CrossRef | Google Scholar
  • PubMed
  • [33] Wu C , Khanikaev AB , Adato R , et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 2011;11(1):69–75. CrossRef | Google Scholar
  • PubMed
  • [34] Sreekanth KV , Alapan Y , ElKabbash M , et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016;15(March):4–11. CrossRef | Google Scholar
  • PubMed
  • [35] Soukoulis CM , Wegener M . Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011;5(9):523. CrossRef | Google Scholar
    [36] Hess O , Pendry JB , Maier SA , Oulton RF , Hamm JM , Tsakmakidis KL . Active nanoplasmonic metamaterials. Nature Materials, 2012;11(7):573–84. CrossRef | Google Scholar
  • PubMed
  • [37] Neira AD , Olivier N , Nasir ME , Dickson W , Wurtz GA , Zayats AV . Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nature Communications. 2015;6:7757. CrossRef | Google Scholar
  • PubMed
  • [38] Meinzer N , Barnes WL , Hooper IR . Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014;8(12):889–98. CrossRef | Google Scholar
    [39] Kildishev AV , Boltasseva A , Shalaev VM . Planar photonics with metasurfaces. Science, 2013;339(6125):1232009. CrossRef | Google Scholar
  • PubMed
  • [40] Ni X , Emani NK , Kildishev AV , Boltasseva A , Shalaev VM . Broadband light bending with plasmonic nanoantennas. Science, 2012;335(6067):427. CrossRef | Google Scholar
  • PubMed
  • [41] Yu N , Genevet P , Kats MA , et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science, 2011;334(6054):333–7. CrossRef | Google Scholar
  • PubMed
  • [42] Ding F , Wang Z , He S , Shalaev V , Kildishev A . Broadband high-efficiency half-wave plate: a super-cell based plasmonic metasurface approach. ACS Nano, 2015;9(4):4111–19. CrossRef | Google Scholar
    [43] Yin X , Ye Z , Rho J , Wang Y , Zhang X . Photonic Spin Hall Effect at Metasurfaces. Science, 2013;339(6126):1405–7. CrossRef | Google Scholar
  • PubMed
  • [44] Khorasaninejad M , Chen WT , Devlin RC , Oh J , Zhu AY , Capasso F . Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016;352(6290):1190–4. CrossRef | Google Scholar
  • PubMed
  • 110[45] Ramakrishna SA . Physics of negative refractive index materials. Reports on Progress in Physics, 2005;68(2):449–521. CrossRef | Google Scholar
    [46] Murray WA , Barnes WL . Plasmonic materials. Advanced Materials , 2007;19(22):3771–82. CrossRef | Google Scholar
    [47] Maier SA , Atwater HA . Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 2005;98(1):011101. CrossRef | Google Scholar
    [48] Schuck PJ , Fromm DP , Sundaramurthy A , Kino GS , Moerner WE . Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Physical Review Letters, 2005;94(1):017402. CrossRef | Google Scholar
  • PubMed
  • [49] Mühlschlegel P , Eisler HJ , Martin OJF , Hecht B , Pohl DW . Resonant optical antennas. Science, 2005;308(5728):1607–9. CrossRef | Google Scholar
  • PubMed
  • [50] Anger P , Bharadwaj P , Novotny L . Enhancement and quenching of single-molecule fluorescence, Physical Review Letters, 2006;96(11):113002(1–4). CrossRef | Google Scholar
  • PubMed
  • [51] Kühn S , Hakanson U , Rogobete L , Sandoghdar V . Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Physical Review Letters, 2006;97(1):017402(1–4). CrossRef | Google Scholar
  • PubMed
  • [52] Novotny L . Effective wavelength scaling for optical antennas. Physical Review Letters, 2007;98(26):266802. CrossRef | Google Scholar
  • PubMed
  • [53] Ghenuche P , Cherukulappurath S , Taminiau TH , van Hulst NF , Quidant R . Spectroscopic mode mapping of resonant plasmon nanoantennas. Physical Review Letters, 2008;101(11):116805. CrossRef | Google Scholar
  • PubMed
  • [54] Bryant GW , García de Abajo FJ , Aizpurua J . Mapping the plasmon resonances of metallic nanoantennas. Nano Letters, 2008;8(2):631–6. CrossRef | Google Scholar
  • PubMed
  • [55] Kinkhabwala A , Yu Z , Fan S , Avlasevich Y , Müllen K , Moerner WE . Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009;3(11):654–7. CrossRef | Google Scholar
    [56] Curto AG , Volpe G , Taminiau TH , Kreuzer MP , Quidant R , van Hulst NF . Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010;329(5994):930–3. CrossRef | Google Scholar
  • PubMed
  • [57] Schuller JA , Barnard ES , Cai W , Jun YC , White JS , Brongersma ML . Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010;9(3):193–204. CrossRef | Google Scholar
  • PubMed
  • [58] Atwater HA , Polman A . Plasmonics for improved photovoltaic devices. Nature Materials, 2010;9(3):865. CrossRef | Google Scholar
  • PubMed
