Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T09:38:56.897Z Has data issue: false hasContentIssue false

Animal Models of Human Disease

Published online by Cambridge University Press:  17 April 2024

Sara Green
Affiliation:
University of Copenhagen

Summary

The crucial role of animal models in biomedical research calls for philosophical investigation of how and whether knowledge about human diseases can be gained by studying other species. This Element delves into the selection and construction of animal models to serve as preclinical substitutes for human patients. It explores the multifaceted roles animal models fulfil in translational research and how the boundaries between humans and animals are negotiated in this process. The book also covers persistent translational challenges that have sparked debates across scientific, philosophical, and public arenas regarding the limitations and future of animal models. Among the are persistent tensions between standardization and variation in medicine, as well as between strategies aiming to reduce and recapitulate biological complexity. Finally, the book examines the prospects of replacing animal models with animal-free methods. The Element demonstrates why animal modeling should be of interest to philosophers, social scientists, and scientists alike.
Get access
Type
Element
Information
Online ISBN: 9781009025836
Publisher: Cambridge University Press
Print publication: 16 May 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, M., & Easton, G. (2005). Human and veterinary medicine. British Medical Journal, 330(7496), 858859.CrossRefGoogle ScholarPubMed
Allen, T. M., Brehm, M. A., Bridges, S. et al.(2019). Humanized immune system mouse models: Progress, challenges and opportunities. Nature Immunology, 20(7), 770774.Google Scholar
Ankeny, R. A. (2001). Model organisms as models: Understanding the “lingua franca” of the human genome project. Philosophy of Science, 68(S3), S251S261.CrossRefGoogle Scholar
Ankeny, R. A. (2007). Wormy logic: Model organisms as case-based reasoning. In Creager, A. N. H., Lunbeck, E., & Wise, M. N. (Eds.), Science without laws: Model systems, cases, exemplary narratives (pp. 4658). Durham, NC: Duke University Press.Google Scholar
Ankeny, R. A., & Leonelli, S. (2011). What’s so special about model organisms? Studies in History and Philosophy of Science Part A, 42(2), 313323.CrossRefGoogle Scholar
Ankeny, R. A., & Leonelli, S. (2016). Repertoires: A post-Kuhnian perspective on scientific change and collaborative research. Studies in History and Philosophy of Science, 60, 1828.CrossRefGoogle ScholarPubMed
Ankeny, R. A., & Leonelli, S. (2020). Model organisms. Elements in the Philosophy of Biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ankeny, R. A., Leonelli, S., Nelson, N. C., & Ramsden, E. (2014). Making organisms model human behavior: Situated models in North-American alcohol research, since 1950. Science in Context, 27(3), 485509.CrossRefGoogle ScholarPubMed
Ankley, G. T., Bennett, R. S., Erickson, R. J. et al. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry: An International Journal, 29(3), 730741.Google Scholar
Arluke, A., & Sanders, C. (1996). Regarding Animals. Philadelphia, PA: Temple University Press.Google Scholar
Baetu, T. M. (2014). Models and the mosaic of scientific knowledge: The case of immunology. Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 4956.CrossRefGoogle ScholarPubMed
Baetu, T. M. (2016). The “big picture”: The problem of extrapolation in basic research. The British Journal for the Philosophy of Science, 67, 941964.CrossRefGoogle Scholar
Bahr, J. M. (2008). The chicken as a model organism. In Conn, M. P. (Ed.), Sourcebook of models for biomedical research (pp. 161167). Totawa, NJ: Humana Press.CrossRefGoogle Scholar
Bangi, E., Ang, C., Smibert, P. et al. (2019). A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. Science Advances, 5(5), eaav6528.CrossRefGoogle ScholarPubMed
Barwich, A.-S. (2023). If Proust had whiskers: Recalling locations with smells. Learning and Behavior, 51, 121122.CrossRefGoogle ScholarPubMed
Batterman, R. W., & Rice, C. C. (2014). Minimal model explanations. Philosophy of Science, 81(3), 349376.CrossRefGoogle Scholar
Beacon, T. H., & Davie, J. R. (2021). The chicken model organism for epigenomic research. Genome, 64(4), 476489.CrossRefGoogle ScholarPubMed
Beery, A. K., & Kaufer, D. (2015). Stress, social behaviour, and resilience: Insights from rodents. Neurobiology of Stress, 1, 116127.CrossRefGoogle ScholarPubMed
Ben-David, U., Ha, G., Tseng, Y. Y. et al. (2017). Patient-derived xenografts undergo mouse-specific tumor evolution. Nature genetics, 49(11), 15671575.CrossRefGoogle ScholarPubMed
Bix, G. J., Fraser, J. F., Mack, W. J. et al. (2018). Uncovering the Rosetta stone: Report from the first annual conference on key elements in translating stroke therapeutics from pre-clinical to clinical. Translational Stroke Research, 9, 258266.CrossRefGoogle ScholarPubMed
Bjernemose, M. S. Zebrafisk kan hjælpe med at lappe ødelagte menneskerter. Videnskab.dk, January 31, 2023, https://videnskab.dk/naturvidenskab/zebrafisk-kan-hjaelpe-med-at-lappe-oedelagte-menneskehjerter/.Google Scholar
Blum, M., & Ott, T. (2019). Xenopus: An undervalued model organism to study and model human genetic disease. Cells Tissues Organs, 205(5–6), 303313.CrossRefGoogle Scholar
Bolker, J. A. (2009). Exemplary and surrogate models: Two modes of representation in biology. Perspectives in Biology and Medicine, 52(4), 485499.CrossRefGoogle ScholarPubMed
