Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-06T23:01:08.971Z Has data issue: false hasContentIssue false

The Pyrite Trace Element Paleo-Ocean Chemistry Proxy

Published online by Cambridge University Press:  28 November 2020

Daniel D. Gregory
Affiliation:
University of Toronto

Summary

The use of the trace element content of sedimentary pyrite as a proxy for the trace element composition of past oceans has recently emerged. The pyrite proxy has several potential advantages over bulk sample analysis: preservation through metamorphism; little dilution during analysis (samples are ablated not dissolved, allowing for the less abundant elements commonly held in the sulfide fraction to be investigated as proxies); accurate measurement of several elements simultaneously; the ability to screen sediments for hydrothermal overprint; and the technique can give information regarding trace element availably at multiple stages of diagenesis. Because of these multiple strengths, the pyrite trace element proxy is a valuable potential addition to the paleo-ocean chemistry tool kit.
Get access
Type
Element
Information
Online ISBN: 9781108846974
Publisher: Cambridge University Press
Print publication: 24 December 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Key References

This volume provides an extensive overview of how pyrite forms in sedimentary settings.Google Scholar
Rickard, D. (2012) Sulfidic Sediments and Sedimentary Rocks (Elsevier) p. 801.Google Scholar
These papers are among the first to investigate sedimentary pyrite trace element abundance using methods other than LA-ICPMS.Google Scholar
Berner, Z. A., Puchelt, H., Nöltner, T. and Kramar, U. T. Z. (2013) Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology, 60 548573.CrossRefGoogle Scholar
Huerta-Diaz, M. A., and Morse, J. W. (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry 29, 119144.Google Scholar
Huerta-Diaz, M. A., and Morse, J. W. (1992) Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta 56, 26812702.Google Scholar
These papers were among the first to compile LA-ICPMS trace element data of pyrite and showed that it matches existing whole rock studies.Google Scholar
Gregory, D. D., Large, R. R., Halpin, J.A., Baturina, E. L., Lyons, T.W., Wu, S., Danyushevsky, L., Sack, P. J., Chappaz, A., and Maslennikov, V. V. (2015a) Trace Element Content of Sedimentary Pyrite in Black Shales. Economic Geology 110, 13891410.Google Scholar
Large, R. R., Halpin, J. A., Danyushevsky, L. V., Maslennikov, V. V., Bull, S. W., Long, J. A., Gregory, D. D., Lounejeva, E., Lyons, T. W., and Sack, P. J. (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters 389, 209220.Google Scholar
These papers provide examples where the proxy was used to identify oxygenation events at different times in Earth History.Google Scholar
Gregory, D. D., Large, R. R., Halpin, J. A., Steadman, J. A., Hickman, A. H., Ireland, T. R., and Holden, P. (2015b) The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ 33 S and δ 34 S isotope analyses. Geochimica et Cosmochimica Acta 149, 223250.Google Scholar
Gregory, D. D., Lyons, T. W., Large, R. R., Jiang, G., Stepanov, A. S., Diamond, C. W., Figueroa, M. C., and Olin, P. (2017) Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochimica et Cosmochimica Acta 216, 201220.Google Scholar
Mukherjee, I., and Large, R. R. (2016) Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric oxygenation during the Boring Billion. Precambrian Research 281, 1326.Google Scholar
This paper shows how trace element content of pyrite can be used to distinguish between sedimentary pyrite and hydrothermal pyrite.Google Scholar
Gregory, D. D., Large, R. R., Cracknell, M. J., Kuhn, S., Maslennikov, V. V., Belousoc, I. A., McGoldrich, P., Fabris, A., Baker, M. J., Fox, N., and Lyons, T. W. (2019a) Prediction of ore deposit style from Random Forest analysis of LA-ICPMS analyses of pyrite. Economic Geology.Google Scholar
This paper shows how the trace element content of pyrite in pyrite nodules can be used to obtain information of pore water chemistry during diagenesis.Google Scholar
Gregory, D. D., Mukherjee, I., Large, R. R., Lyons, T. W., Stepanov, A., Avila, J., Olson, S. L., Ireland, T. R., Olin, P. H., and Danyushevsky, L. V. (2019b) The formation mechanism of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis. Geochimica et Cosmochimica Acta 259, 5368.Google Scholar
This paper uses trace element ratios of through geologic time and currently accepted oxygen levels to model atmospheric oxygen content.Google Scholar
