Skip to main content Accessibility help
×
Home
Bioresorbable Materials and Their Application in Electronics
  • Cited by 7

Bioresorbable Materials and Their Application in Electronics

Bioresorbable electronics that can dissolve away in aqueous environments and generate biologically safe products offer a revolutionary solution to replace the built-to-last electronics predominantly used in implanted devices and electronic gadgets. Their use can reduce the risk of surgical complications by minimizing the number of necessary surgeries, and prevent production of electronic waste by allowing rapid device recycling. This Element presents bioresorbable materials such as metals, polymers, inorganic compounds, and semiconductors that have been used to construct electronic devices, and analyzes their unique dissolution behaviors and biological effects. These materials are combined to yield representative devices including passive and active components and functional systems.

  • Export citation
  • Recommend to librarian
  • Buy the Element
  • Copyright

  • COPYRIGHT: © Xian Huang 2018

References

Hide all
[26] J. W. Thomas , C. W. Michael , L. M. Janice , L. P. Rachel , and U. E. Jeremiah , “Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants,” Nanotechnology, 15(1), p. 48, 2004. Google Scholar
[4] L. Ylikontiola , K. Sundqvuist , G. K. Sandor , P. Törmälä , and N. Ashammakhi , “Self-reinforced bioresorbable poly-L/DL-lactide [SR-P (L/DL) LA] 70/30 miniplates and miniscrews are reliable for fixation of anterior mandibular fractures: a pilot study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 97(3), pp. 312–317, 2004. CrossRef | Google Scholar
[45] D. Son , J. Lee , D. J. Lee , R. Ghaffari , S. Yun , S. J. Kim , J. E. Lee , H. R. Cho , S. Yoon , S. Yang , S. Lee , S. Qiao , D. Ling , S. Shin , J.-K. Song , J. Kim , T. Kim , H. Lee , J. Kim , M. Soh , N. Lee , C. S. Hwang , S. Nam , N. Lu , T. Hyeon , S. H. Choi , and D.-H. Kim , “Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases,” ACS Nano, 9(6), pp. 5937–5946, 2015. CrossRef | Google Scholar
  • PubMed
  • [54] A. Leung , Z. W. Cai , and M. H. Wong , “Environmental contamination from electronic waste recycling at Guiyu, southeast China,” Journal of Material Cycles and Waste Management, 8(1), pp. 21–33, 2006. CrossRef | Google Scholar
    [59] S. Demirel , M. Tuzen , S. Saracoglu , and M. Soylak , “Evaluation of various digestion procedures for trace element contents of some food materials,” Journal of Hazardous Materials, 152(3), pp. 1020–1026, 2008. CrossRef | Google Scholar
  • PubMed
  • [66] A. Chaya , S. Yoshizawa , K. Verdelis , N. Myers , B. J. Costello , D.-T. Chou , S. Pal , S. Maiti , P. N. Kumta , and C. Sfeir , “In vivo study of magnesium plate and screw degradation and bone fracture healing,” Acta Biomaterialia, 18, pp. 262–269, 2015. CrossRef | Google Scholar
  • PubMed
  • [109] A. Bolz and T. Popp , “Implantable, bioresorbable vessel wall support, in particular coronary stent,” Google Patents, 2001. Google Scholar
    54[118] S. Shawe , F. Buchanan , E. Harkin-Jones , and D. Farrar , “A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA),” Journal of Materials Science, 41(15), pp. 4832–4838, 2006. CrossRef | Google Scholar
    [126] J. S. Chawla and M. M. Amiji , “Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen,” International Journal of Pharmaceutics, 249(1–2), pp. 127–138, 2002. CrossRef | Google Scholar
  • PubMed
  • [127] K. Zhao , Y. Deng , J. Chun Chen , and G.-Q. Chen , “Polyhydroxyalkanoate (PHA) scaffolds with good mechanical 55properties and biocompatibility,” Biomaterials, 24(6), pp. 1041–1045, 2003. CrossRef | Google Scholar
  • PubMed
  • [143] X. Yu , L. Wang , M. Huang , T. Gong , W. Li , Y. Cao , D. Ji , P. Wang , J. Wang , and S. Zhou , “A shape memory stent of poly(ε-caprolactone-co-dl-lactide) copolymer for potential treatment of esophageal stenosis,” Journal of Materials Science: Materials in Medicine, 23(2), pp. 581–589, 2012. Google Scholar
  • PubMed
  • [159] B. Rai , S. H. Teoh , D. W. Hutmacher , T. Cao , and K. H. Ho , “Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2,” Biomaterials, 26(17), pp. 3739–3748, 2005. CrossRef | Google Scholar
  • PubMed
  • [186] E. Wenk , H. P. Merkle , and L. Meinel , “Silk fibroin as a vehicle for drug delivery applications,” Journal of Controlled Release, 150(2), pp. 128–141, 2011. CrossRef | Google Scholar
  • PubMed
  • [219] X. Hu , K. Shmelev , L. Sun , E.-S. Gil , S.-H. Park , P. Cebe , and D. L. Kaplan , “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules, 12(5), pp. 1686–1696, 2011. CrossRef | Google Scholar
  • PubMed
  • [249] R. Rai , M. Tallawi , A. Grigore , and A. R. Boccaccini , “Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review,” Progress in Polymer Science, 37(8), pp. 1051–1078, 2012. CrossRef | Google Scholar
    [301] J. Olofsson , T. M. Grehk , T. Berlind , C. Persson , S. Jacobson , and H. Engqvist , “Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement,” Biomatter, 2(2), pp. 94–102, 2012. CrossRef | Google Scholar
  • PubMed
  • [313] J. A. Pennington , “Silicon in foods and diets,” Food Addit Contam, 8(1), pp. 97–118, 1991. CrossRef | Google Scholar
  • PubMed
  • [316] F. Chen , P. Cole , L. Wen , Z. Mi , and E. J. Trapido , “Estimates of trace element intakes in Chinese farmers,” J Nutr, 124(2), pp. 196–201, 1994. CrossRef | Google Scholar
  • PubMed
  • [10] D. Schranz , P. Zartner , I. Michel-Behnke , and H. Akintürk , “Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn,” Catheterization and Cardiovascular Interventions, 67(5), pp. 671–673, 2006. CrossRef | Google Scholar
    [327] S. Mühl and B. Beyer , “Bio-organic electronics – overview and prospects for the future,” Electronics, 3(3), pp. 444–461, 2014. CrossRef | Google Scholar
    45[18] F. Nie , S. Wang , Y. Wang , S. Wei , and Y. Zheng , “Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel,” Dental Materials, 27(7), pp. 677–683, 2011. CrossRef | Google Scholar
  • PubMed
  • [28] A. Dalal , V. Pawar , K. McAllister , C. Weaver , and N. J. Hallab , “Orthopedic implant cobalt‐alloy particles produce greater toxicity 46and inflammatory cytokines than titanium alloy and zirconium alloy‐based particles in vitro, in human osteoblasts, fibroblasts, and macrophages,” Journal of Biomedical Materials Research Part A, 100(8), pp. 2147–2158, 2012. CrossRef | Google Scholar
  • PubMed
  • [32] K. Muller and E. Valentine-Thon , “Hypersensitivity to titanium: clinical and laboratory evidence,” Neuro Endocrinol Lett, 27 Suppl. 1, pp. 31–35, 2006. Google Scholar
  • PubMed
  • [76] D. Pierson , J. Edick , A. Tauscher , E. Pokorney , P. Bowen , J. Gelbaugh , J. Stinson , H. Getty , C. H. Lee , J. Drelich , and J. Goldman , “A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(1), pp. 58–67, 2012. CrossRef | Google Scholar
    [84] H. Altun and S. Sen , “The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys,” Surface and Coatings Technology, 197(2), pp. 193–200, 2005. CrossRef | Google Scholar
    [89] J. Nie , X. Gao , and S.-M. Zhu , “Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn,” Scripta Materialia, 53(9), pp. 1049–1053, 2005. CrossRef | Google Scholar
    [119] A. W. T. Shum and A. F. T. Mak , “Morphological and biomechanical characterization of poly(glycolic acid) scaffolds after in vitro degradation,” Polymer Degradation and Stability, 81(1), pp. 141–149, 2003. CrossRef | Google Scholar
    [145] D. Cohn and A. Hotovely Salomon , “Designing biodegradable multiblock PCL/PLA thermoplastic elastomers,” Biomaterials, 26(15), pp. 2297–2305, 2005. CrossRef | Google Scholar
  • PubMed
  • [156] M. H. Sheridan , L. D. Shea , M. C. Peters , and D. J. Mooney , “Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery,” Journal of Controlled Release, 64(1–3), pp. 91–102, 2000. CrossRef | Google Scholar
  • PubMed
  • [164] K. J. Yu , D. Kuzum , S.-W. Hwang , B. H. Kim , H. Juul , N. H. Kim , S. M. Won , K. Chiang , M. Trumpis , A. G. Richardson , H. Cheng , H. Fang , M. Thompson , H. Bink , D. Talos , K. J. Seo , H. N. Lee , S.-K. Kang , J.-H. Kim , J. Y. Lee , Y. Huang , F. E. Jensen , M. A. Dichter , T. H. Lucas , J. Viventi , B. Litt , and J. A. Rogers , “Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex,” Nat Mater, 15(7), pp. 782–791, 2016. CrossRef | Google Scholar
  • PubMed
  • [173] M. B. Mellott , K. Searcy , and M. V. Pishko , “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials, 22(9), pp. 929–941, 2001. CrossRef | Google Scholar
  • PubMed
  • [183] S. Choi , M. Baudys , and S. W. Kim , “Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats,” Pharmaceutical Research, 21(5), pp. 827–831, 2004. CrossRef | Google Scholar
  • PubMed
  • [209] W.-H. Zhang , B.-J. Jiang , and P. Yang , “Proteins as functional interlayer in organic field-effect transistor,” Chinese Chemical Letters. Google Scholar
    [227] Y. Nakazawa , M. Sato , R. Takahashi , D. Aytemiz , C. Takabayashi , T. Tamura , S. Enomoto , M. Sata , and T. Asakura , “Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration,” Journal of Biomaterials Science, Polymer Edition, 22(1–3), pp. 195–206, 2011. CrossRef | Google Scholar
  • PubMed
  • [241] F. Hom , S. Veresh , and J. Miskel , “Soft gelatin capsules I: Factors affecting capsule shell dissolution rate,” Journal of Pharmaceutical Sciences, 62(6), pp. 1001–1006, 1973. CrossRef | Google Scholar
  • PubMed
  • [269] Y. Wang , G. A. Ameer , B. J. Sheppard , and R. Langer , “A tough biodegradable elastomer,” Nat Biotech, 20(6), pp. 602–606, 2002. CrossRef | Google Scholar
  • PubMed
  • [297] J. D. Birchall and J. S. Chappell , “The chemistry of aluminum and silicon in relation to Alzheimer’s disease,” Clin Chem, 34(2), pp. 265–267, 1988. Google Scholar
  • PubMed
  • [310] W. W. Harvey and H. C. Gatos , “The reaction of germanium with aqueous solutions: I. Dissolution kinetics in water containing dissolved oxygen,” Journal of the Electrochemical Society, 105(11), pp. 654–660, 1958. CrossRef | Google Scholar
    [3] J. Simon , J. Ricci , and P. Di Cesare , “Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part I. Basic science and preclinical studies,” American Journal of Orthopedics (Belle Mead, NJ), 26(10), pp. 665–671, 1997. Google Scholar
  • PubMed
  • [23] C. Elias , J. Lima , R. Valiev , and M. Meyers , “Biomedical applications of titanium and its alloys,” JOM, 60(3), pp. 46–49, 2008. CrossRef | Google Scholar
    [25] A. Godara , D. Raabe , and S. Green , “The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications,” Acta Biomaterialia, 3(2), pp. 209–220, 2007. CrossRef | Google Scholar