Bolker, J. A. (2012). There’s more to life than rats and flies. Nature Comment, 491, 3133.CrossRefGoogle ScholarPubMed
Bolker, J. A. (2017). Animal models in translational research: Rosetta stone or stumbling block? Bioessays, 39(12), 1700089.CrossRefGoogle ScholarPubMed
Bolker, J. A., & Raff, R. A. (1997). Beyond worms, flies and mice: It’s time to widen the scope of developmental biology. Journal of NIH Research, 9, 3539.Google Scholar
Borges, J. L. (1954/1971). A universal history of infamy (di Giovanni, N. T., Trans., p. 131). Middlesex, UK: Penguin Books.Google Scholar
Bose, S., Barroso, M., Chheda, M. G. et al. (2022). A path to translation: How 3D patient tumor avatars enable next generation precision oncology. Cancer Cell, 40(12), 14481453.CrossRefGoogle ScholarPubMed
Bose, S., Clevers, H., & Shen, X. (2021). Promises and challenges of organoid-guided precision medicine. Med, 2(9), 10111026.CrossRefGoogle ScholarPubMed
Bradfute, S. B. (2023). History and impact of the mouse-adapted Ebola virus model. Antiviral Research, 210, 105493.CrossRefGoogle ScholarPubMed
Bschir, K. (2017). Risk, uncertainty, and precaution in science: The Threshold of the Toxicological Concern approach in food toxicology. Science and Engineering Ethics, 23(2), 489508.CrossRefGoogle ScholarPubMed
Buffenstein, R., Park, T., Hanes, M., & Artwohl, J. E. (2012). Naked mole rat. In Suckow, M. A., Stevens, K. A., & Wilson, R. P. (Eds.), The laboratory rabbit, guinea pig, hamster, and other rodents (pp. 10551074). London, UK: Academic Press.CrossRefGoogle Scholar
Burggren, W. W. (1999). Developmental physiology, animal models, and the August Krogh principle. Zoology, 102, 148156.Google Scholar
Burggren, W. W., & Warburton, S. (2007). Amphibians as animal models for laboratory research in physiology. ILAR Journal, 48(3), 260269.CrossRefGoogle ScholarPubMed
Burian, R. M. (1993). How the choice of experimental organism matters: Epistemological reflections on an aspect of biological practice. Journal of the History of Biology, 26(2), 351367.CrossRefGoogle Scholar
Cagan, R. L., Zon, L. I., & White, R. M. (2019). Modeling cancer with flies and fish. Developmental Cell, 49(3), 317324.CrossRefGoogle ScholarPubMed
Caipa Garcia, A. L., Arlt, V. M., & Phillips, D. H. (2022). Organoids for toxicology and genetic toxicology: Applications with drugs and prospects for environmental carcinogenesis. Mutagenesis, 37(2), 143154.CrossRefGoogle ScholarPubMed
Cait, J., Cait, A., Scott, R. W., Winder, C. B., & Mason, G. J. (2022). Conventional laboratory housing increases morbidity and mortality in research rodents: Results of a meta-analysis. BMC Biology, 20(1), 122.CrossRefGoogle ScholarPubMed
Cambau, E., & Poljak, M. (2020). Sniffing animals as a diagnostic tool in infectious diseases. Clinical Microbiology and Infection, 26(4), 431435.CrossRefGoogle ScholarPubMed
Cao, Y., Vacanti, J. P., Paige, K. T., Upton, J., & Vacanti, C. A. (1997). Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plastic and Reconstructive Surgery, 100(2), 297302.CrossRefGoogle ScholarPubMed
Carbone, L. (2021). Estimating mouse and rat use in American laboratories by extrapolation from Animal Welfare Act-regulated species. Scientific Reports, 11(1), 493, 16.CrossRefGoogle ScholarPubMed
Carusi, A. (forthcoming). Chemicals regulation and non-animal methods: Displacing the gold standard. Wellcome Open Science.Google Scholar
Carusi, A., Sanchez Dorado, J., & Sözüdogru, E. (2022a). Adverse outcome pathway – Study report. In Wittwehr, C. & Whelan, M. (Eds.), EUR 30925 EN (pp. 1–41). Luxembourg: Publication Office of the European Union.Google Scholar
Carusi, A., Wittwehr, C., & Whelan, M. (2022b). Addressing evidence needs in chemicals policy and regulation. EUR 30941 EN. Luxembourg: Publication Office of the European Union.Google Scholar
CBS News. (2020). Experts warn: Horseshoe crabs, crucial to helping create vaccines, are facing extinction. New York, November 9, 2020. www.cbsnews.com/newyork/news/horseshoe-crabs-vaccines-extinction/.Google Scholar
Changeux, J. P. (2006). The molecular biology of consciousness investigated with genetically modified mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 22392259.CrossRefGoogle ScholarPubMed
Choutka, C., Cabrera, C., & Hirabayashi, S. (2022). Embracing complexity in Drosophila cancer models. Disease Models & Mechanisms, 15(3), dmm049513.CrossRefGoogle ScholarPubMed
Connolly, K. A., Fitzgerald, B., Damo, M., & Joshi, N. S. (2022). Novel mouse models for cancer immunology. Annual Review of Cancer Biology, 6, 269291.CrossRefGoogle ScholarPubMed
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281, 174203.CrossRefGoogle ScholarPubMed
Dam, M. S., Juhl, S. M., Sangild, P. T., & Svendsen, M. N. (2017). Feeding premature neonates: Kinship and species in translational neonatology. Social Science & Medicine, 179, 129136.CrossRefGoogle ScholarPubMed
Dam, M. S., Sangild, P. T., & Svendsen, M. N. (2018). Translational neonatology research: Transformative encounters across species and disciplines. History and Philosophy of the Life Sciences, 40, 116.CrossRefGoogle ScholarPubMed
Dam, M. S., Sangild, P. T., & Svendsen, M. N. (2020). Plastic pigs and public secrets in translational neonatology in Denmark. Palgrave Communications, 6(1), 110.CrossRefGoogle Scholar
Dam, M. S., & Svendsen, M. N. (2018). Treating pigs: Balancing standardisation and individual treatments in translational neonatology research. BioSocieties, 13, 349367.CrossRefGoogle Scholar