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., and Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita 126, 122.Google Scholar
Baldwin, B., and Butler, C. O. (1985) Compaction curves, AAPG bulletin, 69, 622626.Google Scholar
Barnes, S. -J., (2019) Sulfide minerals in igneous systems: Laser ablation applied to ore deposits, GAC MAC short course notes, Quebec City, p. 66.Google Scholar
Beary, E., and Paulsen, P. (1993) Selective application of chemical separations to isotope dilution inductively coupled plasma mass spectrometric analyses of standard reference materials. Analytical Chemistry 65, 16021608.Google Scholar
Belousov, I., Large, R. R., Meffre, S., Danyushevsky, L. V., Steadman, J., and Beardsmore, T. (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geology Reviews 79, 474499.CrossRefGoogle Scholar
Berner, Z., Pujol, F., Neumann, T., Kramar, U., Stüben, D., Racki, G., and Simon, R. (2006) Contrasting trace element composition of diagenetic and syngenetic pyrites: implications for the depositional environment. Geophysical Research Abstracts.Google Scholar
Blamey, N. J., Brand, U., Parnell, J., Spear, N., Lécuyer, C., Benison, K., Meng, F., and Ni, P. (2016) Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology 44, 651654.CrossRefGoogle Scholar
Campbell, M. J., Demesmay, C., and Ollé, M. (1994) Determination of total arsenic concentrations in biological matrices by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 9, 13791384.Google Scholar
Chappaz, A., Lyons, T. W., Gregory, D. D., Reinhard, C. T. Gill, B. C., Li, C., and Large, R. R. (2014) Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimica et Cosmochimica Acta 126, 112122.Google Scholar
Cook, N. J., and Chryssoulis, S.L. (1990) Concentrations of invisible gold in the common sulfides. The Canadian Mineralogist 28, 116.Google Scholar
Cook, N., Ciobanu, C., George, L., Zhu, Z. Y., Wade, B., and Ehrig, K. (2016) Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities. Minerals 6, 111.Google Scholar
Danyushevsky, L. (2019) Overview of LA-ICPMS: Laser ablation applied to ore deposits, GAC MAC short course notes, Quebec City, p.66.Google Scholar
Deditius, A. P., Utsunomiya, S., Renock, D., Ewing, R. C., Ramana, C. V., Becker, U., and Kesler, S. E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta 72, 29192933.Google Scholar
Diamond, C. W., and Lyons, T. W. (2018) Mid-Proterozoic redox evolution and the possibility of transient oxygenation events. Emerging Topics in Life Sciences 2, 235245.Google Scholar
Diamond, C. W., Planavsky, N. J., Wang, C., and Lyons, T. W. (2018) What the~ 1.4 Ga Xiamaling Formation can and cannot tell us about the mid‐Proterozoic ocean. Geobiology 16, 219236.Google Scholar
Dos Santos Afonso, M., and Stumm, W. (1992) Reductive dissolution of iron (III) (hydr)oxides by hydrogen sulfide. Langmuir 8, 16711675.Google Scholar
Evans, E. H., and Giglio, J. J. (1993) Interferences in inductively coupled plasma mass spectrometry. A review. Journal of Analytical Atomic Spectrometry 8, 118.Google Scholar
Fleet, M. E., and Mumin, H. A. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist 82, 182193.CrossRefGoogle Scholar
Gadd, M. G., Layton-Matthews, D., Peter, J. M., and Paradis, S. J. (2016) The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization. Mineralium Deposita 51, 319342.Google Scholar
Gadd, M. G., Peter, J. M., Jackson, S. E., Yang, Z., and Petts, D. (2019) Platinum, Pd, Mo, Au and Re deportment in hyper-enriched black shale Ni-Zn-Mo-PGE mineralization, Peel River, Yukon, Canada. Ore Geology Reviews 107, 600614.Google Scholar
Genna, D., and Gaboury, D. (2015) Deciphering the hydrothermal evolution of a vms system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod Deposits, Abitibi, Canada, and implications for exploration. Economic Geology 110, 20872108.CrossRefGoogle Scholar
Guy, B., Beukes, N., and Gutzmer, J. (2010) Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. South African Journal of Geology 113, 195228.Google Scholar
Gregory, D.D., Chappaz, A., Atienza, N., Taylor, S., Perea, D., Kovarik, L., and Lyons, T.W. Is pyrite an important sink for Mo? Evidence from XAFS, TEM and APT analyses of pyrite. Goldschmidt, Honolulu, Hawaii, United States, June, 21–26.Google Scholar
Gregory, D., Meffre, S., and Large, R. (2014) Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist 99, 633644.Google Scholar
Gregory, D., Perea, D., Taylor, S., Kovarik, L., Owens, J., and Lyons, T. (2019) The formation of pyrite framboids: A view from TEM and APT. Goldschmidt, Barcelona, Spain, August, 1823.Google Scholar