  • [59] Fan JA , Wu C , Bao K , et al. Self-Assembled Plasmonic Nanoparticle Clusters. Science, 2010;328(5982):1135–8. CrossRef | Google Scholar
  • PubMed
  • 111[60] Novotny L , van Hulst NF . Antennas for light. Nature Photonics, 2011;5(2):83–90. CrossRef | Google Scholar
    [61] Höppener C , Lapin ZJ , Bharadwaj P , Novotny L . Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Physical Review Letters, 2012;109(1):017402. CrossRef | Google Scholar
  • PubMed
  • [62] Rodrigo S , García-Vidal FJ , Martín-Moreno L . Influence of material properties on extraordinary optical transmission through hole arrays. Physical Review B, 2008;77(7):075401. CrossRef | Google Scholar
    [63] Johnson PB , Christy RW . Optical constants of noble metals. Physical Review B, 1972;6(12):4370–9. CrossRef | Google Scholar
    [64] Palik E . Handbook of Optical Constants of Solids, edited by Edward D. Palik . Academic Press Handbook Series, New York, NY: Academic Press, 1985. Google Scholar
    [65] Novotny L , Hetch B . Principles of Nanooptics, 1st ed. Cambridge: Cambridge University Press, 2006. Google Scholar
    [66] Archambault A , Teperik TV , Marquier F , Greffet JJ . Surface plasmon Fourier optics. Physical Review B – Condensed Matter and Materials Physics, 2009;79(19):1–8. CrossRef | Google Scholar
    [67] Otto A . Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeits Phys., 1968;216(4):398–410. Google Scholar
    [68] Kretschmann E , Raether H . Radiative decay of non-radiative surface plasmons excited by light. Z Naturforschung, A., 1968;23:2135. Google Scholar
    [69] Pelton M , Aizpurua J , Bryant G . Metal-nanoparticle plasmonics. Laser & Photonics Review. 2008;2(3):136–59. CrossRef | Google Scholar
    [70] Giannini V , Fernández-Domínguez AI , Heck SC , Maier SA . Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 2011;111(6):3888–912. CrossRef | Google Scholar
  • PubMed
  • [71] Jackson JD . Classical Electrodynamics, 3rd ed. Wiley, 1998. Google Scholar
    [72] Zenneck J. Propagation of plane electromagnetic waves along a plane conducting surface. Ann Phys(Leipzig), 1907;23(1):846. CrossRef | Google Scholar
    [73] Sommerfeld A. Propagation of electrodynamic waves along a cylindric conductor. Ann Phys und Chemie, 1899;67:233. CrossRef | Google Scholar
    [74] Gómez-Rivas J , Kuttge M , Bolivar PH , Kurz H , Sánchez-Gil JA . Propagation of Surface Plasmon Polaritons on Semiconductor Gratings. Phys Rev Lett., 2004;93(25):256804. CrossRef | Google Scholar
    [75] Hanham SM , Maier SA . Chapter 8 in Terahertz Plasmonic Surfaces for Sensing. John Wiley & Sons, Inc., 2013, pp. 243–60. CrossRef | Google Scholar
    112[76] Gobau G . Surface waves and their application to transmission lines. J Appl Phys, 1950;21:1119. CrossRef | Google Scholar
    [77] Mills DL , Maradudin AA . Surface corrugation and surface-polariton binding in the infrared frequency range. Phys Rev B, 1989;39:1569. CrossRef | Google Scholar
  • PubMed
  • [78] Munk BA . Frequency Selective Surfaces: Theory and Design. New York, NY: Wiley, 2000. CrossRef | Google Scholar
    [79] Ulrich R , Tacke M. Submilimeter waveguiding on periodic metal structure. Appl Phys Lett., 1973;22:251. CrossRef | Google Scholar
    [80] Hibbins AP , Evans BR , Sambles JR . Experimental verification of designer surface plasmons. Science, 2005;308(5722):670–2. CrossRef | Google Scholar
  • PubMed
  • [81] Hibbins A , Lockyear M , Hooper I , Sambles J . Waveguide arrays as plasmonic metamaterials: transmission below cutoff. Physical Review Letters, 2006;96(7):073904. CrossRef | Google Scholar
  • PubMed
  • [82] Williams CR , Andrews SR , Maier SA , Fernández-Domínguez AI , Martín-Moreno L , García-Vidal FJ . Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2008;2(3):175–9. CrossRef | Google Scholar
    [83] Yu N , Wang QJ , Kats MA , Fan JA , Khanna SP , Li L , et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nature Materials, 2010;9(9):730–5. CrossRef | Google Scholar
  • PubMed
  • [84] García de Abajo FJ , Sáenz JJ . Electromagnetic surface modes in structured perfect-conductor surfaces. Physical Review Letters, 2005;95(23):233901. CrossRef | Google Scholar
    [85] Hendry E , Hibbins AP , Sambles JR . Importance of diffraction in determining the dispersion of designer surface plasmons. Physical Review B, 2008;78(23):235426. CrossRef | Google Scholar
    [86] Maier SA , Andrews SA , Martín-Moreno L , García-Vidal FJ . Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Physical Review Letters, 2006;97(17):176805. CrossRef | Google Scholar