Davies, G. (2010). Captivating behavior: Mouse models, experimental genetics and reductionist returns in the neurosciences. The Sociological Review, 58, 5372.CrossRefGoogle Scholar
Davies, G. (2012). What is a humanized mouse? Remaking the species and spaces of translational medicine. Body & Society, 18(3–4), 126155.CrossRefGoogle Scholar
Davies, G. F., Greenhough, B. J., Hobson-West, P. et al. (2016). Developing a collaborative agenda for humanities and social scientific research on laboratory animal science and welfare. PLoS One, 11(7), e0158791.CrossRefGoogle ScholarPubMed
Dekkers, J. F., Berkers, G., Kruisselbrink, E. et al. (2016). Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Science Translational Medicine, 8(344), 344ra84–344ra84.CrossRefGoogle ScholarPubMed
De La Rochere, P., Guil-Luna, S., Decaudin, D. et al. (2018). Humanized mice for the study of immuno-oncology. Trends in Immunology, 39(9), 748763.CrossRefGoogle Scholar
Denayer, T., Stöhr, T., & Van Roy, M. (2014). Animal models in translational medicine: Validation and prediction. New Horizons in Translational Medicine, 2(1), 511.Google Scholar
Dietrich, M. R., Ankeny, R. A., & Chen, P. M. (2014). Publication trends in model organism research. Genetics, 198(3), 787794.CrossRefGoogle ScholarPubMed
Dietrich, M. R., Ankeny, R. A., Crowe, N., Green, S., & Leonelli, S. (2020). How to choose your research organism. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 80, 101227.CrossRefGoogle ScholarPubMed
Dolberg, D. S., & Bissell, M. J. (1984). Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature, 309(5968), 552556.CrossRefGoogle ScholarPubMed
Dutch Foundation for Biosciences and Society. (2020). Mini Organs-on-Chips: Towards New Research Models for Studying Disease and Finding Treatments. Dutch Foundation BMW, 3, 39, November 2020.Google Scholar
Efstathiou, S. (2019). Facing animal research. Levinas and technologies of effacement. In Atterton, P. Peter & Wright, T. (Eds.), Face to face with animals. Levinas and the animal question (pp. 139164). Albany, NY: SUNY Press.Google Scholar
Ellenbroek, B., & Youn, J. (2016). Rodent models in neuroscience research: Is it a rat race? Disease Models & Mechanisms, 9(10), 10791087.CrossRefGoogle ScholarPubMed
Ellman, D. G., Slaiman, I. M., Mathiesen, S. B., Andersen, K. S., Hofmeister, W., Ober, E. A., & Andersen, D. C. (2021). Apex resection in zebrafish (Danio rerio) as a model of heart regeneration: A video-assisted guide. International Journal of Molecular Sciences, 22(11), 5865.CrossRefGoogle Scholar
Erick Peirson, B. R., Kropp, H., Damerow, J., & Laubichler, M. D. (2017). The diversity of experimental organisms in biomedical research may be influenced by biomedical funding. BioEssays, 39(5), 1600258.CrossRefGoogle ScholarPubMed
Ericsson, A. C., Crim, M. J., & Franklin, C. L. (2013). A brief history of animal modeling. Missouri Medicine, 110(3), 201.Google ScholarPubMed
Ewart, L., Apostolou, A., Briggs, S. A. et al. (2022). Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Communications Medicine, 2(1), 154, 116.CrossRefGoogle ScholarPubMed
Fazio, M., Ablain, J., Chuan, Y., Langenau, D. M., & Zon, L. I. (2020). Zebrafish patient avatars in cancer biology and precision cancer therapy. Nature Reviews Cancer, 20(5), 263273.CrossRefGoogle ScholarPubMed
Foo, M. A., You, M., Chan, S. L. et al. (2022). Clinical translation of patient-derived tumour organoids-bottlenecks and strategies. Biomarker Research, 10(1), 118.CrossRefGoogle ScholarPubMed
Friese, C. (2013). Realising the potential of translational medicine: The uncanny emergence of care as science. Current Anthropology, 54, S129S138.CrossRefGoogle Scholar
Friese, C., & Clarke, A. E. (2012). Transposing bodies of knowledge and technique: Animal models at work in reproductive sciences. Social Studies of Science, 42(1), 3152.CrossRefGoogle Scholar
Friese, C., Nuyts, N., & Pardo-Guerra, J. P. (2019). Cultures of care? Animals and science in Britain. The British Journal of Sociology, 70(5), 20422069.CrossRefGoogle ScholarPubMed
Frommlet, F., & Heinze, G. (2021). Experimental replications in animal trials. Laboratory Animals, 55(1), 6575.CrossRefGoogle ScholarPubMed
García-Sancho, M., & Lowe, J. (2023). A history of genomics across species, communities and projects. Cham: Palgrave Macmillan.CrossRefGoogle Scholar
Genzel, L. (2021). How to control behavioral studies for rodents – Don’t project human thoughts onto them. eNeuro 8(1): ENEURO.0456–0420.2021.CrossRefGoogle Scholar
Germain, P.-L. (2014). From replica to instruments: Animal models in biomedical research. History and Philosophy of the Life Sciences, 36(1), 114128.CrossRefGoogle ScholarPubMed
Globe Newswire. (2022). Congress approved landmark measure to reduce animal testing. Washington, DC. December 23. www.globenewswire.com/news-release/2022/12/23/2579295/0/en/Congress-Approves-Landmark-Measure-to-Reduce-Animal-Testing.html.Google Scholar
Godfrey-Smith, P. (2020). Varieties of subjectivity. Philosophy of Science, 87(5), 11501159.CrossRefGoogle Scholar
Gorbunova, V., Takasugi, M., & Seluanov, A. (2020). Hyaluronan goes to great length. Cell Stress, 4(9), 227229.CrossRefGoogle ScholarPubMed
Grainger, R. M. (2012). Xenopus tropicalis as a model organism for genetics and genomics: Past, present, and future. Xenopus Protocols: Post-Genomic Approaches, 917, 315.CrossRefGoogle Scholar
Green, S. (2013). When one model is not enough: Combining epistemic tools in systems biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 170180.CrossRefGoogle Scholar