Harmandas, N. G., Navarro Fernandez, E., and Koutsoukos, P. G. (1998) Crystal growth of pyrite in aqueous solutions. Inhibition by organophosphorus compounds. Langmuir 14, 12501255.CrossRefGoogle Scholar
Harrold, T. W. D., Swarbrick, R. E., and Goulty, N. R. (1999) Pore pressure estimation from mudrock porosities in Tertiary basins, southeast Asia. AAPG bulletin 83, 10571067.Google Scholar
Helz, G. R., and Vorlicek, T. P. (2019) Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology 509, 178193.Google Scholar
Keith, M., Smith, D. J., Jenkin, G .R. T., Holwell, D. A., and Dye, M. D. (2018) A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geology Reviews 96, 269282.Google Scholar
Koschinsky, A. and Hein, J.R. (2017). Marine ferromanganese encrustations: Archives of changing oceans. Elements 13, 177–182.Google Scholar
Konhauser, K. O., Pecoits, E., Lalonde, S. V., Papineau, D., Nisbet, E. G., Barley, M. E., Arndt, N. T., Zahnle, K., and Kamber, B. S. (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750753.Google Scholar
Large, R. R., Maslennikov, V. V., Robert, F., Danyushevsky, L. V., and Chang, Z.S. (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Economic Geology 102, 12331267.Google Scholar
Large, R. R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., and Foster, J. (2009) Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology 104, 635668.Google Scholar
Large, R. R., Bull, S. W., and Maslennikov, V. V. (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Economic Geology 106, 331358.Google Scholar
Large, R. R., Halpin, J. A., Lounejeva, E., Danyushevsky, L. V., Maslennikov, V. V., Gregory, D., Sack, P. J., Haines, P. W., Long, J. A., and Makoundi, C. (2015) Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Research 28, 12821293.Google Scholar
Large, R. R., Mukherjee, I. Zhukova, I., Corkrey, R., Stepanov, A., and Danyushevsky, L .V. (2018) Role of upper-most crustal composition in the evolution of the Precambrian ocean–atmosphere system. Earth and Planetary Science Letters 487, 4453.Google Scholar
Longbottom, J., Martin, T., Edgell, K., Long, S., Plantz, M., Warden, B., Baraona, R., Bencivengo, D., Cardenas, D.,and Faires, L. (1994) Determination of trace-elements in water by inductively-coupled plasma-mass spectrometry-collaborative study. Journal of AOAC International 77, 10041023.Google Scholar
Longerich, H. P., Jackson, S. E., and Günther, D. (1996) Inter-laboratory note: Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11, 899904.CrossRefGoogle Scholar
Lyons, T. W., Werne, J. P., Hollander, D. J., and Murray, R. W. (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology 195, 131157.Google Scholar
Matamoros-Veloza, A., Cespedes, O., Johnson, B.R., Stawski, T.M., Terranova, U., de Leeuw, N.H. and Benning, L.G. (2018). A highly reactive precursor in the iron sulfide system. Nature communications 9, 3125.Google Scholar
May, T. W., and Wiedmeyer, R. H. (1998) A table of polyatomic interferences in ICP-MS. Atomic Spectrometry 19, 150155.Google Scholar
McLaren, J., Mykytiuk, A., Willie, S., and Berman, S. (1985) Determination of trace metals in seawater by inductively coupled plasma mass spectrometry with preconcentration on silica-immobilized 8-hydroxyquinoline. Analytical Chemistry 57, 2907–2911.Google Scholar
Michel, D., Giuliani, G., Olivo, G. R., and Marini, O. J. (1994) As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments, Goias State, Brazil. Economic Geology 89, 193200.Google Scholar
Morin, G., Noël, V., Menguy, N., Brest, J., Baptiste, B., Tharaud, M., Ona-Nguema, G., Ikogou, M., Viollier, E., and Juillot, F. (2017) Nickel accelerates pyrite nucleation at ambient temperature. Geochemical Perspectives Letters 5, 611.CrossRefGoogle Scholar
Morse, J. W., and Arakaki, T. (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta 57, 36353640.CrossRefGoogle Scholar
Morse, J. W., and Luther, G. W. (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 33733378.Google Scholar
Mukherjee, I., and Large, R. (2017) Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geology Reviews 81, 12491270.Google Scholar
Mukherjee, I., Large, R. R., Corkrey, R., and Danyushevsky, L. V. (2018a) The Boring Billion, a slingshot for complex life on Earth. Scientific Reports 8, 4432.Google Scholar
Mukherjee, I., Large, R., Corkrey, R., Willink, R., and Stepanov, A. (2018b) How robust is sedimentary pyrite trace element geochemistry as a geochemical proxy? Goldschmidt Abstracts 2018, 1829.Google Scholar