  • PubMed
  • 48[49] B. H. Robinson , “E-waste: An assessment of global production and environmental impacts,” Science of The Total Environment, 408(2), pp. 183–191, 2009. CrossRef | Google Scholar
  • PubMed
  • [60] F. H. Nielsen , “Essential and toxic trace elements in human health and disease,” Current Topics in Nutrition and Disease, 18, pp. 277–292, 2008. Google Scholar
    51[83] J. Gray and B. Luan , “Protective coatings on magnesium and its alloys—a critical review,” Journal of Alloys and Compounds, 336(1), pp. 88–113, 2002. CrossRef | Google Scholar
    [88] J. M. Seitz , R. Eifler , J. Stahl , M. Kietzmann , and F. W. Bach , “Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices,” Acta Biomaterialia, 8(10), pp. 3852–3864, 2012. CrossRef | Google Scholar
  • PubMed
  • [90] H. S. Brar , M. O. Platt , M. Sarntinoranont , P. I. Martin , and M. V. Manuel , “Magnesium as a biodegradable and bioabsorbable material for medical implants,” JOM, 61(9), pp. 31–34, 2009. CrossRef | Google Scholar
    [106] X. Liu , J. Sun , Y. Yang , Z. Pu , and Y. Zheng , “In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material,” Materials Letters, 161, pp. 53–56, 2015. CrossRef | Google Scholar
    [113] I. Jesion , M. Skibniewski , E. Skibniewska , W. Strupiński , L. Szulc-Dąbrowska , A. Krajewska , I. Pasternak , P. Kowalczyk , and R. Pińkowski , “Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering,” Biotechnology & Biotechnological Equipment, 29(3), pp. 415–422, 2015. CrossRef | Google Scholar
    [123] T. D. Roy , J. L. Simon , J. L. Ricci , E. D. Rekow , V. P. Thompson , and J. R. Parsons , “Performance of degradable composite bone repair products made via three-dimensional fabrication techniques,” Journal of Biomedical Materials Research Part A, 66A(2), pp. 283–291, 2003. CrossRef | Google Scholar
    [134] Y. Zhang , H. Ouyang , C. T. Lim , S. Ramakrishna , and Z. M. Huang , “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72(1), pp. 156–165, 2005. CrossRef | Google Scholar
  • PubMed
  • [144] W. Wang , P. Ping , X. Chen , and X. Jing , “Biodegradable polyurethane based on random copolymer of L-lactide and ϵ-caprolactone and its shape-memory property,” Journal of Applied Polymer Science, 104(6), pp. 4182–4187, 2007. CrossRef | Google Scholar
    [203] Z. Meng , Y. Wang , C. Ma , W. Zheng , L. Li , and Y. Zheng , “Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering,” Materials Science and Engineering: C, 30(8), pp. 1204–1210, 2010. CrossRef | Google Scholar
    [206] R. Capelli , J. J. Amsden , G. Generali , S. Toffanin , V. Benfenati , M. Muccini , D. Kaplan , F. Omenetto , and R. Zamboni , “Integration of silk protein in organic and light-emitting transistors,” Organic Electronics, 12(7), pp. 1146–1151, 2011. CrossRef | Google Scholar
  • PubMed
  • [210] H. Im , X.-J. Huang , B. Gu , and Y.-K. Choi , “A dielectric-modulated field-effect transistor for biosensing,” Nature Nanotechnology, 2(7), pp. 430–434, 2007. CrossRef | Google Scholar
  • PubMed
  • [220] M. Li , M. Ogiso , and N. Minoura , “Enzymatic degradation behavior of porous silk fibroin sheets,” Biomaterials, 24(2), pp. 357–365, 2003. CrossRef | Google Scholar
  • PubMed
  • [222] K. Chen , Y. Umeda , and K. Hirabayashi , “Enzymatic hydrolysis of silk fibroin,” The Journal of Sericultural Science of Japan, 65(2), pp. 131–133, 1996. Google Scholar
    [236] D. L. Casey , R. M. Beihn , G. A. Digenis , and M. B. Shambhu , “Method for monitoring hard gelatin capsule disintegration times in humans using external scintigraphy,” Journal of Pharmaceutical Sciences, 65(9), pp. 1412–1413, 1976. CrossRef | Google Scholar
  • PubMed
  • [246] P. Zahedi , I. Rezaeian , S.-O. Ranaei-Siadat , S.-H. Jafari , and P. Supaphol , “A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages,” Polymers for Advanced Technologies, 21(2), pp. 77–95, 2010. Google Scholar
    [256] S. Grad , L. Kupcsik , K. Gorna , S. Gogolewski , and M. Alini , “The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations,” Biomaterials, 24(28), pp. 5163–5171, 2003. CrossRef | Google Scholar
  • PubMed
  • [267] A. Patel , A. K. Gaharwar , G. Iviglia , H. Zhang , S. Mukundan , S. M. Mihaila , D. Demarchi , and A. Khademhosseini , “Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers,” Biomaterials, 34(16), pp. 3970–3983, 2013. CrossRef | Google Scholar
  • PubMed
  • [279] A. Janotti and C. G. Van de Walle , “Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, 72(12), p. 126501, 2009. CrossRef | Google Scholar
    [315] R. Jugdaohsingh , S. H. Anderson , K. L. Tucker , H. Elliott , D. P. Kiel , R. P. Thompson , and J. J. Powell , “Dietary silicon intake and absorption,” Am J Clin Nutr, 75(5), pp. 887–893, 2002. CrossRef | Google Scholar
  • PubMed
  • [318] S.-W. Hwang , G. Park , C. Edwards , E. A. Corbin , S.-K. Kang , H. Cheng , J.-K. Song , J.-H. Kim , S. Yu , J. Ng , J. E. Lee , J. Kim , C. Yee , B. Bhaduri , Y. Su , F. G. Omennetto , Y. Huang , R. Bashir , L. Goddard , G. Popescu , K.-M. Lee , and J. A. Rogers , “Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics,” ACS Nano, 8(6), pp. 5843–5851, 2014. CrossRef | Google Scholar
  • PubMed
  • [326] M. Irimia-Vladu , E. D. Głowacki , P. A. Troshin , G. Schwabegger , L. Leonat , D. K. Susarova , O. Krystal , M. Ullah , Y. Kanbur , M. A. Bodea , V. F. Razumov , H. Sitter , S. Bauer , and N. S. Sariciftci , “Indigo – a natural pigment for high performance ambipolar organic field effect transistors and circuits,” Advanced Materials, 24(3), pp. 375–380, 2012. CrossRef | Google Scholar
  • PubMed
  • [328] X. Pan , P. Yao , and M. Jiang , “Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene,” Journal of Colloid and Interface Science, 315(2), pp. 456–463, 2007. CrossRef | Google Scholar
  • PubMed
  • [347] E. Tekin , P. J. Smith , and U. S. Schubert , “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter, 4(4), pp. 703–713, 2008. CrossRef | Google Scholar
    [63] C. J. Damien and J. R. Parsons , “Bone graft and bone graft substitutes: A review of current technology and applications,” Journal of Applied Biomaterials, 2(3), pp. 187–208, 1991. CrossRef | Google Scholar
  • PubMed
  • [64] M. Bohner , “Resorbable biomaterials as bone graft substitutes,” Materials Today, 13(1–2), pp. 24–30, 2010. CrossRef | Google Scholar
    [80] M. Li , Y. Cheng , Y. Zheng , X. Zhang , T. Xi , and S. Wei , “Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film,” Applied Surface Science, 258(7), pp. 3074–3081, 2012. CrossRef | Google Scholar
    [99] Y. Yun , Z. Dong , D. Yang , M. J. Schulz , V. N. Shanov , S. Yarmolenko , Z. Xu , P. Kumta , and C. Sfeir , “Biodegradable Mg corrosion and osteoblast cell culture studies,” Materials Science and Engineering: C, 29(6), pp. 1814–1821, 2009. CrossRef | Google Scholar
    [124] S. de Valence , J.-C. Tille , D. Mugnai , W. Mrowczynski , R. Gurny , M. Möller , and B. H. Walpoth , “Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model,” Biomaterials, 33(1), pp. 38–47, 2012. CrossRef | Google Scholar
    [128] M. Zinn , B. Witholt , and T. Egli , “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate,” Advanced Drug Delivery Reviews, 53(1), pp. 5–21, 2001. CrossRef | Google Scholar
  • PubMed
  • [135] J.-W. Rhim , A. K. Mohanty , S. P. Singh , and P. K. W. Ng , “Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting,” Journal of Applied Polymer Science, 101(6), pp. 3736–3742, 2006. CrossRef | Google Scholar
    [151] R. Nigmatullin , P. Thomas , B. Lukasiewicz , H. Puthussery , and I. Roy , “Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery,” Journal of Chemical Technology & Biotechnology, 90(7), pp. 1209–1221, 2015. CrossRef | Google Scholar
    [152] L. Francis , D. Meng , J. Knowles , T. Keshavarz , A. R. Boccaccini , and I. Roy , “Controlled delivery of gentamicin using poly (3-hydroxybutyrate) microspheres,” International Journal of Molecular Sciences, 12(7), pp. 4294–4314, 2011. CrossRef | Google Scholar
  • PubMed
  • [162] C. J. Bettinger and Z. Bao , “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Advanced Materials, 22(5), pp. 651–655, 2010. CrossRef | Google Scholar
  • PubMed
  • [167] W. E. Hennink and C. F. van Nostrum , “Novel crosslinking methods to design hydrogels,” Advanced Drug Delivery Reviews, 64, Supplement, pp. 223–236, 2012. CrossRef | Google Scholar
    [179] K. Nagahama , K. Fujiura , S. Enami , T. Ouchi , and Y. Ohya , “Irreversible temperature‐responsive formation of high‐strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8‐arm PEG and PLLA or PDLA,” Journal of Polymer Science Part A: Polymer Chemistry, 46(18), pp. 6317–6332, 2008. CrossRef | Google Scholar
    [191] S. Partridge and H. Davis , “The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin,” Biochemical Journal, 61(1), p. 21, 1955. CrossRef | Google Scholar
  • PubMed
  • [218] T. Lefèvre , M.-E. Rousseau , and M. Pézolet , “Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy,” Biophysical Journal, 92(8), pp. 2885–2895, 2007. CrossRef | Google Scholar
    [221] T. Arai , G. Freddi , R. Innocenti , and M. Tsukada , “Biodegradation of Bombyx mori silk fibroin fibers and films,” Journal of Applied Polymer Science, 91(4), pp. 2383–2390, 2004. CrossRef | Google Scholar
    [252] M. P. Prabhakaran , A. S. Nair , D. Kai , and S. Ramakrishna , “Electrospun composite scaffolds containing poly (octanediol‐co‐citrate) for cardiac tissue engineering,” Biopolymers, 97(7), pp. 529–538, 2012. CrossRef | Google Scholar
  • PubMed
  • [262] B. L. Dargaville , C. d. Vaquette , H. Peng , F. Rasoul , Y. Q. Chau , J. J. Cooper-White , J. H. Campbell , and A. K. Whittaker , “Cross-linked poly (trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications,” Biomacromolecules, 12(11), pp. 3856–3869, 2011. CrossRef | Google Scholar
  • PubMed
  • [281] Z. L. Wang and J. Song , “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, 312(5771), pp. 242–246, 2006. CrossRef | Google Scholar
  • PubMed
  • [287] Y. Irokawa , Y. Nakano , M. Ishiko , T. Kachi , J. Kim , F. Ren , B. P. Gila , A. H. Onstine , C. R. Abernathy , S. J. Pearton , C.-C. Pan , G.-T. Chen , and J.-I. Chyi , “MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors,” Applied Physics Letters, 84(15), pp. 2919–2921, 2004. CrossRef | Google Scholar
    [298] K. S. Finnie , D. J. Waller , F. L. Perret , A. M. Krause-Heuer , H. Q. Lin , J. V. Hanna , and C. J. Barbé , “Biodegradability of sol–gel silica microparticles for drug delivery,” Journal of Sol–Gel Science and Technology, 49(1), pp. 12–18, 2009. CrossRef | Google Scholar