Green, S. (2021). Cancer beyond genetics: On the practical implications of downward causation. In Brooks, D. S., DiFrisco, J., & Wimsatt, W. C. (Eds.), Levels of organization in the biological sciences (pp. 195213). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Green, S., Dam, M. S., & Svendsen, M. N. (2021). Mouse avatars of human cancers: The temporality of translation in precision oncology. History and Philosophy of the Life Sciences, 43(1), 122.CrossRefGoogle ScholarPubMed
Green, S., Dam, M. S., & Svendsen, M. N. (2022). Patient-derived organoids in precision oncology precision oncology–Towards a science of and for the individual? In C. Beneduce, & M. Bertolaso, (Eds.), Personalized medicine in the making: Philosophical perspectives from biology to healthcare (pp. 125146). Cham: Springer International.CrossRefGoogle Scholar
Green, S., Dietrich, M. R., Leonelli, S., & Ankeny, R. A. (2018). “Extreme” organisms and the problem of generalization: Interpreting the Krogh principle. History and Philosophy of the Life Sciences, 40(4), 122.CrossRefGoogle ScholarPubMed
Gruen, L. (2003/2017). The moral status of animals. Stanford Encyclopaedia of Philosophy. https://plato.stanford.edu/entries/moral-animal/.Google Scholar
Guttinger, S., & Love, A. C. (2019). Characterizing scientific failure. Putting the replication crisis in context. EMBO Reports, 20, e48765.CrossRefGoogle ScholarPubMed
Hanahan, D., Wagner, E. F., & Palmiter, R. D. (2007). The origins of oncomice: A history of the first transgenic mice genetically engineered to develop cancer. Genes & Development, 21(18), 22582270.CrossRefGoogle ScholarPubMed
Hardesty, R. A. (2018). Much ado about mice: Standard-setting in model organism research. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 68, 1524.CrossRefGoogle ScholarPubMed
Harding, J. D. (2017). Nonhuman primates and translational research: Progress, opportunities, and challenges. ILAR Journal, 58(2), 141150.CrossRefGoogle ScholarPubMed
Hau, H. (2008). Animal models for human diseases: An overview. In Conn, M. P. (Ed.), Sourcebook of models for biomedical research (pp. 38). Totawa, NJ: Humana Press.CrossRefGoogle Scholar
Hinterberger, A., & Bea, S. (2023). How do scientists model humanness? A qualitative study of human organoids in biomedical research. Social Science & Medicine, 320, 115676.Google Scholar
Homberg, J. R., Adan, R. A., Alenina, N. et al. (2021). The continued need for animals to advance brain research. Neuron, 109(15), 23742379.CrossRefGoogle ScholarPubMed
Horowitz, B. N., Baccouche, B., Shivkumar, T. et al. (2020). The giraffe as a natural animal model for resistance to heart failure with preserved ejection fraction. Preprints.org, 1–13.CrossRefGoogle Scholar
Huber, L., & Keuck, L. K. (2013). Mutant mice: Experimental organisms as materialised models in biomedicine. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(3), 385391.CrossRefGoogle ScholarPubMed
Hunter, P. (2008). The paradox of model organisms. EMBO Reports, 9, 717720.CrossRefGoogle ScholarPubMed
Izumchenko, E., Paz, K., Ciznadija, D., Sloma, I., Katz, A., Vasquez-Dunddel, D., & Maki, R. (2017).Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Annals of Oncology, 28(10), 25952605.CrossRefGoogle Scholar
Jensen, A. M. B., & Svendsen, M. N. (2020). Collaborative intimacies: How research pigs in Danish organ transplantation facilitate medical training, moral reflection, and social networking. Medicine Anthopology Theory, 7(2), 120149.CrossRefGoogle Scholar
Jespersen, H., Lindberg, M. F., Donia, M. et al. (2017). Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nature Communications, 8(1), 110.CrossRefGoogle Scholar
Jones, A. M., Chory, J., Dangl, J. L. et al. (2008). The impact of Arabidopsis on human health: Diversifying our portfolio. Cell, 133(6), 939943.CrossRefGoogle ScholarPubMed
Jones, R. C. (2022). Animal cognition and moral status. In Hale, B., Light, A., & Lawhon, L. (Eds.), The Routledge Companion to Environmental Ethics (pp. 519). New York: Routledge.CrossRefGoogle Scholar
Jung, P., Sato, T., Merlos-Suárez, A. et al. (2011). Isolation and in vitro expansion of human colonic stem cells. Nature Medicine, 17(10), 12251227.CrossRefGoogle ScholarPubMed
Kalscheuer, H., Danzl, N., Onoe, T., et al. (2012). A model for personalized in vivo analysis of human immune responsiveness. Science Translational Medicine, 4(125), 125ra30–125ra30.CrossRefGoogle Scholar
Keele, B. F., Jones, J. H., Terio, K. A. et al. (2009). Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature, 460(7254), 515519.CrossRefGoogle ScholarPubMed
Kendler, K. S., & Neale, M. C. (2010). Endophenotype: A conceptual analysis. Molecular Psychiatry, 15(8), 789797.CrossRefGoogle ScholarPubMed
Key, B. (2015). Fish do not feel pain and its implications for understanding phenomenal consciousness. Biology & Philosophy, 30, 149165.CrossRefGoogle Scholar
Key, B. (2016). Why fish do not feel pain. Animal Sentience, 1(3), 133.CrossRefGoogle Scholar
Kiani, A. K., Pheby, D., Henehan, G. et al. (2022). Ethical considerations regarding animal experimentation. Journal of Preventive Medicine and Hygiene, 63(2–3), E255E266.Google ScholarPubMed
Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21(10), 571584.CrossRefGoogle ScholarPubMed
Kirk, R. G. (2014). The invention of the “stressed animal” and the development of science of animal welfare, 1947–86. In Cantor, D. & Ramadan, E. (Eds.), Stress, shock and adaptation in the twentieth century (pp. 241263). Rochester, NY: University of Rochester Press.CrossRefGoogle Scholar