  • PubMed
  • [87] Fernández-Domínguez AI , Moreno E , Martín-Moreno L , García-Vidal FJ . Terahertz wedge plasmon polaritons. Optics Letters, 2009;34(13):2063–5. CrossRef | Google Scholar
  • PubMed
  • [88] Fernández-Domínguez AI , Moreno E , Martín-Moreno L , García-Vidal FJ . Guiding terahertz waves along subwavelength channels. Physical Review B, 2009;79(23):233104. CrossRef | Google Scholar
    [89] Martín-Cano D , Nesterov ML , Fernández-Domínguez AI , García-Vidal FJ , Martín-Moreno L , Moreno E. Domino plasmons for subwavelength terahertz circuitry. Optics Express, 2010;18(2):754–64. CrossRef | Google Scholar
  • PubMed
  • 113[90] Kats MA , Woolf D , Blanchard R , Yu N , Capasso F . Spoof plasmon analogue of metal-insulator-metal waveguides. Optics Express, 2011;19(16):14860–70. CrossRef | Google Scholar
  • PubMed
  • [91] Fernández-Domínguez AI , Williams CR , García-Vidal FJ , Martín-Moreno L , Andrews SR , Maier SA . Terahertz surface plasmon polaritons on a helically grooved wire. Applied Physics Letters, 2008;93(14):141109. CrossRef | Google Scholar
    [92] Brock EMG , Hendry E , Hibbins AP . Subwavelength lateral confinement of microwave surface waves. Applied Physics Letters, 2011;99(5):051108. CrossRef | Google Scholar
    [93] Nesterov ML , Martín-Cano D , Fernández-Domínguez AI , Moreno E , Martín-Moreno L , García-Vidal FJ. Geometrically induced modification of surface plasmons in the optical and telecom regimes. Optics Letters, 2010;35:423–5. CrossRef | Google Scholar
  • PubMed
  • [94] Shen X , Cui TJ , Martín-Cano D , García-Vidal FJ. Conformal surface plasmons propagating on ultrathin and flexible films. Proceedings of the National Academy of Sciences, 2013;110(1):40–5. CrossRef | Google Scholar
  • PubMed
  • [95] Pors A , Moreno E , Martín-Moreno L , Pendry JB , García-Vidal FJ. Localized spoof plasmons arise while texturing closed surfaces. Physical Review Letters, 2012;108(22):223905. CrossRef | Google Scholar
  • PubMed
  • [96] Huidobro PA , Moreno E , Martín-Moreno L , Pendry JB , García-Vidal FJ . Magnetic localized surface plasmons supported by metal structures, in 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2014. pp. 13–15. Google Scholar
    [97] Martín-Moreno L , García-Vidal FJ , Lezec HJ , et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett., 2001;86:1114. CrossRef | Google Scholar
  • PubMed
  • [98] Bravo-Abad J , García-Vidal FJ , Martín-Moreno L . Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys Rev Lett., 2004;93:227401. CrossRef | Google Scholar
    [99] Mary A , Rodrigo SG , García-Vidal FJ , Martín-Moreno L . Theory of negative-refractive-index response of double-fishnet structures. Phys Rev Lett., 2008;101:103902. CrossRef | Google Scholar
  • PubMed
  • [100] Qiu M . Photonic band structures for surface waves on structured metal surfaces. Opt. Express, 2005;13:7583. CrossRef | Google Scholar
  • PubMed
  • [101] Fernández-Domínguez AI , Martín-Moreno L , García-Vidal FJ . Chapter 7, in Maradudin AA , editor, Surface Electromagnetic 114Waves on Structured Perfectly Conducting Surfaces. Cambridge: Cambridge University Press, 2011, pp. 232–65. Google Scholar
    [102] Morse PM , Feshbach H . Methods of Theoretical Physics. New York, NY: McGraw-Hill, 1953. Google Scholar
    [103] Roberts A . Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen. J Opt Soc Am A., 1987;4:1970. CrossRef | Google Scholar
    [104] Wood JJ , Tomlinson LA , Hess O , Maier SA , Fernández-Dominguez AI . Spoof plasmon polaritons in slanted geometries. Phys Rev B, 2012;85:075441. CrossRef | Google Scholar
    [105] Kim SH , Oh SS , Kim KJ , et al. Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons. Physical Review B – Condensed Matter and Materials Physics, 2015;91(3):1–9. CrossRef | Google Scholar
    [106] Gao Z , Gao F , Zhang B . Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal. Applied Physics Letters, 2016;108(4):9–14. CrossRef | Google Scholar
    [107] Woolf D , Kats Ma , Capasso F . Spoof surface plasmon waveguide forces. Optics Letters. 2014;39(3):517–20. CrossRef | Google Scholar
  • PubMed
  • [108] Rodriguez AW , Hui PC , Woolf DP , Johnson SG , Lončar M , Capasso F . Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces. Annalen der Physik , 2015;527(1–2):45–80. CrossRef | Google Scholar
    [109] Davids PS , Intravaia F , Dalvit DaR . Spoof polariton enhanced modal density of states in planar nanostructured metallic cavities. Optics Express, 2014;22(10):12424–37. CrossRef | Google Scholar