    [308] M. A. Whitehead , D. Fan , P. Mukherjee , G. R. Akkaraju , L. T. Canham , and J. L. Coffer , “High-Porosity poly(ε-caprolactone)/mesoporous silicon scaffolds: calcium phosphate deposition and biological response to bone precursor cells,” Tissue Engineering Part A, 14(1), pp. 195–206, 2008. CrossRef | Google Scholar
  • PubMed
  • [317] A. Anasuya , S. Bapurao , and P. K. Paranjape , “Fluoride and silicon intake in normal and endemic fluorotic areas,” J Trace Elem Med Biol, 10(3), pp. 149–155, 1996. CrossRef | Google Scholar
  • PubMed
  • [331] C. R. Newman , C. D. Frisbie , D. A. da Silva Filho , J.-L. Brédas , P. C. Ewbank , and K. R. Mann , “Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chemistry of Materials, 16(23), pp. 4436–4451, 2004. CrossRef | Google Scholar
    [339] H. Tao , M. A. Brenckle , M. Yang , J. Zhang , M. Liu , S. M. Siebert , R. D. Averitt , M. S. Mannoor , M. C. McAlpine , J. A. Rogers , D. L. Kaplan , and F. G. Omenetto , “Silk-based conformal, adhesive, edible food sensors,” Advanced Materials, 24(8), pp. 1067–1072, 2012. CrossRef | Google Scholar
  • PubMed
  • [349] M. S. Rill , C. Plet , M. Thiel , I. Staude , G. von Freymann , S. Linden , and M. Wegener , “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat Mater, 7(7), pp. 543–546, 2008. CrossRef | Google Scholar
  • PubMed
  • [38] L. Yin , H. Cheng , S. Mao , R. Haasch , Y. Liu , X. Xie , S.-W. Hwang , H. Jain , S.-K. Kang , Y. Su , R. Li , Y. Huang , and J. A. Rogers , “Dissolvable metals for transient electronics,” Advanced Functional Materials, 24(5), pp. 645–658, 2014. CrossRef | Google Scholar
    [1] R. C. Eberhart , S. H. Su , K. T. Nguyen , M. Zilberman , L. Tang , K. D. Nelson , and P. Frenkel , “Bioresorbable polymeric stents: current status and future promise,” J Biomater Sci Polym Ed, 14(4), pp. 299–312, 2003. CrossRef | Google Scholar
  • PubMed
  • 47[39] H. K. Makadia and S. J. Siegel , “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers (Basel), 3(3), pp. 1377–1397, 2011. CrossRef | Google Scholar
  • PubMed
  • [58] E. Underwood , Trace Elements in Human and Animal Nutrition 4e: Elsevier, 2012. Google Scholar
    52[96] M. Yamaguchi , “Role of zinc in bone formation and bone resorption,” The Journal of Trace Elements in Experimental Medicine, 11(2–3), pp. 119–135, 1998. CrossRef | Google Scholar
    [104] K. Törne , M. Larsson , A. Norlin , and J. Weissenrieder , “Degradation of zinc in saline solutions, plasma, and whole blood,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(6), pp. 1141–1151, 2016. CrossRef | Google Scholar
  • PubMed
  • [121] S. Sarkar , G. Y. Lee , J. Y. Wong , and T. A. Desai , “Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications,” Biomaterials, 27(27), pp. 4775–4782, 2006. CrossRef | Google Scholar
  • PubMed
  • [146] S. H. Choi and T. G. Park , “Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers,” Journal of Biomaterials Science, Polymer Edition, 13(10), pp. 1163–1173, 2002. CrossRef | Google Scholar
  • PubMed
  • [163] A. Campana , T. Cramer , D. T. Simon , M. Berggren , and F. Biscarini , “Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold,” Advanced Materials, 26(23), pp. 3874–3878, 2014. CrossRef | Google Scholar
  • PubMed
  • [176] B. K. Mann , A. S. Gobin , A. T. Tsai , R. H. Schmedlen , and J. L. West , “Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering,” Biomaterials, 22(22), pp. 3045–3051, 2001. CrossRef | Google Scholar
  • PubMed
  • [180] C. Gong , S. Shi , L. Wu , M. Gou , Q. Yin , Q. Guo , P. Dong , F. Zhang , F. Luo , and X. Zhao , “Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior,” Acta Biomaterialia, 5(9), pp. 3358–3370, 2009. CrossRef | Google Scholar
  • PubMed
  • [187] C. H. F. Hämmerle and N. P. Lang , “Single stage surgery combining transmucosal implant placement with guided bone regeneration and bioresorbable materials,” Clinical Oral Implants Research, 12(1), pp. 9–18, 2001. CrossRef | Google Scholar
  • PubMed
  • [228] K. Gruchenberg , A. Ignatius , B. Friemert , F. von Lübken , N. Skaer , K. Gellynck , O. Kessler , and L. Dürselen , “In vivo performance of a 65novel silk fibroin scaffold for partial meniscal replacement in a sheep model,” Knee Surgery, Sports Traumatology, Arthroscopy, 23(8), pp. 2218–2229, 2015. CrossRef | Google Scholar
    [230] G. H. Altman , F. Diaz , C. Jakuba , T. Calabro , R. L. Horan , J. Chen , H. Lu , J. Richmond , and D. L. Kaplan , “Silk-based biomaterials,” Biomaterials, 24(3), pp. 401–416, 2003. CrossRef | Google Scholar
  • PubMed
  • [272] C. M. Boutry , A. Nguyen , Q. O. Lawal , A. Chortos , and Z. Bao , “Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon degradation,” in SENSORS, 2015 IEEE, 2015, pp. 1–4. Google Scholar
    [304] Y. Yee Chia , L. Qiang , L. Wen Chin , K. Tsu-Jae , H. Chenming , W. Xiewen , G. Xin , and T. P. Ma , “Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric,” IEEE Electron Device Letters, 21(11), pp. 540–542, 2000. CrossRef | Google Scholar
    [323] M. Irimia-Vladu , P. A. Troshin , M. Reisinger , L. Shmygleva , Y. Kanbur , G. Schwabegger , M. Bodea , R. Schwödiauer , A. Mumyatov , J. W. Fergus , V. F. Razumov , H. Sitter , N. S. Sariciftci , and S. Bauer , “Biocompatible and biodegradable materials for organic field-effect transistors,” Advanced Functional Materials, 20(23), pp. 4069–4076, 2010. CrossRef | Google Scholar
    [329] A. M. Bond , F. Marken , E. Hill , R. G. Compton , and H. Hügel , “The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution,” Journal of the Chemical Society, Perkin Transactions, 2, (9), pp. 1735–1742, 1997. CrossRef | Google Scholar
    [338] M. Luo , A. W. Martinez , C. Song , F. Herrault , and M. G. Allen , “A microfabricated wireless RF pressure sensor made completely of biodegradable materials,” Journal of Microelectromechanical Systems, 23(1), pp. 4–13, 2014. CrossRef | Google Scholar
    [351] Y. Galagan , E. W. C. Coenen , R. Abbel , T. J. van Lammeren , S. Sabik , M. Barink , E. R. Meinders , R. Andriessen , and P. W. M. Blom , “Photonic sintering of inkjet printed current collecting grids for organic solar cell applications,” Organic Electronics, 14(1), pp. 38–46, 2013. CrossRef | Google Scholar
    [16] Y. Okazaki and E. Gotoh , “Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants,” Corrosion Science, 50(12), pp. 3429–3438, 2008. CrossRef | Google Scholar
    [35] D.-H. Kim , J. Viventi , J. J. Amsden , J. Xiao , L. Vigeland , Y.-S. Kim , J. A. Blanco , B. Panilaitis , E. S. Frechette , D. Contreras , D. L. Kaplan , F. G. Omenetto , Y. Huang , K.-C. Hwang , M. R. Zakin , B. Litt , and J. A. Rogers , “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” Nat Mater, 9(6), pp. 511–517, 2010. CrossRef | Google Scholar
  • PubMed
  • [42] S.-W. Hwang , S.-K. Kang , X. Huang , M. A. Brenckle , F. G. Omenetto , and J. A. Rogers , “Materials for programmed, functional transformation in transient electronic systems,” Advanced Materials, 27(1), pp. 47–52, 2015. CrossRef | Google Scholar
  • PubMed
  • [43] S.-W. Hwang , X. Huang , J.-H. Seo , J.-K. Song , S. Kim , S. Hage-Ali , H.-J. Chung , H. Tao , F. G. Omenetto , Z. Ma , and J. A. Rogers , “Materials for bioresorbable radio frequency electronics,” Advanced Materials, 25(26), pp. 3526–3531, 2013. CrossRef | Google Scholar
  • PubMed
  • [52] B. R. Babu , A. K. Parande , and C. A. Basha , “Electrical and electronic waste: a global environmental problem,” Waste Management & Research, 25(4), pp. 307–318, 2007. Google Scholar
    [68] T. L. P. Slottow , R. Pakala , T. Okabe , D. Hellinga , R. J. Lovec , F. O. Tio , A. B. Bui , and R. Waksman , “Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries,” Cardiovascular Revascularization Medicine, 9(4), pp. 248–254, 2008. CrossRef | Google Scholar
  • PubMed
  • [72] M. Razavi , M. H. Fathi , O. Savabi , D. Vashaee , and L. Tayebi , “Biodegradation, bioactivity and in vivo biocompatibility 50analysis of plasma electrolytic oxidized (PEO) biodegradable Mg implants,” Physical Science International Journal, 4(5), p. 708, 2014. CrossRef | Google Scholar
    [85] G. Song , “Control of biodegradation of biocompatable magnesium alloys,” Corrosion Science, 49(4), pp. 1696–1701, 2007. CrossRef | Google Scholar
    [87] S. Zhang , X. Zhang , C. Zhao , J. Li , Y. Song , C. Xie , H. Tao , Y. Zhang , Y. He , Y. Jiang , and Y. Bian , “Research on an Mg–Zn alloy as a degradable biomaterial,” Acta Biomaterialia, 6(2), pp. 626–640, 2010. CrossRef | Google Scholar
  • PubMed
  • [110] R. Othman , A. Yahaya , and A. K. Arof , “A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste,” Journal of Applied Electrochemistry, 32(12), pp. 1347–1353, 2002. CrossRef | Google Scholar
    [141] J. Hu , M. P. Prabhakaran , L. Tian , X. Ding , and S. Ramakrishna , “Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility,” RSC Advances, 5(121), pp. 100256–100267, 2015. CrossRef | Google Scholar
    [165] L. Yin , X. Huang , H. Xu , Y. Zhang , J. Lam , J. Cheng , and J. A. Rogers , “Materials, designs, and operational characteristics for fully biodegradable primary batteries,” Advanced Materials, 26(23), pp. 3879–3884, 2014. CrossRef | Google Scholar
  • PubMed
  • [175] K. T. Nguyen and J. L. West , “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials, 23(22), pp. 4307–4314, 2002. CrossRef | Google Scholar
  • PubMed
  • [214] K.-Y. Park , Y.-S. Sohn , C.-K. Kim , H.-S. Kim , Y.-S. Bae , and S.-Y. Choi , “Development of FET-type albumin sensor for diagnosing nephritis,” Biosensors and Bioelectronics, 23(12), pp. 1904–1907, 2008. CrossRef | Google Scholar
  • PubMed
  • [215] J. Chen , K. Vongsanga , X. Wang , and N. Byrne , “What happens during natural protein fibre dissolution in ionic liquids,” Materials, 7(9), pp. 6158–6168, 2014. CrossRef | Google Scholar
  • PubMed
  • [254] K.-W. Lee , D. B. Stolz , and Y. Wang , “Substantial expression of mature elastin in arterial constructs,” Proceedings of the National Academy of Sciences, 108(7), pp. 2705–2710, 2011. CrossRef | Google Scholar
  • PubMed
  • [255] S.-L. Chia , K. Gorna , S. Gogolewski , and M. Alini , “Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair,” Tissue Engineering, 12(7), pp. 1945–1953, 2006. CrossRef | Google Scholar
  • PubMed
  • [260] V. Kanyanta and A. Ivankovic , “Mechanical characterisation of polyurethane elastomer for biomedical applications,” Journal of 68the Mechanical Behavior of Biomedical Materials, 3(1), pp. 51–62, 2010. CrossRef | Google Scholar
  • PubMed
  • [270] S. Sant , C. M. Hwang , S.-H. Lee , and A. Khademhosseini , “Hybrid PGS–PCL microfibrous scaffolds with improved mechanical and biological properties,” Journal of Tissue Engineering and Regenerative Medicine, 5(4), pp. 283–291, 2011. CrossRef | Google Scholar