Kirk, R. G. (2018). Recovering the principles of humane experimental technique: The 3Rs and the human essence of animal research. Science, Technology, & Human Values, 43(4), 622648.CrossRefGoogle ScholarPubMed
Kirk, R. G., & Ramsden, E. (2018). Working across species down on the farm: Howard S. Liddell and the development of comparative psychopathology, c. 1923–1962. History and Philosophy of the Life Sciences, 40, 129.CrossRefGoogle Scholar
Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315353.CrossRefGoogle Scholar
Knuuttila, T. (2021). Epistemic artifacts and the modal dimension of modeling. European Journal for Philosophy of Science, 11(3), 118.CrossRefGoogle ScholarPubMed
Kohler, R. E. (1994). Lords of the fly: Drosophila and the experimental life. Chicago, IL: University of Chicago Press.Google Scholar
Krebs, H. A. (1975). The August Krogh Principle: “For many problems there is an animal on which it can be most conveniently studied”. Journal of Experimental Zoology, 194, 221226.CrossRefGoogle Scholar
Krisfalusi-Gannon, J., Ali, W., Dellinger, K. et al. (2018). The role of horseshoe crabs in the biomedical industry and recent trends impacting species sustainability. Frontiers in Marine Science, 5, 113.CrossRefGoogle Scholar
Krogh, A. (1910). On the mechanism of the gas-exchange in the lungs of the tortoise. Skandinavisches Archiv für Physiologie, 23(1), 200216.CrossRefGoogle Scholar
Krogh, A. (1929). Progress in physiology. American Journal of Physiology, 90, 243251.CrossRefGoogle Scholar
LaFollette, H., & Shanks, N. (1993). Animal models in biomedical research: Some epistemological worries. Public Affairs Quarterly, 7(2), 113130.Google ScholarPubMed
LaFollette, H., & Shanks, N. (1995). Two models of models in biomedical research. The Philosophical Quarterly, 45(179), 141160.CrossRefGoogle Scholar
Larsen, E. H., Hoffmann, E., Hedrick, M. S., & Wang, T. (2021). August Krogh’s contribution to the rise of physiology during the first half the 20th century. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 256, 110931.CrossRefGoogle Scholar
Leavitt, Sarah A. (2006). “A private little revolution”: The home pregnancy test in American culture. Bulletin of the History of Medicine, 80, 317345.CrossRefGoogle ScholarPubMed
Leenaars, C. H., Kouwenaar, C., Stafleu, F. R. et al. (2019). Animal to human translation: A systematic scoping review of reported concordance rates. Journal of Translational Medicine, 17(1), 122.CrossRefGoogle ScholarPubMed
Lemoine, M. (2015). Extrapolation from animal model of depressive disorders: What’s lost in translation? In Wakefield, J. C. & Demazeux, S. (Eds.), Sadness or depression? International perspectives on the depression epidemic and its meaning (pp. 157172). Heidelberg, New York: Springer.Google Scholar
Leonelli, S. (2007). Growing weed, producing knowledge an epistemic history of Arabidopsis thaliana. History and Philosophy of the Life Sciences, 29(2), 193223.Google ScholarPubMed
Leonelli, S. (2016). Data-Centric Biology: A Philosophical Study. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Leonelli, S., & Ankeny, R. A. (2012). Re-thinking organisms: The impact of databases on model organism biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 2936.CrossRefGoogle ScholarPubMed
Levy, A., & Currie, A. (2015). Model organisms are not (theoretical) models. The British Journal for the Philosophy of Science, 66, 327348.CrossRefGoogle Scholar
Lewis, J., Atkinson, P., Harrington, J., & Featherstone, K. (2013). Representation and practical accomplishment in the laboratory: When is an animal model good-enough? Sociology, 47(4), 776792.CrossRefGoogle Scholar
Liddell, H. S. (1942). The alteration of instinctual processes through the influence of conditioned reflexes. Psychosomatic Medicine, 4, 390395.CrossRefGoogle Scholar
Lohse, S. (2021). Scientific inertia in animal-based research in biomedicine. Studies in History and Philosophy of Science Part A, 89, 4151.CrossRefGoogle ScholarPubMed
Logan, C. A. (2002). Before there were standards: The role of test animals in the production of scientific generality in physiology. Journal of the History of Biology, 35, 329363.CrossRefGoogle ScholarPubMed
Love, A. (2007). Functional homology and homology of function: Biological concepts and philosophical consequences. Biology and Philosophy, 22, 691708.CrossRefGoogle Scholar
Love, A. (2010). Idealization in evolutionary developmental investigation: A tension between phenotypic plasticity and normal stages. Philosophical Transactions of the Royal Society B, 365, 679690.CrossRefGoogle ScholarPubMed
Lowe, J., Leng, R., Viry, G. et al. (2022). The bricolage of pig genomics. Historical Studies in the Natural Sciences, 52(3), 401442.CrossRefGoogle Scholar
Lowe, J. W. (2022). Humanising and dehumanising pigs in genomic and transplantation research. History and Philosophy of the Life Sciences, 44(4), 127.CrossRefGoogle ScholarPubMed
Lowe, J. W., Leonelli, S., & Davies, G. (2020). Training to translate: Understanding and informing translational animal research in pre-clinical pharmacology. TECNOSCIENZA: Italian Journal of Science & Technology Studies, 10(2), 530.Google Scholar
Lunney, J. K., Van Goor, A., Walker, K. E. et al. (2021). Importance of the pig as a human biomedical model. Science Translational Medicine, 13(621), eabd5758.CrossRefGoogle ScholarPubMed
Malaney, P., Nicosia, S. V., & Davé, V. (2014). One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Letters, 344(1), 112.CrossRefGoogle ScholarPubMed