  • PubMed
  • [110] Dai J , Dyakov SA , Yan M . Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons. Physical Review B, 2015;92(3):035419. CrossRef | Google Scholar
    [111] Ooi K , Okada T , Tanaka K . Mimicking electromagnetically induced transparency by spoof surface plasmons. Phys Rev B, 2011;84(11):115405. CrossRef | Google Scholar
    [112] Shen JT , Catrysse PB , Fan S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys Rev Lett, 2005;94:197401. CrossRef | Google Scholar
  • PubMed
  • [113] Shin J , Shen JT , Catrysse PB , Fan S . Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Selected Topics in Quant Elec., 2006;12:1116. CrossRef | Google Scholar
    115[114] Shin YM , So JK , Won JH , Park GS . Frequency-dependent refractive index of one-dimensionally structured thick metal film. Appl Phys Lett., 2007;91:031102. CrossRef | Google Scholar
    [115] Zhang XF , Shen LF , Ran LX . Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric and asymmetric environments. J Appl Phys., 2009;105:013704. CrossRef | Google Scholar
    [116] Economou EN . Surface Plasmons in Thin Films. Phys Rev., 1969;182:539. CrossRef | Google Scholar
    [117] Shen L , Chen X , Yang TJ . Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Optics Express, 2008;16:3326. CrossRef | Google Scholar
  • PubMed
  • [118] Collin S , Sauvan C , Billaudeau C , et al. Surface modes on nanostructured metallic surfaces. Phys Rev B, 2009;79:165405. CrossRef | Google Scholar
    [119] Hibbins AP , Hendry E , Lockyear MJ , Sambles JR . Prism coupling to ‘designer’ surface plasmons. Optics Express, 2008;16:20441. CrossRef | Google Scholar
  • PubMed
  • [120] Ferguson BF , Zhang XC . Materials for terahertz science and technology. Nature Materials, 2002;1:26. CrossRef | Google Scholar
  • PubMed
  • [121] Tonouchi M . Cutting-edge terahertz technology. Nature Photonics, 2007;1:97–105. CrossRef | Google Scholar
    [122] Agrawal A , Vardeny ZV , Nahata A. Engineering the dielectric function of plasmonic lattices. Optics Express, 2008;16:9601. CrossRef | Google Scholar
  • PubMed
  • [123] Zhu W , Agrawal A , Nahata A . Planar plasmonic terahertz guided-wave devices. Optics Express, 2008;16:6216. CrossRef | Google Scholar
  • PubMed
  • [124] Lan YC , Chern RL . Surface plasmon-like modes on structured perfectly conducting surfaces. Optics Express, 2006;14:11339. CrossRef | Google Scholar
  • PubMed
  • [125] Ruan ZC , Qiu M . Slow electromagnetic wave guided in subwavelength regions along one-dimensional periodically structured metal surface. Appl Phys Lett., 2007;90:201906. CrossRef | Google Scholar
    [126] Lockyear MJ , Hibbins AP , Sambles JR . Microwave surface-plasmon-like modes on thin metamaterials. Phys Rev Lett., 2009;102:073901. CrossRef | Google Scholar
  • PubMed
  • [127] Navarro-Cía M , Beruete M , Agrafiotis S , Falcone F , Sorolla M , Maier SA . Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. Optics Express, 2009;17:18184. CrossRef | Google Scholar
  • PubMed
  • [128] Williams CR , Misra M , Andrews SR , et al. Dual band terahertz waveguidng on a planar metal surface patterned with annular holes. Appl Phys Lett., 2010;96:011101. CrossRef | Google Scholar
    116[129] Gan Q , Fu Z , Ding YJ , Bartoli FJ . Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett., 2008;100:256803. CrossRef | Google Scholar
  • PubMed
  • [130] Maier SA , Andrews SR . Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces. Appl Phys Lett., 2006;88:251120. CrossRef | Google Scholar
    [131] Juluri BK , Lin SCS , Walker TR , Jensen L , Huang TJ . Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index. Optics Express, 2009;17:2997. CrossRef | Google Scholar
  • PubMed
  • [132] Song K , Mazumder P . Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial. IEEE Trans Elec Dev., 2009;56:2792. CrossRef | Google Scholar
    [133] Wang K , Mittleman DM . Metal wires for terahertz waveguiding. Nature, 2004;432:376. CrossRef | Google Scholar
    [134] Jeon TI , Zhang J , Grischkowsky D . THz Sommerfeld wave propagation on a single metal wire. Appl Phys Lett., 2005;86:161904. CrossRef | Google Scholar
    [135] Piefke G . The transmission characteristics of a corrugated wire. IRE Trans Antennas Propag., 1959;7:183. CrossRef | Google Scholar
    [136] Fernández-Domínguez AI , Martín-Moreno L , García-Vidal FJ , Andrews SR , Maier SA . Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J Sel Top Quant Elect., 2008;14:1515. CrossRef | Google Scholar