  • PubMed
  • [274] J. Yang , A. R. Webb , S. J. Pickerill , G. Hageman , and G. A. Ameer , “Synthesis and evaluation of poly(diol citrate) biodegradable elastomers,” Biomaterials, 27(9), pp. 1889–1898, 2006. CrossRef | Google Scholar
  • PubMed
  • [321] S.-Y. Chen , Y.-Y. Lu , F.-Y. Shih , P.-H. Ho , Y.-F. Chen , C.-W. Chen , Y.-T. Chen , and W.-H. Wang , “Biologically inspired graphene–chlorophyll phototransistors with high gain,” Carbon, 63, pp. 23–29, 2013. CrossRef | Google Scholar
    [322] G. Chamberlain , “Organic solar cells: a review,” Solar Cells, 8(1), pp. 47–83, 1983. CrossRef | Google Scholar
    [337] R. K. Pal , A. A. Farghaly , C. Wang , M. M. Collinson , S. C. Kundu , and V. K. Yadavalli , “Conducting polymer–silk biocomposites for flexible and biodegradable electrochemical sensors,” Biosensors and Bioelectronics, 81, pp. 294–302, 2016. CrossRef | Google Scholar
  • PubMed
  • [13] X. Pang , X. Zhuang , Z. Tang , and X. Chen , “Polylactic acid (PLA): Research, development and industrialization,” Biotechnology Journal, 5(11), pp. 1125–1136, 2010. CrossRef | Google Scholar
  • PubMed
  • [2] J. A. Ormiston , P. W. Serruys , E. Regar , D. Dudek , L. Thuesen , M. W. I. Webster , Y. Onuma , H. M. Garcia-Garcia , R. McGreevy , and S. Veldhof , “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial,” The Lancet, 371(9616), pp. 899–907, 2008. CrossRef | Google Scholar
  • PubMed
  • [19] M. Grądzka-Dahlke , J. Dąbrowski , and B. Dąbrowski , “Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy,” Journal of Materials Processing Technology, 204(1), pp. 199–205, 2008. CrossRef | Google Scholar
    [40] S.-K. Kang , S.-W. Hwang , H. Cheng , S. Yu , B. H. Kim , J.-H. Kim , Y. Huang , and J. A. Rogers , “Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics,” Advanced Functional Materials, 24(28), pp. 4427–4434, 2014. CrossRef | Google Scholar
    [57] B. K. Reck and T. E. Graedel , “Challenges in metal recycling,” Science, 337(6095), pp. 690–695, 2012. CrossRef | Google Scholar
  • PubMed
  • [91] J. D. Cao , N. T. Kirkland , K. J. Laws , N. Birbilis , and M. Ferry , “Ca–Mg–Zn bulk metallic glasses as bioresorbable metals,” Acta Biomaterialia, 8(6), pp. 2375–2383, 2012. CrossRef | Google Scholar
  • PubMed
  • [111] X. Huang , Y. Liu , S.-W. Hwang , S.-K. Kang , D. Patnaik , J. F. Cortes , and J. A. Rogers , “Biodegradable materials for multilayer transient printed circuit boards,” Advanced Materials, 26(43), pp. 7371–7377, 2014. CrossRef | Google Scholar
  • PubMed
  • [129] E. I. Shishatskaya , T. G. Volova , A. P. Puzyr , O. A. Mogilnaya , and S. N. Efremov , “Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures,” Journal of Materials Science: Materials in Medicine, 15(6), pp. 719–728, 2004. Google Scholar
  • PubMed
  • [140] F. Danhier , E. Ansorena , J. M. Silva , R. Coco , A. Le Breton , and V. Préat , “PLGA-based nanoparticles: An overview of biomedical applications,” Journal of Controlled Release, 161(2), pp. 505–522, 2012. CrossRef | Google Scholar
  • PubMed
  • [149] S. Philip , T. Keshavarz , and I. Roy , “Polyhydroxyalkanoates: biodegradable polymers with a range of applications,” Journal of Chemical Technology & Biotechnology, 82(3), pp. 233–247, 2007. CrossRef | Google Scholar
    [161] P. Erne , M. Schier , and T. J. Resink , “The road to bioabsorbable stents: Reaching clinical reality?,” CardioVascular and Interventional Radiology, 29(1), pp. 11–16, 2006. CrossRef | Google Scholar
  • PubMed
  • [213] C. C. Cid , J. Riu , A. Maroto , and F. X. Rius , “Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G,” Analyst, 133(8), pp. 1005–1008, 2008. CrossRef | Google Scholar
  • PubMed
  • 66[240] K. Y. Lee , J. Shim , and H. G. Lee , “Mechanical properties of gellan and gelatin composite films,” Carbohydrate Polymers, 56(2), pp. 251–254, 2004. CrossRef | Google Scholar
    [285] L. Yan , C. M. Lopez , R. P. Shrestha , E. A. Irene , A. A. Suvorova , and M. Saunders , “Magnesium oxide as a candidate high-κ gate dielectric,” Applied Physics Letters, 88(14), p. 142901, 2006. CrossRef | Google Scholar
    [295] Y. Li , Y.-Z. Liu , T. Long , X.-B. Yu , T. T. Tang , K.-R. Dai , B. Tian , Y.-P. Guo , and Z.-A. Zhu , “Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility,” Journal of Materials Science: Materials in Medicine, 24(8), pp. 1951–1961, 2013. Google Scholar
    [309] D. Liang , J. Wang , and Y. Wang , “Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite,” Hydrometallurgy, 95(1–2), pp. 5–7, 2009. CrossRef | Google Scholar
    [312] J. Versieck and J. T. McCall , “Trace elements in human body fluids and tissues,” CRC Critical Reviews in Clinical Laboratory Sciences, 22(2), pp. 97–184, 1985. CrossRef | Google Scholar
  • PubMed
  • [341] S.-K. Kang , S.-W. Hwang , S. Yu , J.-H. Seo , E. A. Corbin , J. Shin , D. S. Wie , R. Bashir , Z. Ma , and J. A. Rogers , “Biodegradable thin metal foils and spin-on glass materials for transient electronics,” Advanced Functional Materials, 25(12), pp. 1789–1797, 2015. CrossRef | Google Scholar
    76[342] J. Guo , J. Liu , B. Yang , G. Zhan , L. Tang , H. Tian , X. Kang , H. Peng , X. Chen , and C. Yang , “biodegradable junctionless transistors with extremely simple structure,” IEEE Electron Device Letters, 36(9), pp. 908–910, 2015. CrossRef | Google Scholar
    [21] W.-C. Witzleb , J. Ziegler , F. Krummenauer , V. Neumeister , and K.-P. Guenther , “Exposure to chromium, cobalt and molybdenum from metal-on-metal total hip replacement and hip resurfacing arthroplasty,” Acta Orthopaedica, 77(5), pp. 697–705, 2006. CrossRef | Google Scholar
  • PubMed
  • [30] C. M. George , D. R. Howard , I. L. Allan , G. Claire-Anne , E. G. Robert , and V. B. Ravi , “Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration,” Journal of Neural Engineering, 6(5), p. 056003, 2009. Google Scholar
    [48] A. R. Salkind and K. C. Rao , “Antiobiotic prophylaxis to prevent surgical site infections,” Am Fam Physician, 83(5), pp. 585–590, 2011. Google Scholar
  • PubMed
  • [56] X. Chi , M. Streicher-Porte , M. Y. Wang , and M. A. Reuter , “Informal electronic waste recycling: a sector review with special focus on China,” Waste Management, 31(4), pp. 731–742, 2011. CrossRef | Google Scholar
  • PubMed
  • [69] C. Di Mario , H. Griffiths , O. Goktekin , N. Peeters , J. Verbist , M. Bosiers , K. Deloose , B. Heublein , R. Rohde , and V. Kasese , “Drug‐eluting bioabsorbable magnesium stent,” Journal of Interventional Cardiology, 17(6), pp. 391–395, 2004. CrossRef | Google Scholar
  • PubMed
  • [95] F. Wu and C.-W. Wu , “Zinc in DNA replication and transcription,” Annual Review of Nutrition, 7(1), pp. 251–272, 1987. CrossRef | Google Scholar
  • PubMed
  • [98] P. K. Bowen , R. J. Guillory Ii , E. R. Shearier , J.-M. Seitz , J. Drelich , M. Bocks , F. Zhao , and J. Goldman , “Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents,” Materials Science and Engineering: C, 56, pp.467–472, 2015. CrossRef | Google Scholar
  • PubMed
  • [101] X. Zhang , S. Lin , X.-Q. Lu , and Z.-l. Chen, “Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron,” Chemical Engineering Journal, 163(3), pp. 243–248, 2010. CrossRef | Google Scholar
    [105] B. Hennig , M. Toborek , and C. J. McClain , “Antiatherogenic properties of zinc: implications in endothelial cell metabolism,” Nutrition, 12(10), pp. 711–717, 1996. CrossRef | Google Scholar
  • PubMed
  • [168] J. Zhu , “Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering,” Biomaterials, 31(17), pp. 4639–4656, 2010. CrossRef | Google Scholar
  • PubMed
  • [170] W.-G. Koh , A. Revzin , and M. V. Pishko , “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir, 18(7), pp. 2459–2462, 2002. CrossRef | Google Scholar
  • PubMed
  • [177] A. K. Gaharwar , C. P. Rivera , C.-J. Wu , and G. Schmidt , “Transparent, elastomeric and tough hydrogels from poly(ethylene 60glycol) and silicate nanoparticles,” Acta Biomaterialia, 7(12), pp. 4139–4148, 2011. CrossRef | Google Scholar
  • PubMed
  • [204] L. Li , H. Li , Y. Qian , X. Li , G. K. Singh , L. Zhong , W. Liu , Y. Lv , K. Cai , and L. Yang , “Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release,” International Journal of Biological Macromolecules, 49(2), pp. 223–232, 2011. CrossRef | Google Scholar
  • PubMed
  • 64[217] S. Keten , Z. Xu , B. Ihle , and M. J. Buehler , “Nanoconfinement controls stiffness, strength and mechanical toughness of [beta]-sheet crystals in silk,” Nat Mater, 9(4), pp. 359–367, 2010. CrossRef | Google Scholar
    [225] A. S. Lammel , X. Hu , S.-H. Park , D. L. Kaplan , and T. R. Scheibel , “Controlling silk fibroin particle features for drug delivery,” Biomaterials, 31(16), pp. 4583–4591, 2010. CrossRef | Google Scholar
  • PubMed
  • [245] C. Uhlig , M. Rapp , B. Hartmann , H. Hierlemann , H. Planck , and K.-K. Dittel , “Suprathel® – An innovative, resorbable skin substitute for the treatment of burn victims,” Burns, 33(2), pp. 221–229, 2007. CrossRef | Google Scholar
    [253] P. M. Crapo , J. Gao , and Y. Wang , “Seamless tubular poly (glycerol sebacate) scaffolds: High‐yield fabrication and potential applications,” Journal of Biomedical Materials Research Part A, 86(2), pp. 354–363, 2008. CrossRef | Google Scholar
  • PubMed
  • [261] E. Bat , B. H. M. Kothman , G. A. Higuera , C. A. van Blitterswijk , J. Feijen , and D. W. Grijpma , “Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds,” Biomaterials, 31(33), pp. 8696–8705, 2010. CrossRef | Google Scholar
  • PubMed
  • [283] A. Fedoročková and P. Raschman , “Effects of pH and acid anions on the dissolution kinetics of MgO,” Chemical Engineering Journal, 143(1–3), pp. 265–272, 2008. CrossRef | Google Scholar
    [300] B. S. Bal and M. N. Rahaman , “Orthopedic applications of silicon nitride ceramics,” Acta Biomaterialia, 8(8), pp. 2889–2898, 2012. CrossRef | Google Scholar
  • PubMed
  • 74[324] M. M. Ling , P. Erk , M. Gomez , M. Koenemann , J. Locklin , and Z. Bao , “Air‐stable n‐channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups,” Advanced Materials, 19(8), pp. 1123–1127, 2007. CrossRef | Google Scholar
    [334] Y. J. Kim , S.-E. Chun , J. Whitacre , and C. J. Bettinger , “Self-deployable current sources fabricated from edible materials,” Journal of Materials Chemistry B, 1(31), pp. 3781–3788, 2013. CrossRef | Google Scholar
    [335] X. Jia , Y. Yang , C. Wang , C. Zhao , R. Vijayaraghavan , D. R. MacFarlane , M. Forsyth , and G. G. Wallace , “Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries,” ACS Applied Materials & Interfaces, 6(23), pp. 21110–21117, 2014. CrossRef | Google Scholar