Olson, S. L., Ostrander, C. M., Gregory, D. D., Roy, M., Anbar, A. D., and Lyons, T. W. (2019) Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth and Planetary Science Letters 506, 417427.Google Scholar
Partin, C. A., Bekker, A., Planavsky, N. J., Scott, C. T., Gill, B. C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K. O., and Lalonde, S. V. (2013) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters 369, 284293.Google Scholar
Peiffer, S., Behrends, T., Hellige, K., Larese-Casanova, P., Wan, M., and Pollok, K. (2015) Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration. Chemical Geology 400, 4455.Google Scholar
Picard, A., Gartman, A., Clarke, D. R., and Girguis, P. R. (2018) Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica et Cosmochimica Acta 220, 367384.Google Scholar
Piper, D. Z., and Dean, W. E. (2002) Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: A history of the local hydrography and global climate, 20 ka to the present. US Geological Survey.Google Scholar
Pisarzowska, A., Berner, Z. A., and Racki, G. (2014) Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite. Sedimentary Geology 308, 1831.Google Scholar
Plantz, M.R., Fritz, J.S., Smith, F.G. and Houk, R. (1989) Separation of trace metal complexes for analysis of samples of high salt content by inductively coupled plasma mass spectrometry. Analytical Chemistry 61, 149–153.CrossRefGoogle Scholar
Qian, G., Brugger, J., Testemale, D., Skinner, W., and Pring, A. (2013) Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta 100, 110.Google Scholar
Reed, N.M., Cairns, R.O., Hutton, R.C., and Takaku, Y. (1994) Characterization of polyatomic ion interferences in inductively coupled plasma mass spectrometry using a high resolution mass spectrometer. Journal of analytical atomic spectrometry 9, 881896.Google Scholar
Reich, M., and Becker, U. (2006) First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chemical Geology 225, 278290.Google Scholar
Rickard, D., and Morse, J. W. (2005) Acid volatile sulfide (AVS). Marine Chemistry, 97, 141197.CrossRefGoogle Scholar
Román, N., Reich, M., Leisen, M., Morata, D., Barra, F., and Deditius, A. P. (2019) Geochemical and micro-textural fingerprints of boiling in pyrite. Geochimica et Cosmochimica Acta 246, 6085.Google Scholar
Sahoo, S. K., Planavsky, N. J., Jiang, G., Kendall, B., Owens, J. D., Wang, X., Shi, X., Anbar, A. D., and Lyons, T. W. (2016) Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D. (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456459.Google Scholar
Steadman, J. A., Large, R. R., Meffre, S., Olin, P. H., Danyushevsky, L. V., Gregory, D. D., Belousov, I., Lounejeva, E., Ireland, T. R., and Holden, P. (2015) Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile Deposit, Kalgoorlie, Western Australia. Economic Geology 110, 11571191.Google Scholar
Stepanov, A. S., Danyushevsky, L.V., Large, R.R., Mukherjee, I. and Zhukova, I.A. (2020) Deconvolution of the composition of fine-grained pyrite in sedimentary matrix by regression of time-resolved LA-ICP-MS data. American Mineralogist: Journal of Earth and Planetary Materials 105, 820832.Google Scholar
Swanner, E. D., Webb, S. M., and Kappler, A. (2019) Fate of cobalt and mickel in mackinawite during diagenic pyrite formation. American Mineralogist 104, 917928.Google Scholar
Sykora, S., Cooke, D. R., Meffre, S., Stephanov, A .S., Gardner, K., Scott, R., Selley, D., and Harris, A. C. (2018) Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: implications for ore genesis and mineral processing. Economic Geology 113, 193208.Google Scholar
Tan, S. H., and Horlick, G. (1986) Background spectral features in inductively coupled plasma/mass spectrometry. Applied Spectroscopy 40, 445460.Google Scholar
Tardani, D., Reich, M., Deditius, A. P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J.,and Roberts, M. P. (2017) Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochimica et Cosmochimica Acta 204, 179204.CrossRefGoogle Scholar
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A. (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, 1232.Google Scholar
Vandecasteele, C., Vanhoe, H., and Dams, R. (1993) Inductively coupled plasma mass spectrometry of biological samples. Invited lecture. Journal of Analytical Atomic Spectrometry 8, 781786.Google Scholar
Vorlicek, T. P., Helz, G. R., Chappaz, A., Vue, P., Vezina, A., and Hunter, W. (2018) Molybdenum burial mechanism in sulfidic sediments: iron-sulfide pathway. ACS Earth and Space Chemistry 2, 565576.Google Scholar
Wang, L., Shi, X., and Jiang, G. (2012) Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 333, 218227.Google Scholar