    [137] Chen Y , Song Z , Li Y , et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Optics Express, 2006;14:13021. CrossRef | Google Scholar
  • PubMed
  • [138] Arfken GB , Weber HJ . Mathematical Methods for Physicists, 5th ed. London: Harcourt Academic Press, 2001. Google Scholar
    [139] Stockman M . Nanofocusing of optical energy in tapered plasmonic waveguides. Physical Review Letters, 2004;93(13):1–4. CrossRef | Google Scholar
  • PubMed
  • [140] Ruting F , Fernández-Dominguez AI , Martín-Moreno L , García-Vidal FJ . Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum. Phys Rev B, 2012;86:075437. CrossRef | Google Scholar
    [141] Fernández-Domínguez AI , Williams CR , Martín-Moreno L , García-Vidal FJ , Andrews SR , Maier SA . Terahertz surface plasmon polaritons on a helically grooved wire. Apl Phys Lett., 2008;93:141109. CrossRef | Google Scholar
    [142] Pendry JB . A chiral route to negative refraction. Science, 2004;306(5700):1353–5. CrossRef | Google Scholar
  • PubMed
  • [143] Crepeau PJ . Consequences of Symmetry in Periodic Structures. Proc IEEE., 1964;52:33. CrossRef | Google Scholar
    117[144] Novikov IV , Maradudin AA . Channel polaritons. Phys Rev B, 2002;66:035403. CrossRef | Google Scholar
    [145] Bozhevolnyi SI , Volkov VS , Devaux E , Laluet JY , Ebbesen TW . Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006;440:508. CrossRef | Google Scholar
  • PubMed
  • [146] Gao Z , Shen L , Zheng X . Highly-confined guiding of terahertz waves along subwavelength grooves. IEEE Photonics Technology Letters, 2012;24(15):1343–5. CrossRef | Google Scholar
    [147] Jiang T , Shen L , Wu JJ , Yang TJ , Ruan Z , Ran L . Realization of tightly confined channel plasmon polaritons at low frequencies. Applied Physics Letters, 2011;99(26):261103. CrossRef | Google Scholar
    [148] Zhou YJ , Jiang Q , Cui TJ . Bidirectional bending splitter of designer surface plasmons. Applied Physics Letters, 2011;99(11):111904. CrossRef | Google Scholar
    [149] Li X , Jiang T , Shen L , Deng X . Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths. Applied Physics Letters, 2013;102(3):031606. CrossRef | Google Scholar
    [150] Fernández-Domínguez AI , Moreno E , Martín-Moreno L , García-Vidal FJ . Guiding terahertz waves along subwavelength channels. Phys Rev B, 2009;79:233104. CrossRef | Google Scholar
    [151] Moreno E , Garcia-Vidal FJ , Rodrigo SG , Martin-Moreno L , Bozhevolnyi SI . Channel plasmon-polaritons: modal shape, dispersion, and losses. Opt Lett., 2006 Dec;31(23):3447–3449. CrossRef | Google Scholar
  • PubMed
  • [152] Fernández-Domínguez AI , Moreno E , Martín-Moreno L , García-Vidal FJ . Terahertz wedge plasmon polaritons. Opt Lett., 2009 Jul;34(13):2063–2065. CrossRef | Google Scholar
  • PubMed
  • [153] Pile DFP , Gramotnev DK . Channel plasmon-polariton in a triangular groove on a metal surface. Opt Lett., 2004;29(10):1069. CrossRef | Google Scholar
    [154] Moreno E , Rodrigo SG , Bozhevolnyi SI , Martín-Moreno L , García-Vidal FJ . Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett., 2008;100(2):023901. CrossRef | Google Scholar
  • PubMed
  • [155] Gao Z , Zhang X , Shen L . Wedge mode of spoof surface plasmon polaritons at terahertz frequencies. Journal of Applied Physics, 2010;108(11):113104. CrossRef | Google Scholar
    [156] Zhao W , Eldaiki OM , Yang R , Lu Z . Deep subwavelength waveguiding and focusing based on designer surface plasmons. Optics Express, 2010;18(20):21498–21503. CrossRef | Google Scholar
  • PubMed
  • [157] Ma YG , Lan L , Zhong SM , Ong CK . Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit. Optics Express, 2011;19(22):21189. CrossRef | Google Scholar
  • PubMed
  • 118[158] Kumar G , Li S , Jadidi MM , Murphy TE . Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New Journal of Physics, 2013;15(8). CrossRef | Google Scholar
    [159] Pandey S , Gupta B , Nahata A . Terahertz plasmonic waveguides created via 3D printing. Optics Express, 2013;21(21):24422. CrossRef | Google Scholar
  • PubMed
  • [160] Martín-Cano D , Quevedo-Teruel O , Moreno E , Martín-Moreno L , García-Vidal FJ . Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Optics Letters, 2011;36(23):4635–7. CrossRef | Google Scholar
  • PubMed
  • [161] Gupta B , Pandey S , Nahata A . Plasmonic waveguides based on symmetric and asymmetric T-shaped structures. Optics Express, 2014;22(3):2868. CrossRef | Google Scholar
  • PubMed