  • PubMed
  • [8] C. Bergmann , M. Lindner , W. Zhang , K. Koczur , A. Kirsten , R. Telle , and H. Fischer , “3D printing of bone substitute implants using calcium phosphate and bioactive glasses,” Journal of the European Ceramic Society, 30(12), pp. 2563–2567, 2010. CrossRef | Google Scholar
    [6] S. A. Abbah , C. X. L. Lam , D. W. Hutmacher , J. C. H. Goh , and H.-K. Wong , “Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery,” Biomaterials, 30(28), pp. 5086–5093, 2009. CrossRef | Google Scholar
    [24] M. Geetha , A. Singh , R. Asokamani , and A. Gogia , “Ti based biomaterials, the ultimate choice for orthopaedic implants–a review,” Progress in Materials Science, 54(3), pp. 397–425, 2009. CrossRef | Google Scholar
    [31] N. J. Hallab , B. W. Cunningham , and J. J. Jacobs , “Spinal implant debris-induced osteolysis,” Spine, 28(20S), pp. S125–S138, 2003. CrossRef | Google Scholar
  • PubMed
  • [37] B. D. Lawrence , M. Cronin-Golomb , I. Georgakoudi , D. L. Kaplan , and F. G. Omenetto , “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules, 9(4), pp. 1214–1220, 2008. CrossRef | Google Scholar
  • PubMed
  • [53] L. S. Morf , J. Tremp , R. Gloor , Y. Huber , M. Stengele , and M. Zennegg , “Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant,” Environmental Science & Technology, 39(22), pp. 8691–8699, 2005. CrossRef | Google Scholar
    [55] R. Widmer , H. Oswald-Krapf , D. Sinha-Khetriwal , M. Schnellmann , and H. Böni , “Global perspectives on e-waste,” Environmental Impact Assessment Review, 25(5), pp. 436–458, 2005. CrossRef | Google Scholar
    [65] F. Witte , “The history of biodegradable magnesium implants: a review,” Acta Biomaterialia, 6(5), pp. 1680–1692, 2010. CrossRef | Google Scholar
  • PubMed
  • [74] G. Song and S. Song , “A possible biodegradable magnesium implant material,” Advanced Engineering Materials, 9(4), pp. 298–302, 2007. CrossRef | Google Scholar
    [9] G. D. Guerra , P. Cerrai , M. Tricoli , S. Maltinti , I. Anguillesi , and N. Barbani , “Fibers by bioresorbable poly(ester-ether-ester)s as potential suture threads: a preliminary investigation,” J Mater Sci Mater Med, 10(10/11), pp. 659–662, 1999. CrossRef | Google Scholar
    [75] C. Yuen and W. Ip , “Theoretical risk assessment of magnesium alloys as degradable biomedical implants,” Acta Biomaterialia, 6(5), pp. 1808–1812, 2010. CrossRef | Google Scholar
  • PubMed
  • [86] N. T. Kirkland , N. Birbilis , J. Walker , T. Woodfield , G. J. Dias , and M. P. Staiger , “In-vitro dissolution of magnesium–calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95B(1), pp. 91–100, 2010. CrossRef | Google Scholar
    [11] M. A. Woodruff and D. W. Hutmacher , “The return of a forgotten polymer – Polycaprolactone in the 21st century,” Progress in Polymer Science, 35(10), pp. 1217–1256, 2010. CrossRef | Google Scholar
    [108] D. Vojtěch , J. Kubasek , J. Šerák , and P. Novak , “Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation,” Acta Biomaterialia, 7(9), pp. 3515–3522, 2011. CrossRef | Google Scholar
  • PubMed
  • [14] V. G. Kadajji and G. V. Betageri , “Water soluble polymers for pharmaceutical applications,” Polymers, 3(4), pp. 1972–2009, 2011. CrossRef | Google Scholar
    [112] A. Bianco , K. Kostarelos , and M. Prato , “Making carbon nanotubes biocompatible and biodegradable,” Chemical Communications, 47(37), pp. 10182–10188, 2011. CrossRef | Google Scholar
  • PubMed
  • [17] A. H. Greene , J. D. Bumgardner , Y. Yang , J. Moseley , and W. O. Haggard , “Chitosan-coated stainless steel screws for fixation in contaminated fractures,” Clinical Orthopaedics and Related Research, 466(7), pp. 1699–1704, 2008. CrossRef | Google Scholar
  • PubMed
  • [157] M. van der Elst , C. P. A. T. Klein , J. M. de Blieck-Hogervorst , P. Patka , and H. J. T. M. Haarman , “Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: 58A long-term in vivo study in sheep femora,” Biomaterials, 20(2), pp. 121–128, 1999. CrossRef | Google Scholar
    [44] S.-W. Hwang , J.-K. Song , X. Huang , H. Cheng , S.-K. Kang , B. H. Kim , J.-H. Kim , S. Yu , Y. Huang , and J. A. Rogers , “High-performance biodegradable/transient electronics on biodegradable polymers,” Advanced Materials, 26(23), pp. 3905–3911, 2014. CrossRef | Google Scholar
  • PubMed
  • [184] A. Douglas , N. Muralidharan , R. Carter , K. Share , and C. L. Pint , “Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics,” Nanoscale, 8(14), pp. 7384–7390, 2016. CrossRef | Google Scholar
  • PubMed
  • [82] Y. Song , D. Shan , and E. Han , “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application,” Materials Letters, 62(17), pp. 3276–3279, 2008. CrossRef | Google Scholar
    [192] C. N. Grover , R. E. Cameron , and S. M. Best , “Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering,” Journal of the Mechanical Behavior of Biomedical Materials, 10, pp. 62–74, 2012. CrossRef | Google Scholar
  • PubMed
  • [94] M. S. Wold , “Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism,” Annual Review of Biochemistry, 66(1), pp. 61–92, 1997. CrossRef | Google Scholar
  • PubMed
  • 62[196] I.-S. Yeo , J.-E. Oh , L. Jeong , T. S. Lee , S. J. Lee , W. H. Park , and B.-M. Min , “Collagen-based biomimetic nanofibrous scaffolds: Preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures,” Biomacromolecules, 9(4), pp. 1106–1116, 2008. CrossRef | Google Scholar
  • PubMed
  • [100] N. Pistofidis , G. Vourlias , S. Konidaris , E. Pavlidou , A. Stergiou , and G. Stergioudis , “The effect of bismuth on the structure of zinc hot-dip galvanized coatings,” Materials Letters, 61(4–5), pp. 994–997, 2007. CrossRef | Google Scholar
    [229] Y. Wang , U.-J. Kim , D. J. Blasioli , H.-J. Kim , and D. L. Kaplan , “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, 26(34), pp. 7082–7094, 2005. CrossRef | Google Scholar
  • PubMed
  • [102] P. K. Bowen , J. Drelich , and J. Goldman , “Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents,” Advanced Materials, 25(18), pp. 2577–2582, 2013. CrossRef | Google Scholar
  • PubMed
  • [231] M. S. Mannoor , H. Tao , J. D. Clayton , A. Sengupta , D. L. Kaplan , R. R. Naik , N. Verma , F. G. Omenetto , and M. C. McAlpine , “Graphene-based wireless bacteria detection on tooth enamel,” Nature Communications, 3, p. 763, 2012. CrossRef | Google Scholar
  • PubMed
  • [154] B. D. Ulery , L. S. Nair , and C. T. Laurencin , “Biomedical applications of biodegradable polymers,” Journal of Polymer Science Part B: Polymer Physics, 49(12), pp. 832–864, 2011. CrossRef | Google Scholar
  • PubMed
  • [234] H. Tao , J. J. Amsden , A. C. Strikwerda , K. Fan , D. L. Kaplan , X. Zhang , R. D. Averitt , and F. G. Omenetto , “Metamaterial silk composites at terahertz frequencies,” Advanced Materials, 22(32), pp. 3527–3531, 2010. CrossRef | Google Scholar
  • PubMed
  • [160] E. Grube , S. Sonoda , F. Ikeno , Y. Honda , S. Kar , C. Chan , U. Gerckens , A. J. Lansky , and P. J. Fitzgerald , “Six-and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer,” Circulation, 109(18), pp. 2168–2171, 2004. CrossRef | Google Scholar
  • PubMed
  • [265] S. F. Williams , S. Rizk , and D. P. Martin , “Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration,” Biomedizinische Technik/Biomedical Engineering, 58(5), pp. 1–14, 2013. CrossRef | Google Scholar
  • PubMed
  • [166] S.-K. Kang , R. K. J. Murphy , S.-W. Hwang , S. M. Lee , D. V. Harburg , N. A. Krueger , J. Shin , P. Gamble , H. Cheng , S. Yu , Z. Liu , J. G. McCall , M. Stephen , H. Ying , J. Kim , G. Park , R. C. Webb , C. H. Lee , 59S. Chung , D. S. Wie , A. D. Gujar , B. Vemulapalli , A. H. Kim , K.-M. Lee , J. Cheng , Y. Huang , S. H. Lee , P. V. Braun , W. Z. Ray , and J. A. Rogers , “Bioresorbable silicon electronic sensors for the brain,” Nature, 530(7588), pp. 71–76, 2016. CrossRef | Google Scholar
    [280] S. Roy and S. Basu , “Improved zinc oxide film for gas sensor applications,” Bulletin of Materials Science, 25(6), pp. 513–515, 2002. CrossRef | Google Scholar
    [169] A. Revzin , R. J. Russell , V. K. Yadavalli , W.-G. Koh , C. Deister , D. D. Hile , M. B. Mellott , and M. V. Pishko , “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir, 17(18), pp. 5440–5447, 2001. CrossRef | Google Scholar
  • PubMed
  • [290] M. G. Shahram , W. T. Benjamin , E. U. Ronald , O. Carina , K. Thomas , B. Mike , M. Ralph , and C. J. Kirkpatrick , “Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth,” Biomedical Materials, 5(2), p. 025004, 2010. Google Scholar
    [172] S. N. S. Alconcel , A. S. Baas , and H. D. Maynard , “FDA-approved poly(ethylene glycol)-protein conjugate drugs,” Polymer Chemistry, 2(7), pp. 1442–1448, 2011. CrossRef | Google Scholar
    [346] B. J. de Gans , P. C. Duineveld , and U. S. Schubert , “Inkjet printing of polymers: state of the art and future developments,” Advanced Materials, 16(3), pp. 203–213, 2004. CrossRef | Google Scholar
    [174] A. Revzin , R. G. Tompkins , and M. Toner , “Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass,” Langmuir, 19(23), pp. 9855–9862, 2003. CrossRef | Google Scholar
    [178] T. Fujiwara , T. Mukose , T. Yamaoka , H. Yamane , S. Sakurai , and Y. Kimura , “Novel thermo‐responsive formation of a hydrogel by stereo‐complexation between PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA block copolymers,” Macromolecular Bioscience, 1(5), pp. 204–208, 2001. CrossRef | Google Scholar
    [195] W. Qiu , Y. Huang , W. Teng , C. M. Cohn , J. Cappello , and X. Wu , “Complete recombinant silk-elastinlike protein-based tissue scaffold,” Biomacromolecules, 11(12), pp. 3219–3227, 2010. CrossRef | Google Scholar
  • PubMed
  • [202] M. Li , M. J. Mondrinos , X. Chen , M. R. Gandhi , F. K. Ko , and P. I. Lelkes , “Co‐electrospun poly (lactide‐co‐glycolide), gelatin, and elastin blends for tissue engineering scaffolds,” Journal of Biomedical Materials Research Part A, 79(4), pp. 963–973, 2006. CrossRef | Google Scholar
    [207] W. S. Lour , W. C. Liu , J. H. Tsai , and L. W. Laih , “High‐performance camel‐gate field effect transistor using high‐medium‐low doped structure,” Applied Physics Letters, 67(18), pp. 2636–2638, 1995. CrossRef | Google Scholar
    67[250] Y. Kang , J. Yang , S. Khan , L. Anissian , and G. A. Ameer , “A new biodegradable polyester elastomer for cartilage tissue engineering,” Journal of Biomedical Materials Research Part A, 77A(2), pp. 331–339, 2006. CrossRef | Google Scholar
    [263] C. J. Bettinger , B. Orrick , A. Misra , R. Langer , and J. T. Borenstein , “Microfabrication of poly (glycerol–sebacate) for contact guidance applications,” Biomaterials, 27(12), pp. 2558–2565, 2006. CrossRef | Google Scholar