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. B., Kong, C., Liu, A. G., Matthews, J. J., and Brasier, M. D. (2015) Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology 43, 2730.Google Scholar
Wilkin, R. T., Barnes, H. L., and Brantley, S. L. (1996) The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 38973912.Google Scholar
This volume provides an extensive overview of how pyrite forms in sedimentary settings.Google Scholar
Rickard, D. (2012) Sulfidic Sediments and Sedimentary Rocks (Elsevier) p. 801.Google Scholar
These papers are among the first to investigate sedimentary pyrite trace element abundance using methods other than LA-ICPMS.Google Scholar
Berner, Z. A., Puchelt, H., Nöltner, T. and Kramar, U. T. Z. (2013) Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology, 60 548573.CrossRefGoogle Scholar
Huerta-Diaz, M. A., and Morse, J. W. (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry 29, 119144.Google Scholar
Huerta-Diaz, M. A., and Morse, J. W. (1992) Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta 56, 26812702.Google Scholar
These papers were among the first to compile LA-ICPMS trace element data of pyrite and showed that it matches existing whole rock studies.Google Scholar
Gregory, D. D., Large, R. R., Halpin, J.A., Baturina, E. L., Lyons, T.W., Wu, S., Danyushevsky, L., Sack, P. J., Chappaz, A., and Maslennikov, V. V. (2015a) Trace Element Content of Sedimentary Pyrite in Black Shales. Economic Geology 110, 13891410.Google Scholar
Large, R. R., Halpin, J. A., Danyushevsky, L. V., Maslennikov, V. V., Bull, S. W., Long, J. A., Gregory, D. D., Lounejeva, E., Lyons, T. W., and Sack, P. J. (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth and Planetary Science Letters 389, 209220.Google Scholar
These papers provide examples where the proxy was used to identify oxygenation events at different times in Earth History.Google Scholar
Gregory, D. D., Large, R. R., Halpin, J. A., Steadman, J. A., Hickman, A. H., Ireland, T. R., and Holden, P. (2015b) The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ 33 S and δ 34 S isotope analyses. Geochimica et Cosmochimica Acta 149, 223250.Google Scholar
Gregory, D. D., Lyons, T. W., Large, R. R., Jiang, G., Stepanov, A. S., Diamond, C. W., Figueroa, M. C., and Olin, P. (2017) Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochimica et Cosmochimica Acta 216, 201220.Google Scholar
Mukherjee, I., and Large, R. R. (2016) Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric oxygenation during the Boring Billion. Precambrian Research 281, 1326.Google Scholar
This paper shows how trace element content of pyrite can be used to distinguish between sedimentary pyrite and hydrothermal pyrite.Google Scholar
Gregory, D. D., Large, R. R., Cracknell, M. J., Kuhn, S., Maslennikov, V. V., Belousoc, I. A., McGoldrich, P., Fabris, A., Baker, M. J., Fox, N., and Lyons, T. W. (2019a) Prediction of ore deposit style from Random Forest analysis of LA-ICPMS analyses of pyrite. Economic Geology.Google Scholar
This paper shows how the trace element content of pyrite in pyrite nodules can be used to obtain information of pore water chemistry during diagenesis.Google Scholar
Gregory, D. D., Mukherjee, I., Large, R. R., Lyons, T. W., Stepanov, A., Avila, J., Olson, S. L., Ireland, T. R., Olin, P. H., and Danyushevsky, L. V. (2019b) The formation mechanism of sedimentary pyrite nodules determined by trace element and sulfur isotope microanalysis. Geochimica et Cosmochimica Acta 259, 5368.Google Scholar
This paper uses trace element ratios of through geologic time and currently accepted oxygen levels to model atmospheric oxygen content.Google Scholar
Large, R. R., Mukherjee, I., Gregory, D., Steadman, J., Corkrey, R., and Danyushevsky, L. V. (2019). Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita 126, 122.Google Scholar
Baldwin, B., and Butler, C. O. (1985) Compaction curves, AAPG bulletin, 69, 622626.Google Scholar
Barnes, S. -J., (2019) Sulfide minerals in igneous systems: Laser ablation applied to ore deposits, GAC MAC short course notes, Quebec City, p. 66.Google Scholar
Beary, E., and Paulsen, P. (1993) Selective application of chemical separations to isotope dilution inductively coupled plasma mass spectrometric analyses of standard reference materials. Analytical Chemistry 65, 16021608.Google Scholar
Belousov, I., Large, R. R., Meffre, S., Danyushevsky, L. V., Steadman, J., and Beardsmore, T. (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geology Reviews 79, 474499.CrossRefGoogle Scholar