  • [162] Shen L , Chen X , Zhang X , Agarwal K . Guiding terahertz waves by a single row of periodic holes on a planar metal surface. Plasmonics, 2011;6(2):301–5. CrossRef | Google Scholar
    [163] Hooper IR , Tremain B , Dockrey JA , Hibbins AP . Massively sub-wavelength guiding of electromagnetic waves. Scientific Reports, 2014;4:7495. CrossRef | Google Scholar
  • PubMed
  • [164] Quesada R , Martín-Cano D , García-Vidal FJ , Bravo-Abad J . Deep-subwavelength negative-index waveguiding enabled by coupled conformal surface plasmons. Optics Letters, 2014;39(10):2990. CrossRef | Google Scholar
  • PubMed
  • [165] Liu L , Li Z , Xu B , Ning P , Chen C , Xu J , et al. Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes. Applied Physics Letters, 2015;107(20). CrossRef | Google Scholar
    [166] Liu X , Feng Y , Chen K , Zhu B , Zhao J , Jiang T . Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Optics Express, 2014;22(17):20107. CrossRef | Google Scholar
  • PubMed
  • [167] Gao X , Hui Shi J , Shen X , et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Applied Physics Letters, 2013;102(15):1–5. CrossRef | Google Scholar
    [168] Liu X , Feng Y , Zhu B , Zhao J , Jiang T . High-order modes of spoof surface plasmonic wave transmission on thin metal film structure. Optics Express, 2013;21(25):31155–65. CrossRef | Google Scholar
  • PubMed
  • [169] Ma HF , Shen X , Cheng Q , Jiang WX , Cui TJ . Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser and Photonics Reviews, 2014;8(1):146–51. CrossRef | Google Scholar
    [170] Gao X , Zhou L , Yu XY , et al. Ultra-wideband surface plasmonic Y-splitter. Optics Express, 2015;23(18):23270. CrossRef | Google Scholar
  • PubMed
  • 119[171] Han Z , Zhang Y , Bozhevolnyi SI . Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime. Optics Letters. 2015;40(11):2533–6. CrossRef | Google Scholar
  • PubMed
  • [172] Yin JY , Ren J , Zhang HC , Pan BC , Cui TJ . Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Scientific Reports, 2015;5:8165. CrossRef | Google Scholar
  • PubMed
  • [173] Gao X , Zhou L , Liao Z , Ma HF , Cui TJ . An ultra-wideband surface plasmonic filter in microwave frequency. Applied Physics Letters, 2014;104(19):17–22. CrossRef | Google Scholar
    [174] Zhang Q , Zhang HC , Wu H , Cui TJ . A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters. Scientific Reports, 2015;5(4):16531. CrossRef | Google Scholar
  • PubMed
  • [175] Zhang Q , Zhang HC , Yin JY , Pan BC , Cui TJ . A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Scientific Reports. 2016;6(4):28256. CrossRef | Google Scholar
  • PubMed
  • [176] Xu J , Li Z , Liu L , et al. Low-pass plasmonic filter and its miniaturization based on spoof surface plasmon polaritons. Optics Communications. 2016;372:155–9. CrossRef | Google Scholar
    [177] Yang Y , Chen H , Xiao S , Mortensen NA , Zhang J . Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons. Optics Express, 2015;23(15):19074. CrossRef | Google Scholar
  • PubMed
  • [178] Liang Y , Yu H , Zhang HC , Yang C , Cui TJ . On-chip sub-terahertz surface plasmon polariton transmission lines in CMOS. Scientific Reports, 2015;5:14853. CrossRef | Google Scholar
  • PubMed
  • [179] Zhang HC , Liu S , Shen X , Chen LH , Li L , Cui TJ . Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser and Photonics Reviews, 2015;9(1):83–90. CrossRef | Google Scholar
    [180] Yang Y , Shen X , Zhao P , Zhang HC , Cui TJ . Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies. Optics Express, 2015;23(6):7031. CrossRef | Google Scholar
  • PubMed
  • [181] Zhang W , Zhu G , Sun L , Lin F . Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation. Applied Physics Letters, 2015;106(2):17–22. Google Scholar
    [182] Yin JY , Ren J , Zhang HC , Zhang Q , Cui TJ . Capacitive-coupled series spoof surface plasmon polaritons. Scientific Reports, 2016;6:24605. CrossRef | Google Scholar
  • PubMed
  • [183] Pan BC , Zhao J , Liao Z , Zhang HC , Cui TJ . Multi-layer topological transmissions of spoof surface plasmon polaritons. Scientific Reports, 2016;6:22702. CrossRef | Google Scholar
  • PubMed
  • 120[184] Li Y , Zhang J , Qu S , Wang J , Feng M , Wang J . K-dispersion engineering of spoof surface plasmon polaritons for beam steering. Optics Express, 2016;24(2):2569–2571. Google Scholar
  • PubMed
  • [185] Zhang HC , Fan Y , Guo J , Fu X , Cui TJ . Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials. ACS Photonics, 2016;3(1):139–146. CrossRef | Google Scholar