  • PubMed
  • [273] J. Yang , A. R. Webb , and G. A. Ameer , “Novel citric acid-based biodegradable elastomers for tissue engineering,” Advanced Materials, 16(6), pp. 511–516, 2004. CrossRef | Google Scholar
    [288] H. Jagannathan , V. Narayanan , and S. Brown , “Engineering high dielectric constant materials for band-edge CMOS applications,” ECS Transactions, 16(5), pp. 19–26, 2008. CrossRef | Google Scholar
    [306] M. She , H. Takeuchi , and T.-J. King , “Silicon-nitride as a tunnel dielectric for improved SONOS-type flash memory,” IEEE Electron Device Letters, 24(5), pp. 309–311, 2003. Google Scholar
    [311] S.-K. Kang , G. Park , K. Kim , S.-W. Hwang , H. Cheng , J. Shin , S. Chung , M. Kim , L. Yin , J. C. Lee , K.-M. Lee , and J. A. Rogers , “Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics,” ACS Applied Materials & Interfaces, 7(17), pp. 9297–9305, 2015. CrossRef | Google Scholar
  • PubMed
  • [34] D.-H. Kim , Y.-S. Kim , J. Amsden , B. Panilaitis , D. L. Kaplan , F. G. Omenetto , M. R. Zakin , and J. A. Rogers , “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Applied Physics Letters, 95(13), p. 133701, 2009. CrossRef | Google Scholar
    [29] M. G. Shettlemore and K. J. Bundy , “Toxicity measurement of orthopedic implant alloy degradation products using a bioluminescent bacterial assay,” J Biomed Mater Res, 45(4), pp. 395–403, 1999. CrossRef | Google Scholar
  • PubMed
  • [5] B. D. Gogas , V. Farooq , Y. Onuma , and P. W. Serruys , “The ABSORB bioresorbable vascular scaffold: an evolution or revolution in interventional cardiology?,” Hellenic J Cardiol, 53(4), pp. 301–309, 2012. Google Scholar
  • PubMed
  • [47] C. f. D. Control and Prevention, “National hospital discharge survey: 2010,” Atlanta (GA): CDC [online]. Available from URL: http://www.cdc.gov/nchs/nhds. htm. [Accessed 2009 Nov. 9.] 2014. Google Scholar
    [81] J. Hu , Q. Li , X. Zhong , and W. Kang , “Novel anti-corrosion silicon dioxide coating prepared by sol–gel method for AZ91D magnesium alloy,” Progress in Organic Coatings, 63(1), pp. 13–17, 2008. CrossRef | Google Scholar
    [122] J.-M. Lü , X. Wang , C. Marin-Muller , H. Wang , P. H. Lin , Q. Yao , and C. Chen , “Current advances in research and clinical applications of PLGA-based nanotechnology,” Expert Review of Molecular Diagnostics, 9(4), pp. 325–341, 2009. CrossRef | Google Scholar
    [131] A. J. R. Lasprilla , G. A. R. Martinez , B. H. Lunelli , A. L. Jardini , and R. M. Filho , “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnology Advances, 30(1), pp. 321–328, 2012. CrossRef | Google Scholar
  • PubMed
  • [137] V. Maquet and R. Jerome , “Design of macroporous biodegradable polymer scaffolds for cell transplantation,” in Materials Science Forum, 1997, pp. 15–42. Google Scholar
    [185] K.-H. Kim , L. Jeong , H.-N. Park , S.-Y. Shin , W.-H. Park , S.-C. Lee , T.-I. Kim , Y.-J. Park , Y.-J. Seol , Y.-M. Lee , Y. Ku , I.-C. Rhyu , S.-B. Han , and C.-P. Chung , “Biological efficacy of silk fibroin nanofiber 61membranes for guided bone regeneration,” Journal of Biotechnology, 120(3), pp. 327–339, 2005. CrossRef | Google Scholar
  • PubMed
  • [212] T. Minamiki , T. Minami , P. Koutnik , P. Anzenbacher Jr, and S. Tokito , “Antibody- and label-free phosphoprotein sensor device based on an organic transistor,” Analytical Chemistry, 88(2), pp. 1092–1095, 2016. CrossRef | Google Scholar
  • PubMed
  • [224] X. Wang , T. Yucel , Q. Lu , X. Hu , and D. L. Kaplan , “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials, 31(6), pp. 1025–1035, 2010. CrossRef | Google Scholar
  • PubMed
  • [242] E. Negrete-Abascal , V. R. Tenorio , J. J. Serrano , C. Garcia , and M. de la Garza , “Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A,” Canadian Journal of Veterinary Research, 58(2), p. 83, 1994. Google Scholar
  • PubMed
  • [243] Y. Tabata and Y. Ikada , “Protein release from gelatin matrices,” Advanced Drug Delivery Reviews, 31(3), pp. 287–301, 1998. CrossRef | Google Scholar
    [268] M. C. Serrano , E. J. Chung , and G. Ameer , “Advances and applications of biodegradable elastomers in regenerative medicine,” Advanced Functional Materials, 20(2), pp. 192–208, 2010. CrossRef | Google Scholar
    [344] M. Irimia-Vladu , N. S. Sariciftci , and S. Bauer , “Exotic materials for bio-organic electronics,” Journal of Materials Chemistry, 21(5), pp. 1350–1361, 2011. CrossRef | Google Scholar
    [15] S.-W. Hwang , H. Tao , D.-H. Kim , H. Cheng , J.-K. Song , E. Rill , M. A. Brenckle , B. Panilaitis , S. M. Won , Y.-S. Kim , Y. M. Song , K. J. Yu , A. Ameen , R. Li , Y. Su , M. Yang , D. L. Kaplan , M. R. Zakin , M. J. Slepian , Y. Huang , F. G. Omenetto , and J. A. Rogers , “A physically transient form of silicon electronics,” Science, 337(6102), pp. 1640–1644, 2012. CrossRef | Google Scholar
  • PubMed
  • [71] G. Makar and J. Kruger , “Corrosion of magnesium,” International Materials Reviews , 2013. Google Scholar
    [103] D. Vojtěch , J. Kubásek , J. Šerák , and P. Novák , “Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation,” Acta Biomaterialia, 7(9), pp. 3515–3522, 2011. CrossRef | Google Scholar
  • PubMed
  • [115] F. Rancan , D. Papakostas , S. Hadam , S. Hackbarth , T. Delair , C. Primard , B. Verrier , W. Sterry , U. Blume-Peytavi , and A. Vogt , “Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy,” Pharmaceutical Research, 26(8), pp. 2027–2036, 2009. CrossRef | Google Scholar
  • PubMed
  • [132] Z. G. Tang , R. A. Black , J. M. Curran , J. A. Hunt , N. P. Rhodes , and D. F. Williams , “Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films,” Biomaterials, 25(19), pp. 4741–4748, 2004. CrossRef | Google Scholar
  • PubMed
  • [150] C. Hinüber , K. Chwalek , F. J. Pan-Montojo , M. Nitschke , R. Vogel , H. Brünig , G. Heinrich , and C. Werner , “Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth,” Acta Biomaterialia, 10(5), pp. 2086–2095, 2014. CrossRef | Google Scholar
  • PubMed
  • [181] C. B. Liu , C. Y. Gong , M. J. Huang , J. W. Wang , Y. F. Pan , Y. D. Zhang , G. Z. Li , M. L. Gou , K. Wang , and M. J. Tu , “Thermoreversible gel–sol behavior of biodegradable PCL–PEG–PCL triblock copolymer in aqueous solutions,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84(1), pp. 165–175, 2008. CrossRef | Google Scholar
  • PubMed
  • [190] A. Duconseille , T. Astruc , N. Quintana , F. Meersman , and V. Sante-Lhoutellier , “Gelatin structure and composition linked to hard capsule dissolution: a review,” Food Hydrocolloids, 43, pp. 360–376, 2015. CrossRef | Google Scholar
    [198] D. Asai , D. Xu , W. Liu , F. Garcia Quiroz , D. J. Callahan , M. R. Zalutsky , S. L. Craig , and A. Chilkoti , “Protein polymer hydrogels by in situ, rapid and reversible self-gelation,” Biomaterials, 33(21), pp. 5451–5458, 2012. CrossRef | Google Scholar
  • PubMed
  • [216] D. N. Rockwood , R. C. Preda , T. Yucel , X. Wang , M. L. Lovett , and D. L. Kaplan , “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protocols, 6(10), pp. 1612–1631, 2011. CrossRef | Google Scholar
  • PubMed
  • [238] J. E. Botzolakis and L. L. Augsburger , “Disintegrating agents in hard gelatin capsules. Part II: Swelling efficiency,” Drug Development and Industrial Pharmacy, 14(9), pp. 1235–1248, 1988. CrossRef | Google Scholar
    [244] M. Irimia-Vladu , P. A. Troshin , M. Reisinger , G. Schwabegger , M. Ullah , R. Schwoediauer , A. Mumyatov , M. Bodea , J. W. Fergus , and V. F. Razumov , “Environmentally sustainable organic field effect transistors,” Organic Electronics, 11(12), pp. 1974–1990, 2010. CrossRef | Google Scholar
    [259] K. Gorna and S. Gogolewski , “Biodegradable porous polyurethane scaffolds for tissue repair and regeneration,” Journal of Biomedical Materials Research Part A, 79A(1), pp. 128–138, 2006. CrossRef | Google Scholar
    [291] P. V. Giannoudis , H. Dinopoulos , and E. Tsiridis , “Bone substitutes: An update,” Injury, 36(3, Supplement), pp. S20–S27, 2005. CrossRef | Google Scholar
  • PubMed
  • [305] F. M. Li , A. Nathan , Y. Wu , and B. S. Ong , “Organic thin-film transistor integration using silicon nitride gate dielectric,” Applied Physics Letters, 90(13), p. 133514, 2007. CrossRef | Google Scholar
    77[352] M. Hosel and F. C. Krebs , “Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes,” Journal of Materials Chemistry, 22(31), pp. 15683–15688, 2012. CrossRef | Google Scholar
    [353] W.-S. Han , J.-M. Hong , H.-S. Kim , and Y.-W. Song , “Multi-pulsed white light sintering of printed Cu nanoinks,” Nanotechnology, 22(39), p. 395705, 2011.78 CrossRef | Google Scholar
  • PubMed
  • [7] J. Gresser , K.-U. Lewandrowski , D. Trantolo , D. Wise , and Y.-Y. Hsu , “Soluble Calcium Salts in Bioresorbable Bone Grafts,” in Biomaterials Engineering and Devices: Human Applications, D. Wise , D. Trantolo , 44K.-U. Lewandrowski , J. Gresser , M. Cattaneo , and M. Yaszemski , Eds., Humana Press, 2000, pp. 171–188. CrossRef | Google Scholar
    [20] K. Teigen and A. Jokstad , “Dental implant suprastructures using cobalt–chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: a retrospective cohort study up to 18 years,” Clinical Oral Implants Research, 23(7), pp. 853–860, 2012. CrossRef | Google Scholar
  • PubMed
  • [22] X. Liu , P. K. Chu , and C. Ding , “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering: R: Reports, 47(3), pp. 49–121, 2004. CrossRef | Google Scholar
    [33] N. J. Hallab and J. J. Jacobs , “Biologic effects of implant debris,” Bulletin of the NYU Hospital for Joint Diseases, 67(2), p. 182, 2009. Google Scholar
  • PubMed
  • [50] L. Luther , Managing Electronic Waste: Issues with Exporting E-Waste: DIANE Publishing Company, 2010. Google Scholar
    [61] N. T. Kirkland , “Magnesium biomaterials: past, present and future,” Corrosion Engineering, Science and Technology, 47(5), pp. 322–328, 2012. CrossRef | Google Scholar
    [73] K. Wei Guo , “A review of magnesium/magnesium alloys corrosion,” Recent Patents on Corrosion Science, 1(1), pp. 72–90, 2011. CrossRef | Google Scholar
    [114] Q. Wang , C. Wang , M. Zhang , M. Jian , and Y. Zhang , “Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers,” Nano Letters, 16(10), pp. 6695–6700, 2016. CrossRef | Google Scholar
  • PubMed
  • [120] R. M. Day , A. R. Boccaccini , S. Shurey , J. A. Roether , A. Forbes , L. L. Hench , and S. M. Gabe , “Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds,” Biomaterials, 25(27), pp. 5857–5866, 2004. CrossRef | Google Scholar
  • PubMed