Berner, Z., Pujol, F., Neumann, T., Kramar, U., Stüben, D., Racki, G., and Simon, R. (2006) Contrasting trace element composition of diagenetic and syngenetic pyrites: implications for the depositional environment. Geophysical Research Abstracts.Google Scholar
Blamey, N. J., Brand, U., Parnell, J., Spear, N., Lécuyer, C., Benison, K., Meng, F., and Ni, P. (2016) Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology 44, 651654.CrossRefGoogle Scholar
Campbell, M. J., Demesmay, C., and Ollé, M. (1994) Determination of total arsenic concentrations in biological matrices by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 9, 13791384.Google Scholar
Chappaz, A., Lyons, T. W., Gregory, D. D., Reinhard, C. T. Gill, B. C., Li, C., and Large, R. R. (2014) Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochimica et Cosmochimica Acta 126, 112122.Google Scholar
Cook, N. J., and Chryssoulis, S.L. (1990) Concentrations of invisible gold in the common sulfides. The Canadian Mineralogist 28, 116.Google Scholar
Cook, N., Ciobanu, C., George, L., Zhu, Z. Y., Wade, B., and Ehrig, K. (2016) Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities. Minerals 6, 111.Google Scholar
Danyushevsky, L. (2019) Overview of LA-ICPMS: Laser ablation applied to ore deposits, GAC MAC short course notes, Quebec City, p.66.Google Scholar
Deditius, A. P., Utsunomiya, S., Renock, D., Ewing, R. C., Ramana, C. V., Becker, U., and Kesler, S. E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta 72, 29192933.Google Scholar
Diamond, C. W., and Lyons, T. W. (2018) Mid-Proterozoic redox evolution and the possibility of transient oxygenation events. Emerging Topics in Life Sciences 2, 235245.Google Scholar
Diamond, C. W., Planavsky, N. J., Wang, C., and Lyons, T. W. (2018) What the~ 1.4 Ga Xiamaling Formation can and cannot tell us about the mid‐Proterozoic ocean. Geobiology 16, 219236.Google Scholar
Dos Santos Afonso, M., and Stumm, W. (1992) Reductive dissolution of iron (III) (hydr)oxides by hydrogen sulfide. Langmuir 8, 16711675.Google Scholar
Evans, E. H., and Giglio, J. J. (1993) Interferences in inductively coupled plasma mass spectrometry. A review. Journal of Analytical Atomic Spectrometry 8, 118.Google Scholar
Fleet, M. E., and Mumin, H. A. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist 82, 182193.CrossRefGoogle Scholar
Gadd, M. G., Layton-Matthews, D., Peter, J. M., and Paradis, S. J. (2016) The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic, and metamorphic fluids to mineralization. Mineralium Deposita 51, 319342.Google Scholar
Gadd, M. G., Peter, J. M., Jackson, S. E., Yang, Z., and Petts, D. (2019) Platinum, Pd, Mo, Au and Re deportment in hyper-enriched black shale Ni-Zn-Mo-PGE mineralization, Peel River, Yukon, Canada. Ore Geology Reviews 107, 600614.Google Scholar
Genna, D., and Gaboury, D. (2015) Deciphering the hydrothermal evolution of a vms system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod Deposits, Abitibi, Canada, and implications for exploration. Economic Geology 110, 20872108.CrossRefGoogle Scholar
Guy, B., Beukes, N., and Gutzmer, J. (2010) Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. South African Journal of Geology 113, 195228.Google Scholar
Gregory, D.D., Chappaz, A., Atienza, N., Taylor, S., Perea, D., Kovarik, L., and Lyons, T.W. Is pyrite an important sink for Mo? Evidence from XAFS, TEM and APT analyses of pyrite. Goldschmidt, Honolulu, Hawaii, United States, June, 21–26.Google Scholar
Gregory, D., Meffre, S., and Large, R. (2014) Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist 99, 633644.Google Scholar
Gregory, D., Perea, D., Taylor, S., Kovarik, L., Owens, J., and Lyons, T. (2019) The formation of pyrite framboids: A view from TEM and APT. Goldschmidt, Barcelona, Spain, August, 1823.Google Scholar
Harmandas, N. G., Navarro Fernandez, E., and Koutsoukos, P. G. (1998) Crystal growth of pyrite in aqueous solutions. Inhibition by organophosphorus compounds. Langmuir 14, 12501255.CrossRefGoogle Scholar
Harrold, T. W. D., Swarbrick, R. E., and Goulty, N. R. (1999) Pore pressure estimation from mudrock porosities in Tertiary basins, southeast Asia. AAPG bulletin 83, 10571067.Google Scholar
Helz, G. R., and Vorlicek, T. P. (2019) Precipitation of molybdenum from euxinic waters and the role of organic matter. Chemical Geology 509, 178193.Google Scholar
Keith, M., Smith, D. J., Jenkin, G .R. T., Holwell, D. A., and Dye, M. D. (2018) A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geology Reviews 96, 269282.Google Scholar