    [186] Zhang HC , Cui TJ , Zhang Q , Fan Y , Fu X . Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics, 2015;2(9):1333–1340. CrossRef | Google Scholar
    [187] Xiang H , Meng Y , Zhang Q , Qin FF , Xiao JJ , Han D , et al. Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves. Optics Communications, 2015;356:59–63. CrossRef | Google Scholar
    [188] Yang BJ , Zhou YJ . Compact broadband slow wave system based on spoof plasmonic THz waveguide with meander grooves. Optics Communications, 2015;356:336–342. CrossRef | Google Scholar
    [189] Huidobro PA , Shen X , Cuerda J , Moreno E , Martín-Moreno L , García-Vidal FJ , et al. Magnetic localized surface plasmons. Physical Review X, 2014;4(2):021003. CrossRef | Google Scholar
    [190] Harvey AF . Periodic and guiding structures at microwave frequencies. IRE Transactions on microwave theory and techniques, 1960;8:30–61. CrossRef | Google Scholar
    [191] Kildal PS . Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 1990;38(10):1537–1544. CrossRef | Google Scholar
    [192] Shen X , Cui TJ . Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser and Photonics Reviews, 2014;8(1):137–145. CrossRef | Google Scholar
    [193] Liao Z , Luo Y , Fernández-Domínguez AI , Shen X , Maier Sa , Cui TJ . High-order localized spoof surface plasmon resonances and experimental verifications. Scientific Reports, 2015;5:9590. CrossRef | Google Scholar
  • PubMed
  • [194] Bohren CF , Huffman DR . Absorption and Scattering of Light by Small Particles. John Wiley and Sons, 1983. Google Scholar
    [195] García-Etxarri A , Gómez-Medina R , Froufe-Pérez LS , et al. Strong magnetic response of submicron silicon particles in the infrared. Optics Express, 2011;19(6):4815–26. CrossRef | Google Scholar
  • PubMed
  • [196] Kuznetsov AI , Miroshnichenko AE , Fu YH , Zhang J , Luk’yanchuk B . Magnetic light. Scientific Reports, 2012;2:492. CrossRef | Google Scholar
  • PubMed
  • [197] Dyson JD . The equiangular spiral antenna. IEEE Transactions on antennas and propagation, 1959;2:181. CrossRef | Google Scholar
    121[198] Kaiser JA . The Archimedean two-wire spiral antenna. IEEE Transactions on antennas and propagation. 1960;8:312. CrossRef | Google Scholar
    [199] Balanis CA . Antenna Theory: Analysis and Design, 3rd ed. Wiley-Interscience, 2005. Google Scholar
    [200] Baena JD , Marqués R , Medina F , Martel J . Artificial magnetic metamaterial design by using spiral resonators. Physical Review B, 2004;69(1):014402. CrossRef | Google Scholar
    [201] Bilotti F , Toscano A , Vegni L . Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Transactions on Antennas and Propagation, 2007;55(8):2258–2267. CrossRef | Google Scholar
    [202] Zhu X , Liang B , Kan W , Peng Y , Cheng J . Deep-subwavelength-scale directional sensing based on highly localized dipolar mie resonances. Physical Review Applied, 2016;5(5):054015. CrossRef | Google Scholar
    [203] Ordal MA , Long LL , Bell RJ , et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Applied Optics, 1983;22(7):1099–1120. CrossRef | Google Scholar
  • PubMed
  • [204] CST. Microwave Studio (computer software): www.cst.com/products/cstmws. Google Scholar
    [205] Liao Z , Liu S , Ma HF , Li C , Jin B , Cui TJ . Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies. Scientific Reports, 2016;6(4):27596. CrossRef | Google Scholar
  • PubMed
  • [206] Li Z , Xu B , Gu C , Ning P , Liu L , Niu Z , et al. Localized spoof plasmons in closed textured cavities. Applied Physics Letters, 2014;104(25):251601. CrossRef | Google Scholar
    [207] Xu B , Li Z , Gu C , Ning P , Liu L , Niu Z , et al. Multiband localized spoof plasmons in closed textured cavities. Appl Opt., 2014;53(30):6950–3. CrossRef | Google Scholar
  • PubMed
  • [208] Yang BJ , Zhou YJ , Xiao QX . Spoof localized surface plasmons in corrugated ring structures excited by microstrip line. Optics Express, 2015;23(16):21434. CrossRef | Google Scholar
  • PubMed
  • [209] Zhou YJ , Xiao QX , Jia Yang B . Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Scientific Reports, 2015;5(September):14819. CrossRef | Google Scholar
  • PubMed
  • [210] Gao Z , Gao F , Xu H , Zhang Y , Zhang B . Localized spoof surface plasmons in textured open metal surfaces. Optics Letters, 2016;41(10):3–6. CrossRef | Google Scholar
  • PubMed
  • 122[211] Ao DIB , Ajab KHZR , Iang WEIXIJ , Heng QIC , Iao ZHENL . Experimental demonstration of compact spoof localized surface plasmons. Optics Letters, 2016;41(23):5418–21. Google Scholar