  • [133] C. Hwang , Y. Park , J. Park , K. Lee , K. Sun , A. Khademhosseini , and S. H. Lee , “Controlled cellular orientation on PLGA microfibers with defined diameters,” Biomedical Microdevices, 11(4), pp. 739–746, 2009. CrossRef | Google Scholar
  • PubMed
  • 56[138] L. D. Harris , B.-S. Kim , and D. J. Mooney , “Open pore biodegradable matrices formed with gas foaming,” Journal of Biomedical Materials Research, 42(3), pp. 396–402, 1998. CrossRef | Google Scholar
  • PubMed
  • [147] E. I. Shishatskaya , T. G. Volova , S. A. Gordeev , and A. P. Puzyr , “Degradation of P(3HB) and P(3HB-co-3HV) in biological media,” Journal of Biomaterials Science, Polymer Edition, 16(5), pp. 643–657, 2005. CrossRef | Google Scholar
    [233] S. T. Parker , P. Domachuk , J. Amsden , J. Bressner , J. A. Lewis , D. L. Kaplan , and F. G. Omenetto , “Biocompatible silk printed optical waveguides,” Advanced Materials, 21(23), pp. 2411–2415, 2009. CrossRef | Google Scholar
    [264] D. P. Martin and S. F. Williams , “Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial,” Biochemical Engineering Journal, 16(2), pp. 97–105, 2003. CrossRef | Google Scholar
    69[271] S.-L. Liang , X.-Y. Yang , X.-Y. Fang , W. D. Cook , G. A. Thouas , and Q.-Z. Chen , “In vitro enzymatic degradation of poly (glycerol sebacate)-based materials,” Biomaterials, 32(33), pp. 8486–8496, 2011. CrossRef | Google Scholar
  • PubMed
  • [277] T. Xia , M. Kovochich , M. Liong , L. Mädler , B. Gilbert , H. Shi , J. I. Yeh , J. I. Zink , and A. E. Nel , “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties,” ACS Nano, 2(10), pp. 2121–2134, 2008. CrossRef | Google Scholar
  • PubMed
  • [289] R. Villota , J. G. Hawkes , and H. Cochrane , “Food applications and the toxicological and nutritional implications of amorphous silicon dioxide,” C R C Critical Reviews in Food Science and Nutrition, 23(4), pp. 289–321, 1986. CrossRef | Google Scholar
  • PubMed
  • [302] C. C. Guedes e Silva , B. König Jr, M. J. Carbonari , M. Yoshimoto , S. Allegrini Jr, and J. C. Bressiani , “Bone growth around silicon nitride implants – An evaluation by scanning electron microscopy,” Materials Characterization, 59(9), pp. 1339–1341, 2008. CrossRef | Google Scholar
    [319] L. Yin , A. B. Farimani , K. Min , N. Vishal , J. Lam , Y. K. Lee , N. R. Aluru , and J. A. Rogers , “Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,” Advanced Materials, 27(11), pp. 1857–1864, 2015. CrossRef | Google Scholar
  • PubMed
  • [330] M. G. Ferruzzi and J. Blakeslee , “Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives,” Nutrition Research, 27(1), pp. 1–12, 2007. CrossRef | Google Scholar
    [332] B. K. Mahajan , X. Yu , W. Shou , H. Pan , and X. Huang , “Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics,” Small, 13(17), p. 1700065, 2017. CrossRef | Google Scholar
  • PubMed
  • [343] R. Capelli , J. J. Amsden , G. Generali , S. Toffanin , V. Benfenati , M. Muccini , D. L. Kaplan , F. G. Omenetto , and R. Zamboni , “Integration of silk protein in organic and light-emitting transistors,” Organic Electronics, 12(7), pp. 1146–1151, 2011. CrossRef | Google Scholar
  • PubMed
  • [345] H. Sirringhaus , T. Kawase , R. H. Friend , T. Shimoda , M. Inbasekaran , W. Wu , and E. P. Woo , “High-resolution inkjet printing of all-polymer transistor circuits,” Science, 290(5499), pp. 2123–2126, 2000. CrossRef | Google Scholar
  • PubMed
  • [12] R. Auras , B. Harte , and S. Selke , “An overview of polylactides as packaging materials,” Macromolecular Bioscience, 4(9), pp. 835–864, 2004. CrossRef | Google Scholar
  • PubMed
  • [27] D. Adams , D. F. Williams , and J. Hill , “Carbon fiber-reinforced carbon as a potential implant material,” Journal of Biomedical Materials Research, 12(1), pp. 35–42, 1978. CrossRef | Google Scholar
  • PubMed
  • [36] M. S. Mannoor , H. Tao , J. D. Clayton , A. Sengupta , D. L. Kaplan , R. R. Naik , N. Verma , F. G. Omenetto , and M. C. McAlpine , “Graphene-based wireless bacteria detection on tooth enamel,” Nat Commun, 3, p. 763, 2012. CrossRef | Google Scholar
  • PubMed
  • [41] C. Dagdeviren , S.-W. Hwang , Y. Su , S. Kim , H. Cheng , O. Gur , R. Haney , F. G. Omenetto , Y. Huang , and J. A. Rogers , “Transient, biocompatible electronics and energy harvesters based on ZnO,” Small, 9(20), pp. 3398–3404, 2013. CrossRef | Google Scholar
    [67] R. Erbel , C. Di Mario , J. Bartunek , J. Bonnier , B. de Bruyne , F. R. Eberli , P. Erne , M. Haude , B. Heublein , M. Horrigan , C. Ilsley , D. Böse , J. Koolen , T. F. Lüscher , N. Weissman , and R. Waksman , “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial,” The Lancet, 369(9576), pp. 1869–1875, 2007. CrossRef | Google Scholar
  • PubMed
  • [78] Y. Zhang , G. Zhang , and M. Wei , “Controlling the biodegradation rate of magnesium using biomimetic apatite coating,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89(2), pp. 408–414, 2009. CrossRef | Google Scholar
  • PubMed
  • [93] R. S. MacDonald , “The role of zinc in growth and cell proliferation,” The Journal of Nutrition, 130(5), pp. 1500S–1508S, 2000. CrossRef | Google Scholar
  • PubMed
  • [107] L. Zhao , Z. Zhang , Y. Song , S. Liu , Y. Qi , X. Wang , Q. Wang , and C. Cui , “Mechanical properties and in vitro biodegradation of newly 53developed porous Zn scaffolds for biomedical applications,” Materials & Design, 108, pp. 136–144, 2016. CrossRef | Google Scholar
    [116] K. Oksman , M. Skrifvars , and J. F. Selin , “Natural fibres as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, 63(9), pp. 1317–1324, 2003. CrossRef | Google Scholar
    [125] K. H. Lee , H. Y. Kim , M. S. Khil , Y. M. Ra , and D. R. Lee , “Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning,” Polymer, 44(4), pp. 1287–1294, 2003. CrossRef | Google Scholar
    [153] J. An , K. Wang , S. Chen , M. Kong , Y. Teng , L. Wang , C. Song , D. Kong , and S. Wang , “Biodegradability, cellular compatibility and cell infiltration of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in comparison with poly (ε-caprolactone) and poly (lactide-co-glycolide),” Journal of Bioactive and Compatible Polymers: Biomedical Applications, 30(2), pp. 209–221, 2015. CrossRef | Google Scholar
    [194] M. Li , M. J. Mondrinos , M. R. Gandhi , F. K. Ko , A. S. Weiss , and P. I. Lelkes , “Electrospun protein fibers as matrices for tissue engineering,” Biomaterials, 26(30), pp. 5999–6008, 2005. CrossRef | Google Scholar
  • PubMed
  • [201] H.-Y. Cheung , K.-T. Lau , X.-M. Tao , and D. Hui , “A potential material for tissue engineering: Silkworm silk/PLA biocomposite,” Composites Part B: Engineering, 39(6), pp. 1026–1033, 2008. CrossRef | Google Scholar
    [205] D.-B. Jeon , J.-Y. Bak , and S.-M. Yoon , “Oxide thin-film transistors fabricated using biodegradable gate dielectric layer of chicken 63albumen,” Japanese Journal of Applied Physics, 52(12 R), p. 128002, 2013. CrossRef | Google Scholar
    [208] L.-K. Mao , J.-C. Hwang , T.-H. Chang , C.-Y. Hsieh , L.-S. Tsai , Y.-L. Chueh , S. S. Hsu , P.-C. Lyu , and T.-J. Liu , “Pentacene organic thin-film transistors with solution-based gelatin dielectric,” Organic Electronics, 14(4), pp. 1170–1176, 2013. CrossRef | Google Scholar
    [239] X. Lou and T. V. Chirila , “Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use,” Journal of Biomaterials Applications, 14(2), pp. 184–191, 1999. CrossRef | Google Scholar
  • PubMed
  • [247] R. A. Allen , W. Wu , M. Yao , D. Dutta , X. Duan , T. N. Bachman , H. C. Champion , D. B. Stolz , A. M. Robertson , and K. Kim , “Nerve regeneration and elastin formation within poly (glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model,” Biomaterials, 35(1), pp. 165–173, 2014. CrossRef | Google Scholar
    [257] M. Borkenhagen , R. Stoll , P. Neuenschwander , U. Suter , and P. Aebischer , “In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel,” Biomaterials, 19(23), pp. 2155–2165, 1998. CrossRef | Google Scholar
  • PubMed
  • [266] J. Yang , A. R. Webb , S. J. Pickerill , G. Hageman , and G. A. Ameer , “Synthesis and evaluation of poly (diol citrate) biodegradable elastomers,” Biomaterials, 27(9), pp. 1889–1898, 2006. CrossRef | Google Scholar
  • PubMed
  • [275] S.-W. Hwang , C. H. Lee , H. Cheng , J.-W. Jeong , S.-K. Kang , J.-H. Kim , J. Shin , J. Yang , Z. Liu , G. A. Ameer , Y. Huang , and J. A. Rogers , “Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors,” Nano Letters, 15(5), pp. 2801–2808, 2015. CrossRef | Google Scholar
  • PubMed
  • [284] J. Fontanella , C. Andeen , and D. Schuele , “Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO,” Journal of Applied Physics, 45(7), pp. 2852–2854, 1974. CrossRef | Google Scholar
    [307] H. Aozasa , I. Fujiwara , and Y. Komatsu , “Analysis of carrier traps in Si3N4 in oxide/nitride/oxide for metal/oxide/nitride/oxide/silicon nonvolatile memory,” Japanese Journal of Applied Physics, 38(3R), p. 1441, 1999. CrossRef | Google Scholar
    [325] B. A. Gregg and R. A. Cormier , “Doping molecular semiconductors: n-Type doping of a liquid crystal perylene diimide,” Journal of the American Chemical Society, 123(32), pp. 7959–7960, 2001. CrossRef | Google Scholar
  • PubMed
  • [340] S.-W. Hwang , D.-H. Kim , H. Tao , T.-i. Kim , S. Kim , K. J. Yu , B. Panilaitis , J.-W. Jeong , J.-K. Song , F. G. Omenetto , and J. A. Rogers , “Materials and fabrication processes for transient and bioresorbable high-performance electronics,” Advanced Functional Materials, 23(33), pp. 4087–4093, 2013. CrossRef | Google Scholar
    [348] H. K. Seung , P. Heng , P. G. Costas , K. L. Christine , M. J. F. Jean , and P. Dimos , “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology, 18(34), p. 345202, 2007. Google Scholar
    [46] C. H. Lee , H. Kim , D. V. Harburg , G. Park , Y. Ma , T. Pan , J. S. Kim , N. Y. Lee , B. H. Kim , K.-I. Jang , S.-K. Kang , Y. Huang , J. Kim , K.-M. Lee , C. Leal , and J. A. Rogers , “Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants,” NPG Asia Mater, 7, p. e227, 2015. CrossRef | Google Scholar
  • PubMed
  • [51] E. Spalvins , B. Dubey , and T. Townsend , “Impact of electronic waste disposal on lead concentrations in landfill leachate,” Environmental Science & Technology, 42(19), pp. 7452–7458, 2008. CrossRef | Google Scholar
  • PubMed
  • [92] H. Li , Y. Zheng , and L. Qin , “Progress of biodegradable metals,” Progress in Natural Science: Materials International, 24(5), pp. 414–422, 2014. CrossRef | Google Scholar
    [97] J. Brandão-Neto , V. Stefan , B. B. Mendonça , W. Bloise , and A. V. B. Castro , “The essential role of zinc in growth,” Nutrition Research, 15(3), pp. 335–358, 1995. CrossRef | Google Scholar