Koschinsky, A. and Hein, J.R. (2017). Marine ferromanganese encrustations: Archives of changing oceans. Elements 13, 177–182.Google Scholar
Konhauser, K. O., Pecoits, E., Lalonde, S. V., Papineau, D., Nisbet, E. G., Barley, M. E., Arndt, N. T., Zahnle, K., and Kamber, B. S. (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750753.Google Scholar
Large, R. R., Maslennikov, V. V., Robert, F., Danyushevsky, L. V., and Chang, Z.S. (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Economic Geology 102, 12331267.Google Scholar
Large, R. R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., and Foster, J. (2009) Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology 104, 635668.Google Scholar
Large, R. R., Bull, S. W., and Maslennikov, V. V. (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Economic Geology 106, 331358.Google Scholar
Large, R. R., Halpin, J. A., Lounejeva, E., Danyushevsky, L. V., Maslennikov, V. V., Gregory, D., Sack, P. J., Haines, P. W., Long, J. A., and Makoundi, C. (2015) Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Research 28, 12821293.Google Scholar
Large, R. R., Mukherjee, I. Zhukova, I., Corkrey, R., Stepanov, A., and Danyushevsky, L .V. (2018) Role of upper-most crustal composition in the evolution of the Precambrian ocean–atmosphere system. Earth and Planetary Science Letters 487, 4453.Google Scholar
Longbottom, J., Martin, T., Edgell, K., Long, S., Plantz, M., Warden, B., Baraona, R., Bencivengo, D., Cardenas, D.,and Faires, L. (1994) Determination of trace-elements in water by inductively-coupled plasma-mass spectrometry-collaborative study. Journal of AOAC International 77, 10041023.Google Scholar
Longerich, H. P., Jackson, S. E., and Günther, D. (1996) Inter-laboratory note: Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11, 899904.CrossRefGoogle Scholar
Lyons, T. W., Werne, J. P., Hollander, D. J., and Murray, R. W. (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology 195, 131157.Google Scholar
Matamoros-Veloza, A., Cespedes, O., Johnson, B.R., Stawski, T.M., Terranova, U., de Leeuw, N.H. and Benning, L.G. (2018). A highly reactive precursor in the iron sulfide system. Nature communications 9, 3125.Google Scholar
May, T. W., and Wiedmeyer, R. H. (1998) A table of polyatomic interferences in ICP-MS. Atomic Spectrometry 19, 150155.Google Scholar
McLaren, J., Mykytiuk, A., Willie, S., and Berman, S. (1985) Determination of trace metals in seawater by inductively coupled plasma mass spectrometry with preconcentration on silica-immobilized 8-hydroxyquinoline. Analytical Chemistry 57, 2907–2911.Google Scholar
Michel, D., Giuliani, G., Olivo, G. R., and Marini, O. J. (1994) As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments, Goias State, Brazil. Economic Geology 89, 193200.Google Scholar
Morin, G., Noël, V., Menguy, N., Brest, J., Baptiste, B., Tharaud, M., Ona-Nguema, G., Ikogou, M., Viollier, E., and Juillot, F. (2017) Nickel accelerates pyrite nucleation at ambient temperature. Geochemical Perspectives Letters 5, 611.CrossRefGoogle Scholar
Morse, J. W., and Arakaki, T. (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta 57, 36353640.CrossRefGoogle Scholar
Morse, J. W., and Luther, G. W. (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63, 33733378.Google Scholar
Mukherjee, I., and Large, R. (2017) Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geology Reviews 81, 12491270.Google Scholar
Mukherjee, I., Large, R. R., Corkrey, R., and Danyushevsky, L. V. (2018a) The Boring Billion, a slingshot for complex life on Earth. Scientific Reports 8, 4432.Google Scholar
Mukherjee, I., Large, R., Corkrey, R., Willink, R., and Stepanov, A. (2018b) How robust is sedimentary pyrite trace element geochemistry as a geochemical proxy? Goldschmidt Abstracts 2018, 1829.Google Scholar
Olson, S. L., Ostrander, C. M., Gregory, D. D., Roy, M., Anbar, A. D., and Lyons, T. W. (2019) Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth and Planetary Science Letters 506, 417427.Google Scholar
Partin, C. A., Bekker, A., Planavsky, N. J., Scott, C. T., Gill, B. C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K. O., and Lalonde, S. V. (2013) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters 369, 284293.Google Scholar
Peiffer, S., Behrends, T., Hellige, K., Larese-Casanova, P., Wan, M., and Pollok, K. (2015) Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration. Chemical Geology 400, 4455.Google Scholar
Picard, A., Gartman, A., Clarke, D. R., and Girguis, P. R. (2018) Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica et Cosmochimica Acta 220, 367384.Google Scholar