    [212] Gao F , Gao Z , Shi X , Yang Z , Lin X , Zhang B . Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances. Optics Express, 2015;23(5):6896–902. CrossRef | Google Scholar
  • PubMed
  • [213] Xiao QX , Yang BJ , Zhou YJ . Spoof localized surface plasmons and Fano resonances excited by flared slot line. Journal of Applied Physics, 2015;118(23):1–6. CrossRef | Google Scholar
    [214] Gao Z , Gao F , Shastri KK , Zhang B . Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain. Scientific Reports, 2016;6(April):25576. CrossRef | Google Scholar
    [215] Gao Z , Gao F , Zhang Y , Shi X , Yang Z , Zhang B . Experimental demonstration of high-order magnetic localized spoof surface plasmons. Applied Physics Letters, 2015;107(4):1–5. CrossRef | Google Scholar
    [216] Gao Z , Gao F , Zhang Y , Zhang B . Complementary structure for designer localized surface plasmons. Applied Physics Letters, 2015;107(19):191103. CrossRef | Google Scholar
    [217] Gao Z , Gao F , Zhang B . High-order spoof localized surface plasmons supported on a complementary metallic spiral structure. Scientific Reports, 2016;6(April):24447. CrossRef | Google Scholar
  • PubMed
  • [218] Gao Z , Gao F , Zhang Y , Zhang B . Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons. Physical Review B, 2016;93(19):195410. CrossRef | Google Scholar
    [219] Shen X , Jun Cui T . Planar plasmonic metamaterial on a thin film with nearly zero thickness. Applied Physics Letters, 2013;102(21):14–18. CrossRef | Google Scholar
    [220] Shen X , Pan BC , Zhao J , Luo Y , Cui TJ . A combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions. ACS Photonics, 2015;2(6):738–743. Google Scholar
    [221] Ng B , Wu J , Hanham SM , et al. Spoof plasmon surfaces: a novel platform for THz sensing. Adv Opt Mat, 2013;1:543. CrossRef | Google Scholar
    [222] Ng B , Hanham SM , Wu J , et al. Broadband terahertz sensing on spoof plasmon surfaces. ACS Phot., 2014;1:1059. CrossRef | Google Scholar
    [223] Cao Pan B , Liao Z , Zhao J , et al. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles. Chem Rev., 2008;108(2):494–521. Google Scholar
    [224] Song K , Mazumder P . Active terahertz (THz) spoof surface plasmon polariton (SSPP) switch comprising the perfect conductor 123meta-material. 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), 2009;56(11):2792–9. Google Scholar
    [225] Song K , Mazumder P . Nonlinear spoof surface plasmon polariton phenomena based on conductor metamaterials. Photonics and Nanostructures – Fundamentals and Applications, 2012;10(4):674–9. CrossRef | Google Scholar
    [226] Wan X , Yin JY , Zhang HC , Cui TJ . Dynamic excitation of spoof surface plasmon polaritons. Applied Physics Letters, 2014;105(8). CrossRef | Google Scholar
    [227] Sun W , He Q , Sun S , Zhou L . High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light: Science & Applications, 2016;5(1):e16003. CrossRef | Google Scholar
  • PubMed
  • [228] Sun S , He Q , Xiao S , Xu Q , Li X , Zhou L . Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012;11(5):426–31. CrossRef | Google Scholar
  • PubMed
  • [229] Sun S , Yang KY , Wang CM , et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012;12(12):6223–9. CrossRef | Google Scholar
  • PubMed
  • [230] Quevedo-Teruel O , Ebrahimpouri M , Kehn MNM . Ultrawideband metasurface lenses based on off-shifted opposite layers. IEEE Antennas and Wireless Propagation Letters, 2016;15:484–487. CrossRef | Google Scholar
    [231] Valerio G , Sipus Z , Grbic A , Quevedo-Teruel O . Accurate equivalent-circuit descriptions of thin glide-symmetric corrugated metasurfaces. IEEE Transactions on Antennas and Propagation. 2017;65(5):2695–2700. CrossRef | Google Scholar
    [232] Gao F , Gao Z , Shi X , et al. Probing the limits of topological protection in a designer surface plasmon structure. Nature Communications, 2015;7(May):17. Google Scholar
    [233] Khorasaninejad M. , Capasso F . Metalenses: Versatile multifunctional photonic components. Science, 2017;358:8100. CrossRef | Google Scholar
    [234] Wu H-W , Han Y-Z , Chen H-J , Zhou Y , Li X-C , Gao J , Sheng Z-Q . Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures. Optics Letters, 2017; 42(21):4521–4524. CrossRef | Google Scholar
    [235] Ma Z , Hanham SM , Huidobro PA , Gong Y , Hong M , Klein N , Maier SA . Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides. APL Photonics, 2017; 11(2):116102.124 Google Scholar

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Abstract views

    Total abstract views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.