Skip to main content Accessibility help
×
Home
1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.

  • Copyright

  • COPYRIGHT: © Dhayalan Shakthivel, Muhammad Ahmad, Mohammad R. Alenezi, Ravinder Dahiya and S. Ravi P. Silva 2019

References

Hide all
Hodes, G. [1] G. Hodes , “When small is different: some recent advances in concepts and applications of nanoscale phenomena,” Adv. Mater., vol. 19, no. 5, pp. 639–655, 2007. CrossRef | Google Scholar
Liveri, V. T. [2] V. T. Liveri , Controlled synthesis of nanoparticles in microheterogeneous systems. Springer Science & Business Media, 2006. Google Scholar
Guozhong, C. [3] C. Guozhong , Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific, 2004. Google Scholar
Xia, Y. [4] Y. Xia , et al., “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater., vol. 15, no. 5, pp. 353–389, 2003. CrossRef | Google Scholar
Lieber, C. M. [5] C. M. Lieber , “One-dimensional nanostructures: chemistry, physics & applications,” Solid State Commun., vol. 107, no. 11, pp. 607–616, 1998. CrossRef | Google Scholar
Yang, P. [6] P. Yang , “The chemistry and physics of semiconductor nanowires,” MRS Bull., vol. 30, no. 2, pp. 85–91, 2005. CrossRef | Google Scholar
Hayden, O. Agarwal, R. Lu, W. [7] O. Hayden , R. Agarwal , and W. Lu , “Semiconductor nanowire devices,” Nano Today, vol. 3, no. 5–6, pp. 12–22, 2008. CrossRef | Google Scholar
Li, Y. Qian, F. Xiang, J. Lieber, C. M. [8] Y. Li , F. Qian , J. Xiang , and C. M. Lieber , “Nanowire electronic and optoelectronic devices,” Mater. Today., vol. 9, no. 10, pp. 18–27, 2006. CrossRef | Google Scholar
Patolsky, F. Zheng, G. Lieber, C. M. [9] F. Patolsky , G. Zheng , and C. M. Lieber , “Nanowire-based biosensors,” ed: ACS Publications, Anal. Chem, Vol. 78, no. 13, pp. 4260–4269, 2006. Google Scholar
Chen, X. Wong, C. K. Yuan, C. A. Zhang, G. [10] X. Chen , C. K. Wong , C. A. Yuan , and G. Zhang , “Nanowire-based gas sensors,” Sens. Actuator B-Chem., vol. 177, pp. 178–195, 2013. CrossRef | Google Scholar
Qi, Y. McAlpine, M. C. [11] Y. Qi and M. C. McAlpine , “Nanotechnology-enabled flexible and biocompatible energy harvesting,” Energ. Environ. Sci., vol. 3, no. 9, pp. 1275–1285, 2010. CrossRef | Google Scholar
Fan, F.-R. Tian, Z.-Q. Wang, Z. L. [12] F.-R. Fan , Z.-Q. Tian , and Z. L. Wang , “Flexible triboelectric generator,” Nano Energy, vol. 1, no. 2, pp. 328–334, 2012. CrossRef | Google Scholar
Garnett, E. C. Brongersma, M. L. Cui, Y. McGehee, M. D. [13] E. C. Garnett , M. L. Brongersma , Y. Cui , and M. D. McGehee , “Nanowire solar cells,” Ann. Rev. Mater. Res., vol. 41, pp. 269–295, 2011. CrossRef | Google Scholar
Chan, C. K. Zhang, X. F. Cui, Y. [14] C. K. Chan , X. F. Zhang , and Y. Cui , “High capacity Li ion battery anodes using Ge nanowires,” Nano Lett., vol. 8, no. 1, pp. 307–309, 2008. CrossRef | Google Scholar
  • PubMed
  • Saito, R. Dresselhaus, G. Dresselhaus, M. S. [15] R. Saito , G. Dresselhaus , and M. S. Dresselhaus , Physical properties of carbon nanotubes. World Scientific, 1998. CrossRef | Google Scholar
    Shulaker, M. M. [16] M. M. Shulaker , et al., “Carbon nanotube computer,” Nature, vol. 501, no. 7468, p. 526, 2013. CrossRef | Google Scholar
  • PubMed
  • Rao, C. Govindaraj, A. 78[17] C. Rao and A. Govindaraj , “Synthesis of inorganic nanotubes,” Adv. Mater., vol. 21, no. 42, pp. 4208–4233, 2009. CrossRef | Google Scholar
    Goldberger, J. Fan, R. Yang, P. [18] J. Goldberger , R. Fan , and P. Yang , “Inorganic nanotubes: a novel platform for nanofluidics,” Accounts Chem. Res., vol. 39, no. 4, pp. 239–248, 2006. CrossRef | Google Scholar
  • PubMed