Piper, D. Z., and Dean, W. E. (2002) Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: A history of the local hydrography and global climate, 20 ka to the present. US Geological Survey.Google Scholar
Pisarzowska, A., Berner, Z. A., and Racki, G. (2014) Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite. Sedimentary Geology 308, 1831.Google Scholar
Plantz, M.R., Fritz, J.S., Smith, F.G. and Houk, R. (1989) Separation of trace metal complexes for analysis of samples of high salt content by inductively coupled plasma mass spectrometry. Analytical Chemistry 61, 149–153.CrossRefGoogle Scholar
Qian, G., Brugger, J., Testemale, D., Skinner, W., and Pring, A. (2013) Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta 100, 110.Google Scholar
Reed, N.M., Cairns, R.O., Hutton, R.C., and Takaku, Y. (1994) Characterization of polyatomic ion interferences in inductively coupled plasma mass spectrometry using a high resolution mass spectrometer. Journal of analytical atomic spectrometry 9, 881896.Google Scholar
Reich, M., and Becker, U. (2006) First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chemical Geology 225, 278290.Google Scholar
Rickard, D., and Morse, J. W. (2005) Acid volatile sulfide (AVS). Marine Chemistry, 97, 141197.CrossRefGoogle Scholar
Román, N., Reich, M., Leisen, M., Morata, D., Barra, F., and Deditius, A. P. (2019) Geochemical and micro-textural fingerprints of boiling in pyrite. Geochimica et Cosmochimica Acta 246, 6085.Google Scholar
Sahoo, S. K., Planavsky, N. J., Jiang, G., Kendall, B., Owens, J. D., Wang, X., Shi, X., Anbar, A. D., and Lyons, T. W. (2016) Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D. (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452, 456459.Google Scholar
Steadman, J. A., Large, R. R., Meffre, S., Olin, P. H., Danyushevsky, L. V., Gregory, D. D., Belousov, I., Lounejeva, E., Ireland, T. R., and Holden, P. (2015) Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile Deposit, Kalgoorlie, Western Australia. Economic Geology 110, 11571191.Google Scholar
Stepanov, A. S., Danyushevsky, L.V., Large, R.R., Mukherjee, I. and Zhukova, I.A. (2020) Deconvolution of the composition of fine-grained pyrite in sedimentary matrix by regression of time-resolved LA-ICP-MS data. American Mineralogist: Journal of Earth and Planetary Materials 105, 820832.Google Scholar
Swanner, E. D., Webb, S. M., and Kappler, A. (2019) Fate of cobalt and mickel in mackinawite during diagenic pyrite formation. American Mineralogist 104, 917928.Google Scholar
Sykora, S., Cooke, D. R., Meffre, S., Stephanov, A .S., Gardner, K., Scott, R., Selley, D., and Harris, A. C. (2018) Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: implications for ore genesis and mineral processing. Economic Geology 113, 193208.Google Scholar
Tan, S. H., and Horlick, G. (1986) Background spectral features in inductively coupled plasma/mass spectrometry. Applied Spectroscopy 40, 445460.Google Scholar
Tardani, D., Reich, M., Deditius, A. P., Chryssoulis, S., Sánchez-Alfaro, P., Wrage, J.,and Roberts, M. P. (2017) Copper-arsenic decoupling in an active geothermal system: a link between pyrite and fluid composition. Geochimica et Cosmochimica Acta 204, 179204.CrossRefGoogle Scholar
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A. (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232, 1232.Google Scholar
Vandecasteele, C., Vanhoe, H., and Dams, R. (1993) Inductively coupled plasma mass spectrometry of biological samples. Invited lecture. Journal of Analytical Atomic Spectrometry 8, 781786.Google Scholar
Vorlicek, T. P., Helz, G. R., Chappaz, A., Vue, P., Vezina, A., and Hunter, W. (2018) Molybdenum burial mechanism in sulfidic sediments: iron-sulfide pathway. ACS Earth and Space Chemistry 2, 565576.Google Scholar
Wang, L., Shi, X., and Jiang, G. (2012) Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 333, 218227.Google Scholar
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. B., Kong, C., Liu, A. G., Matthews, J. J., and Brasier, M. D. (2015) Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology 43, 2730.Google Scholar
Wilkin, R. T., Barnes, H. L., and Brantley, S. L. (1996) The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta 60, 38973912.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Pyrite Trace Element Paleo-Ocean Chemistry Proxy
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

The Pyrite Trace Element Paleo-Ocean Chemistry Proxy
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

The Pyrite Trace Element Paleo-Ocean Chemistry Proxy
Available formats
×