Maloney, T., Phelan, R., & Simmons, N. (2018). Saving the horseshoe crab: A synthetic alternative to horseshoe crab blood for endotoxin detection. PLoS Biology, 16(10), e2006607.CrossRefGoogle ScholarPubMed
Marcus, B. (2016). LSD and the elephant. Illinois Science Council. Science Unsealed Blog, June 27, 2016, www.illinoisscience.org/2016/06/lsd-and-the-elephant/.Google Scholar
Marshall, L. J., Constantino, H., & Seidle, T. (2022). Phase-in to phase-out – Targeted, inclusive strategies are needed to enable full replacement of animal use in the European Union. Animals, 12(7), 863.CrossRefGoogle ScholarPubMed
Matsui, T., & Shinozawa, T. (2021). Human organoids for predictive toxicology research and drug development. Frontiers in Genetics, 1–18, 2119. https://doi.org/10.3389/fgene.2021.767621.Google Scholar
Maugeri, P., & Blasimme, A. (2011). Humanised models of cancer in molecular medicine: The experimental control of disanalogy. History and Philosophy of the Life Sciences, 33(4), 603621.Google ScholarPubMed
Maxson Jones, K., & Morgan, J. R. (2023). Lampreys and spinal cord regeneration: “A very special claim on the interest of zoologists,” 1830s-present. Frontiers in Cell and Developmental Biology, 11, 1113961.CrossRefGoogle ScholarPubMed
Mazarati, A. (2007). The best model for a cat is the same cat … or is it? Epilepsy Currents, 7(4), 112114.CrossRefGoogle ScholarPubMed
Mian, S. A., Anjos-Afonso, F., & Bonnet, D. (2021). Advances in human immune system mouse models for studying human hematopoiesis and cancer immunotherapy. Frontiers in Immunology, 11, 619236.CrossRefGoogle ScholarPubMed
Mol, A., Moser, I., & Pols, J. (Eds.). (2010). Care in practice: On tinkering in clinics, homes and farms. Bielefeld: Transcript Verlag.Google Scholar
Morata Tarifa, C., López Navas, L., Azkona, G., & Sánchez Pernaute, R. (2020). Chimeras for the twenty-first century. Critical Reviews in Biotechnology, 40(3), 283291.CrossRefGoogle ScholarPubMed
Morrison, M., & Morgan, M. (1999). Models as mediating instruments. In Morrison, M. & Morgan, M. S. (Eds.), Models as mediators: Perspectives on natural and social science (pp. 1037). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Morthorst, J. E., Holbech, H., De Crozé, N., Matthiessen, P., & LeBlanc, G. A. (2023). Thyroid-like hormone signaling in invertebrates and its potential role in initial screening of thyroid hormone system disrupting chemicals. Integrated Environmental Assessment and Management, 19(1), 6382.CrossRefGoogle ScholarPubMed
Mullard, A. (2016). Parsing clinical success rates. Nature Reviews Drug Discovery, 15(7), 447448.Google ScholarPubMed
Mullin, E. (2023). The US just greenlit high-tech alternatives to animal testing. Wired, January 11, 2023.Google Scholar
Mummery, C., Van de Stolpe, A., Roelen, B., & Clevers, H. (2021). Stem cells: Scientific facts and fiction (3rd ed.). London, UK: Academic Press.CrossRefGoogle Scholar
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 2731.CrossRefGoogle ScholarPubMed
Nelson, N. C. 2013. Modeling mouse, human, and discipline: Epistemic scaffolds in animal behavior genetics. Social Studies of Science, 43(1), 329.CrossRefGoogle Scholar
Nelson, N. C. 2018. Model behavior: Animal experiments, complexity, and the genetics of psychiatric disorders. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Nilsson, J. A., Olofsson Bagge, R., & Ny, L. (2018). Mouse avatars take off as cancer models. Nature, 562(7726), 192–192.CrossRefGoogle ScholarPubMed
Nissinen, J., & Pitkänen, A. (2007). Effect of antiepileptic drugs on spontaneous seizures in epileptic rats. Epilepsy Research, 73(2), 181191.CrossRefGoogle ScholarPubMed
Olszynko-Gryn, J. (2013). When pregnancy test were toads: The Xenopus test in the early NHS. Wellcome History, 51, 13.Google Scholar
Olszynko-Gryn, J. (2014). The demand for pregnancy testing: The Aschheim–Zondek reaction, diagnostic versatility, and laboratory services in 1930s Britain. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 47, 233247.CrossRefGoogle ScholarPubMed
Ooft, S. N., Weeber, F., Schipper, L. et al. (2021). Prospective experimental treatment of colorectal cancer patients based on organoid drug responses. ESMO Open, 6(3), 100103.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press.CrossRefGoogle Scholar
Parkkinen, V.-P. (2017). Are model organisms theoretical models? Disputatio, 9, 471498.CrossRefGoogle Scholar
Passini, E., Britton, O. J., Lu, H. R. et al. (2017). Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Frontiers in Physiology, 8, 115.CrossRefGoogle Scholar
Perlman, R. L. (2016). Mouse models of human disease: An evolutionary perspective. Evolution, Medicine, and Public Health, 1, 170176.Google Scholar
Perry, S. (2013). Mouse “avatars” advance personalized medicine. Endocrine News, January 2013. https://endocrinenews.endocrine.org/mouse-avatars-advance-personalized-medicine/Google Scholar
Piotrowska, M. (2013). From humanized mice to human disease: Guiding extrapolation from model to target. Biology & Philosophy, 28, 439455.CrossRefGoogle Scholar
Preson, E. (2022). Octopuses don’t have backbones – or rights. The New York Times, August 27, 2022.Google Scholar
Rader, K. A. (2004). Making mice. Standardizing animals for American biomedical research, 19001955. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Ramhøj, L., Axelstad, M., Baert, Y. et al. (2023). New approach methods to improve human health risk assessment of thyroid hormone system disruption – A PARC project. Frontiers in Toxicology, 5, 1189303.CrossRefGoogle ScholarPubMed