    [130] L. Tan , X. Yu , P. Wan , and K. Yang , “Biodegradable materials for bone repairs: A review,” Journal of Materials Science & Technology, 29(6), pp. 503–513, 2013. CrossRef | Google Scholar
    [136] A. M. Harris and E. C. Lee , “Improving mechanical performance of injection molded PLA by controlling crystallinity,” Journal of Applied Polymer Science, 107(4), pp. 2246–2255, 2008. CrossRef | Google Scholar
    [148] S. P. Valappil , S. K. Misra , A. R. Boccaccini , and I. Roy , “Biomedical applications of polyhydroxyalkanoates, an overview of animal 57testing and in vivo responses,” Expert Review of Medical Devices, 3(6), pp. 853–868, 2006. CrossRef | Google Scholar
  • PubMed
  • [155] M. Kellomäki , H. Niiranen , K. Puumanen , N. Ashammakhi , T. Waris , and P. Törmälä , “Bioabsorbable scaffolds for guided bone regeneration and generation,” Biomaterials, 21(24), pp. 2495–2505, 2000. CrossRef | Google Scholar
  • PubMed
  • [171] H. Otsuka , Y. Nagasaki , and K. Kataoka , “Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications,” Current Opinion in Colloid & Interface Science, 6(1), pp. 3–10, 2001. CrossRef | Google Scholar
    [182] M. Qiao , D. Chen , X. Ma , and Y. Liu , “Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels,” International Journal of Pharmaceutics, 294(1–2), pp. 103–112, 2005. CrossRef | Google Scholar
  • PubMed
  • [188] S. A. Sell , M. J. McClure , K. Garg , P. S. Wolfe , and G. L. Bowlin , “Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering,” Advanced Drug Delivery Reviews, 61(12), pp. 1007–1019, 2009. CrossRef | Google Scholar
  • PubMed
  • [197] M. Zilberman , N. D. Schwade , and R. C. Eberhart , “Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 69B(1), pp. 1–10, 2004. CrossRef | Google Scholar
    [199] B. Kundu , R. Rajkhowa , S. C. Kundu , and X. Wang , “Silk fibroin biomaterials for tissue regenerations,” Advanced Drug Delivery Reviews, 65(4), pp. 457–470, 2013. CrossRef | Google Scholar
  • PubMed
  • [200] Y. Gui‐Bo , Z. You‐Zhu , W. Shu‐Dong , S. De‐Bing , D. Zhi‐Hui , and F. Wei‐Guo , “Study of the electrospun PLA/silk fibroin‐gelatin composite nanofibrous scaffold for tissue engineering,” Journal of Biomedical Materials Research Part A, 93(1), pp. 158–163, 2010. Google Scholar
  • PubMed
  • [223] E. M. Pritchard and D. L. Kaplan , “Silk fibroin biomaterials for controlled release drug delivery,” Expert Opinion on Drug Delivery, 8(6), pp. 797–811, 2011. CrossRef | Google Scholar
  • PubMed
  • [232] F. G. Omenetto and D. L. Kaplan , “A new route for silk,” Nature Photonics, 2(11), pp. 641–643, 2008. CrossRef | Google Scholar
    [258] B. Amsden , “Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering,” Soft Matter, 3(11), pp. 1335–1348, 2007. CrossRef | Google Scholar
    [292] G. Li , S. Feng , and D. Zhou , “Magnetic bioactive glass ceramic in the system CaO–P2O5–SiO2–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor,” Journal of Materials Science: Materials in Medicine, 22(10), pp. 2197–2206, 2011. Google Scholar
  • PubMed
  • [294] F. J. Martin , K. Melnik , T. West , J. Shapiro , M. Cohen , A. A. Boiarski , and M. Ferrari , “Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice,” Drugs in R & D, 6(2), pp. 71–81, 2005. CrossRef | Google Scholar
  • PubMed
  • [296] E. J. Anglin , L. Cheng , W. R. Freeman , and M. J. Sailor , “Porous silicon in drug delivery devices and materials,” Advanced Drug Delivery Reviews, 60(11), pp. 1266–1277, 2008. CrossRef | Google Scholar
  • PubMed
  • [299] S. K. Kang , S. W. Hwang , H. Cheng , S. Yu , B. H. Kim , J. H. Kim , Y. Huang , and J. A. Rogers , “Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics,” Advanced Functional Materials, 24(28), pp. 4427–4434, 2014. CrossRef | Google Scholar
    72[303] C. C. Guedes e Silva , O. Z. Higa , and J. C. Bressiani , “Cytotoxic evaluation of silicon nitride-based ceramics,” Materials Science and Engineering: C, 24(5), pp.643–646, 2004. CrossRef | Google Scholar
    73[314] G. A. Taylor , A. J. Newens , J. A. Edwardson , D. W. Kay , and D. P. Forster , “Alzheimer’s disease and the relationship between silicon and aluminium in water supplies in northern England,” J Epidemiol Community Health, 49(3), pp. 323–324, 1995. CrossRef | Google Scholar
  • PubMed
  • [333] W. Shou , B. K. Mahajan , B. Ludwig , X. Yu , J. Staggs , X. Huang , and H. Pan , “Low‐cost manufacturing of bioresorbable conductors by 75evaporation–condensation‐mediated laser printing and sintering of Zn nanoparticles,” Advanced Materials , 2017. Google Scholar
  • PubMed
  • 49[62] A. Hartwig , “Role of magnesium in genomic stability,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), pp. 113–121, 2001. CrossRef | Google Scholar
  • PubMed
  • [70] H. Tao , S.-W. Hwang , B. Marelli , B. An , J. E. Moreau , M. Yang , M. A. Brenckle , S. Kim , D. L. Kaplan , and J. A. Rogers , “Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement,” Proceedings of the National Academy of Sciences, 111(49), pp. 17385–17389, 2014. CrossRef | Google Scholar
  • PubMed
  • [77] J. Gray‐Munro and M. Strong , “The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31,” Journal of Biomedical Materials Research Part A, 90(2), pp. 339–350, 2009. CrossRef | Google Scholar
  • PubMed
  • [79] H. M. Wong , K. W. Yeung , K. O. Lam , V. Tam , P. K. Chu , K. D. Luk , and K. M. Cheung , “A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants,” Biomaterials, 31(8), pp. 2084–2096, 2010. CrossRef | Google Scholar
  • PubMed
  • [117] Y. Cheng , S. Deng , P. Chen , and R. Ruan , “Polylactic acid (PLA) synthesis and modifications: a review,” Frontiers of Chemistry in China, 4(3), pp. 259–264, 2009. CrossRef | Google Scholar
    [139] T. K. Kim , J. J. Yoon , D. S. Lee , and T. G. Park , “Gas foamed open porous biodegradable polymeric microspheres,” Biomaterials, 27(2), pp. 152–159, 2006. CrossRef | Google Scholar
  • PubMed
  • [142] L. Peponi , I. Navarro-Baena , A. Sonseca , E. Gimenez , A. Marcos-Fernandez , and J. M. Kenny , “Synthesis and characterization of PCL–PLLA polyurethane with shape memory behavior,” European Polymer Journal, 49(4), pp. 893–903, 2013. CrossRef | Google Scholar
    [158] S. Vainionpää , J. Kilpikari , J. Laiho , P. Helevirta , P. Rokkanen , and P. Törmälä , “Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation,” Biomaterials, 8(1), pp. 46–48, 1987. CrossRef | Google Scholar
  • PubMed
  • [189] A. Kuijpers , P. Van Wachem , M. Van Luyn , J. Plantinga , G. Engbers , J. Krijgsveld , S. Zaat , J. Dankert , and J. Feijen , “In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron,” Journal of Biomedical Materials Research, 51(1), pp. 136–145, 2000. CrossRef | Google Scholar
  • PubMed
  • [193] J. W. Chang , C. G. Wang , C. Y. Huang , T. Tzung‐Da , T. F. Guo , and T. C. Wen , “Chicken albumen dielectrics in organic field-effect transistors,” Advanced Materials, 23(35), pp. 4077–81, 2011. CrossRef | Google Scholar
  • PubMed
  • [211] P. Hu , A. Fasoli , J. Park , Y. Choi , P. Estrela , S. L. Maeng , W. I. Milne , and A. C. Ferrari , “Self-assembled nanotube field-effect transistors for label-free protein biosensors,” Journal of Applied Physics, 104(7), p. 074310, 2008. CrossRef | Google Scholar
    [226] S. Enomoto , M. Sumi , K. Kajimoto , Y. Nakazawa , R. Takahashi , C. Takabayashi , T. Asakura , and M. Sata , “Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material,” Journal of Vascular Surgery, 51(1), pp. 155–164, 2010. CrossRef | Google Scholar
  • PubMed
  • [235] G. A. Digenis , T. B. Gold , and V. P. Shah , “Cross-linking of gelatin capsules and its relevance to their in vitro–in vivo performance,” Journal of Pharmaceutical Sciences, 83(7), pp. 915–921, 1994. CrossRef | Google Scholar
  • PubMed
  • [237] K. B. Djagny , Z. Wang , and S. Xu , “Gelatin: a valuable protein for food and pharmaceutical industries: review,” Critical Reviews in Food Science and Nutrition, 41(6), pp. 481–492, 2001. CrossRef | Google Scholar
  • PubMed
  • [248] J. Yang , D. Motlagh , J. B. Allen , A. R. Webb , M. R. Kibbe , O. Aalami , M. Kapadia , T. J. Carroll , and G. A. Ameer , “Modulating expanded polytetrafluoroethylene vascular graft host response via citric acid‐based biodegradable elastomers,” Advanced Materials, 18(12), pp. 1493–1498, 2006. CrossRef | Google Scholar
    [251] R. Rai , M. Tallawi , N. Barbani , C. Frati , D. Madeddu , S. Cavalli , G. Graiani , F. Quaini , J. A. Roether , and D. W. Schubert , “Biomimetic poly (glycerol sebacate)(PGS) membranes for cardiac patch application,” Materials Science and Engineering: C, 33(7), pp. 3677–3687, 2013. CrossRef | Google Scholar
  • PubMed
  • [276] R. B. Reed , D. A. Ladner , C. P. Higgins , P. Westerhoff , and J. F. Ranville , “Solubility of nano-zinc oxide in environmentally and biologically important matrices,” Environmental Toxicology and Chemistry, 31(1), pp. 93–99, 2012. CrossRef | Google Scholar
  • PubMed
  • [278] K. R. Raghupathi , R. T. Koodali , and A. C. Manna , “Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles,” Langmuir, 27(7), pp. 4020–4028, 2011. CrossRef | Google Scholar
  • PubMed
  • 70[282] J. A. Mejias , A. J. Berry , K. Refson , and D. G. Fraser , “The kinetics and mechanism of MgO dissolution,” Chemical Physics Letters, 314(5–6), pp. 558–563, 1999. CrossRef | Google Scholar
    [286] A. Posadas , F. J. Walker , C. H. Ahn , T. L. Goodrich , Z. Cai , and K. S. Ziemer , “Epitaxial MgO as an alternative gate dielectric for SiC transistor applications,” Applied Physics Letters, 92(23), p. 233511, 2008. CrossRef | Google Scholar
    71[293] T. W. Wang , H. C. Wu , W. R. Wang , F. H. Lin , P. J. Lou , M. J. Shieh , and T. H. Young , “The development of magnetic degradable DP‐bioglass for hyperthermia cancer therapy,” Journal of Biomedical Materials Research Part A, 83(3), pp. 828–837, 2007. CrossRef | Google Scholar
  • PubMed
  • [320] B. Rosenberg , “The effect of oxygen adsorption on photo‐and semiconduction of β‐carotene,” The Journal of Chemical Physics, 34(3), pp. 812–819, 1961. CrossRef | Google Scholar
    [336] M. Tsang , A. Armutlulu , A. W. Martinez , S. A. B. Allen , and M. G. Allen , “Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices,” Microsystems & Nanoengineering, 1, p. 15024, 2015. CrossRef | Google Scholar
    [350] A. I. Kuznetsov , A. B. Evlyukhin , M. R. Gonçalves , C. Reinhardt , A. Koroleva , M. L. Arnedillo , R. Kiyan , O. Marti , and B. N. Chichkov , “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano, 5(6), pp. 4843–4849, 2011. CrossRef | Google Scholar
  • PubMed
  • Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Abstract views

    Total abstract views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.