Ramsden, E. (2015). Making animals alcoholic: Shifting laboratory models of addiction. Journal of the History of the Behavioral Sciences, 51(2), 164194.CrossRefGoogle ScholarPubMed
Ramsey, G. (2013). Culture in humans and other animals. Biology & Philosophy, 28, 457479.CrossRefGoogle Scholar
Ramsey, G. (2023). Human Nature. Elements in the Philosophy of Biology. Cambridge: Cambridge University Press.Google Scholar
Rankin, K. S., & Frankel, D. (2016). Hyaluronan in cancer – From the naked mole rat to nanoparticle therapy. Soft Matter, 12(17), 38413848.CrossRefGoogle ScholarPubMed
Ransohoff, R. M. 2018. All (animal) models (of neurodegeneration) are wrong. Are they also useful? The Journal of Experimental Medicine, 215, 29552958.CrossRefGoogle Scholar
Rasmussen, A. L., Okumura, A., Ferris, M. T. et al. (2014). Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science, 346(6212), 987991.CrossRefGoogle ScholarPubMed
Ratti, E. (2020). “Models of” and “Models for”: On the relation between mechanistic models and experimental strategies in molecular biology. The British Journal for the Philosophy of Science, 71, 773797.CrossRefGoogle Scholar
Reardon, S. (2022). First pig-to-human heart transplant: What can scientists learn? Nature, 601(7893), 305306.CrossRefGoogle ScholarPubMed
Regan, T. (1983). The case for animal rights. Berkeley, CA: University of California Press.Google Scholar
Rheinberger, H.-J. (1997). Toward a History of Epistemic Things. Synthesising Proteins in the Test Tube. Stanford CA: Stanford University Press.Google Scholar
Rosenblueth, A., & Wiener, N. (1945). The role of models in science. Philosophy of Science, 12(4), 316321.CrossRefGoogle Scholar
Russell, J. J., Theriot, J. A., Sood, P. et al. (2017). Non-model model organisms. BMC Biology, 15(1), 131.CrossRefGoogle ScholarPubMed
Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. London UK: Methuen and Co Ltd.Google Scholar
Sangild, P. T., Thymann, T., Schmidt, M. et al. (2014). The preterm pig as a model in pediatric gastroenterology. Journal of Animal Science, 91(10), 47134729.CrossRefGoogle Scholar
Sato, T., Vries, R. G., Snippert, H. J. et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244), 262265.CrossRefGoogle ScholarPubMed
Schaffner, K. F. (1986). Exemplar reasoning about biological models and diseases: A relation between the philosophy of medicine and philosophy of science. The Journal of Medicine and Philosophy, 11, 6380.CrossRefGoogle Scholar
Schaffner, K. F. (2001). Extrapolation from animal models: Social life, sex, and super models. In P. K. Machamer, , Grush, R., & McLaughlin (Eds.), P., Theory and method in the neurosciences (pp. 200–230). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
Schmidt-Nielsen, B. (1995/2019). August & Marie Krogh: Lives in science. Oxford, NY: American Physiological Society. Reprinted by the University of Copenhagen, Denmark.Google Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Scudellari, M. (2015). My mighty mouse. The Scientist, March 31, 2015, www.thescientist.com/cover-story/my-mighty-mouse-35712Google Scholar
Shanks, N., Greek, R., & Greek, J. (2009). Are animal models predictive for humans? Philosophy, Ethics, and Humanities in Medicine, 4(1), 2.CrossRefGoogle ScholarPubMed
Sharp, L. A. (2013). The transplant imaginary: Mechanical hearts, animal parts, and moral thinking in highly experimental science. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Sharp, L. A. (2019). Animal ethos: The morality of human-animal encounters in experimental lab science. Oakland, CA: University of California Press.Google Scholar
Simian, M., & Bissell, M. J. (2017). Organoids: A historical perspective of thinking in three dimensions. Journal of Cell Biology, 216(1), 3140.CrossRefGoogle ScholarPubMed
Singer, P. (1975). Animal liberation: A new ethics for our treatment of animals. New York: HarperCollins.Google Scholar
Smith, J. A., Andrews, P. L., Hawkins, P. et al. (2013). Cephalopod research and EU Directive 2010/63/EU: Requirements, impacts and ethical review. Journal of Experimental Marine Biology and Ecology, 447, 3145.CrossRefGoogle Scholar
Smith, J. R., Hayman, G. T., Wang, S. J. et al. (2020). The year of the rat: The rat genome database at 20: A multi-species knowledgebase and analysis platform. Nucleic Acids Research, 48(D1), D731D742.Google ScholarPubMed
Sneddon, L. U. (2015). Pain in aquatic animals. The Journal of Experimental Biology, 218(7), 967976.CrossRefGoogle ScholarPubMed
Sneddon, L. U., & Leach, M. C. (2016). Anthropomorphic denial of fish pain. Animal Sentience, 3(28), 13.Google Scholar
Star, S. L. (1983). Simplification in scientific work: An example from neuroscience research. Social Studies of Science, 13, 208226.CrossRefGoogle Scholar
Steel, D. (2008). Across the boundaries: Extrapolation in biology and social science. Oxford: Oxford University Press.Google Scholar
Stegenga, J. (2022). Evidence of effectiveness. Studies in History and Philosophy of Science, 91, 288295.CrossRefGoogle ScholarPubMed
Stegman, U. E. (2021). Medical toolkit organisms and Covid-19. History and Philosophy of the Life Sciences, 43, 14.CrossRefGoogle Scholar
Stewart, T. A., Pattengale, P. K., & Leder, P. (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell, 38, 627637.CrossRefGoogle ScholarPubMed
Stoker, A. W., Hatier, C., & Bissell, M. J. (1990). The embryonic environment strongly attenuates v-src Oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. Journal of Cell Biology, 111(1), 217228.CrossRefGoogle ScholarPubMed
Striedter, G. F. (2022). Model systems in biology. History, philosophy, and practical concerns. Cambridge, MA: MIT Press.Google Scholar
Suntsova, M. V., & Buzdin, A. A. (2020). Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics, 21(7), 112.Google Scholar
Svendsen, M. N. (2022). Near human: Border zones of species, life, and belonging. New Brunswick, Camden: Rutgers University Press.Google Scholar
Svendsen, M. N., & Koch, L. (2013). Potentializing the research piglet in experimental neonatal research. Current Anthropology, 54(S7), S118S128.CrossRefGoogle Scholar
Swaters, D., van Veen, A., van Meurs, W., Turner, J. E., & Ritskes-Hoitinga, M. (2022). A history of regulatory animal testing: What can we learn? Alternatives to Laboratory Animals, 50(5), 322329.CrossRefGoogle ScholarPubMed
Szpirer, C. (2020). Rat models of human diseases and related phenotypes: A systematic inventory of the causative genes. Journal of Biomedical Science, 27(1), 152.CrossRefGoogle ScholarPubMed
Taylor, K., & Alvarez, L. R. (2019). An estimate of the number of animals used for scientific purposes worldwide in 2015. Alternatives to Laboratory Animals, 47(5–6), 196213.CrossRefGoogle ScholarPubMed
Thompson, C. (2013). Good science: The ethical choreography of stem cell research. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Tian, X., Azpurua, J., Hine, C. et al. (2013). High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature, 499(7458), 346349.CrossRefGoogle ScholarPubMed
Valenzano, D. R., Aboobaker, A., Seluanov, A., & Gorbunova, V. (2017). Non-canonical aging model systems and why we need them. The EMBO Journal, 36(8), 959963.CrossRefGoogle Scholar
van Akker, R., Balls, M., Eichberg, J. W. et al. (1994). Chimpanzees in AIDS research: A biomedical and bioethical perspective. Journal of Medical Primatology, 23, 4951.CrossRefGoogle ScholarPubMed
Veit, W. (2022). Towards a comparative study of animal consciousness. Biological Theory, 17, 292303.CrossRefGoogle Scholar
Venniro, M., Banks, M. L., Heilig, M., Epstein, D. H., & Shaham, Y. (2020). Improving translation of animal models of addiction and relapse by reverse translation. Nature Reviews Neuroscience, 21(11), 625643.CrossRefGoogle ScholarPubMed
Vermeulen, N., Haddow, G., Seymour, T., Faulkner-Jones, A., & Shu, W. (2017). 3D bioprint me: A socioethical view of bioprinting human organs and tissues. Journal of Medical Ethics, 43(9), 618624.CrossRefGoogle Scholar
Viceconti, M., Pappalardo, F., Rodriguez, B. et al. (2021). In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods, 185, 120127.CrossRefGoogle ScholarPubMed
Vlachogiannis, G., Hedayat, S., Vatsiou, A. et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 359(6378), 920926.CrossRefGoogle ScholarPubMed
Vogt, H., Maxence, G., & Green, S. (forthcoming). D2.4: An amended health technology assessment (HTA) to evaluate organoids as emerging technologies in the clinic. EU report (available soon online).Google Scholar
Wang, T. (2011). Gas exchange in frogs and turtles: How ectothermic vertebrates contributed to solving the controversy of pulmonary oxygen secretion. Acta Physiologica, 202(3), 593600.CrossRefGoogle ScholarPubMed
Waters, C. K. (2008). How practical know-how contextualizes theoretical knowledge: Exporting causal knowledge from laboratory to nature. Philosophy of Science, 75(5), 707719.CrossRefGoogle Scholar
Weber, M. (2001). Under the lamppost: Commentary on Schaffner. In Machamer, P., Grush, R., & McLaughlin, P. (Eds.), Theory and method in the neurosciences (pp. 231249). Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
Weber, M. (2005). Philosophy of experimental biology. Cambridge: Cambridge University Press.Google Scholar
West, G. (2017). Scale: The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. New York: Penguin Press.Google Scholar
West, L. J., Pierce, C. M., & Thomas, W. D. (1962). Lysergic acid diethylamide: Its effects on a male Asiatic elephant. Science, 138(3545), 11001103.CrossRefGoogle ScholarPubMed
Willyard, C. (2018). The mice with human tumours: Growing pains for a popular cancer model. Nature News Feature, 560(7717), 156.CrossRefGoogle ScholarPubMed
Wittwehr, C., Aladjov, H., Ankley, G. et al. (2017). How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology. Toxicological Sciences, 155(2), 326336.CrossRefGoogle ScholarPubMed
Woodward, J. (2003). Making things happen: A theory of explanation. New York: Oxford University Press.Google Scholar
Würbel, H. (2002). Behaviour and the standardization fallacy. Nature Genetics, 26, 263.CrossRefGoogle Scholar
Xu, C., Li, X., Liu, P., Li, M., & Luo, F. (2019). Patient-derived xenograft mouse models: A high fidelity tool for individualized medicine. Oncology Letters, 17(1), 310.Google ScholarPubMed
Zanella, E. R., Grassi, E., & Trusolino, L. (2022). Towards precision oncology with patient-derived xenografts. Nature Reviews Clinical Oncology, 19(11), 719732.CrossRefGoogle ScholarPubMed

Save element to Kindle

To save this element to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Animal Models of Human Disease
  • Sara Green, University of Copenhagen
  • Online ISBN: 9781009025836
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Animal Models of Human Disease
  • Sara Green, University of Copenhagen
  • Online ISBN: 9781009025836
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Animal Models of Human Disease
  • Sara Green, University of Copenhagen
  • Online ISBN: 9781009025836
Available formats
×