  • Lauhon, L. J. Gudiksen, M. S. Wang, D. Lieber, C. M. [19] L. J. Lauhon , M. S. Gudiksen , D. Wang , and C. M. Lieber , “Epitaxial core–shell and core–multishell nanowire heterostructures,” Nature, vol. 420, no. 6911, pp. 57–61, 2002. CrossRef | Google Scholar
  • PubMed
  • Takei, K. [20] K. Takei , et al., “Nanowire active-matrix circuitry for low-voltage macroscale artificial skin,” Nat. Mater., vol. 9, no. 10, pp. 821–826, 2010. CrossRef | Google Scholar
  • PubMed
  • Paladugu, M. [21] M. Paladugu , et al., “Novel growth phenomena observed in axial InAs/GaAs nanowire heterostructures,” Small, vol. 3, no. 11, pp. 1873–1877, 2007. CrossRef | Google Scholar
  • PubMed
  • Dasgupta, N. P. [22] N. P. Dasgupta , et al., “25th anniversary article: semiconductor nanowires–synthesis, characterization, and applications,” Adv. Mater., vol. 26, no. 14, pp. 2137–2184, 2014. CrossRef | Google Scholar
  • PubMed
  • Sun, Y. Rogers, J. A. [23] Y. Sun and J. A. Rogers , “Inorganic semiconductors for flexible electronics,” Adv. Mater., vol. 19, no. 15, pp. 1897–1916, 2007. CrossRef | Google Scholar
    Lieber, C. M. Wang, Z. L. [24] C. M. Lieber and Z. L. Wang , “Functional nanowires,” MRS Bull., vol. 32, no. 2, pp. 99–108, 2007. CrossRef | Google Scholar
    Liu, Z. Xu, J. Chen, D. Shen, G. [25] Z. Liu , J. Xu , D. Chen , and G. Shen , “Flexible electronics based on inorganic nanowires,” Chem. Soc. Rev., vol. 44, no. 1, pp. 161–192, 2015. CrossRef | Google Scholar
  • PubMed
  • Sun, Y. Rogers, J. A. [26] Y. Sun and J. A. Rogers , Semiconductor nanomaterials for flexible technologies: From photovoltaics and electronics to sensors and energy storage. William Andrew, 2010. Google Scholar
    Alenezi, M. R. Henley, S. J. Emerson, N. G. Silva, S. R. P. [27] M. R. Alenezi , S. J. Henley , N. G. Emerson , and S. R. P. Silva , “From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties,” Nanoscale, vol. 6, no. 1, pp. 235–247, 2014. CrossRef | Google Scholar
  • PubMed
  • Boskovic, B. O. Stolojan, V. Khan, R. U. Haq, S. Silva, S. R. P. [28] B. O. Boskovic , V. Stolojan , R. U. Khan , S. Haq , and S. R. P. Silva , “Large-area synthesis of carbon nanofibres at room temperature,” Nat. Mater., vol. 1, no. 3, pp. 165–168, 2002. CrossRef | Google Scholar
  • PubMed
  • Garcia Nunez, C. Navaraj, W. T. Liu, F. Shakthivel, D. Dahiya, R. [29] C. Garcia Nunez , W. T. Navaraj , F. Liu , D. Shakthivel , and R. Dahiya , “Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating,” ACS Appl. Mater. Inter, vol. 10, no. 3, pp. 3058–3068, 2018. CrossRef | Google Scholar
  • PubMed
  • Nunez, F. L. C. G. Navaraj, W. T. Christou, A. Shakthivel, D. Dahiya, R. [30] F. L. C. G. Nunez , W. T. Navaraj , A. Christou , D. Shakthivel , and R. Dahiya , “Heterogeneous integration of contact-printed semiconductor nanowires for high performance devices on large areas,” Microsyst Nanoeng, 2018. Google Scholar
    Núñez, F. L. C. G. Xu, S. Dahiya, R. [31] F. L. C. G. Núñez , S. Xu and R. Dahiya , “Large-area electronics based on micro/nanostructures and the manufacturing technologies,” Cambridge Elements (2018), In press. Google Scholar
    Núñez, C. G. Liu, F. Navaraj, W. T. Christou, A. Shakthivel, D. Dahiya, R. 79[32] C. G. Núñez , F. Liu , W. T. Navaraj , A. Christou , D. Shakthivel , and R. Dahiya , “Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas,” Microsyst Nanoeng, vol. 4, no. 1, p. 22, 2018. CrossRef | Google Scholar
    Nunez, C. G. Taube, W. Liu, F. Dahiya, R. [33] C. G. Nunez , W. Taube , F. Liu , and R. Dahiya , “ZnO nanowires based flexible UV photodetectors for wearable dosimetry,” in SENSORS, 2017 IEEE, 2017, pp. 1–3: IEEE. Google Scholar
    Striakhilev, D. Nathan, A. Vygranenko, Y. Servati, P. Lee, C.-H. Sazonov, A. [34] D. Striakhilev , A. Nathan , Y. Vygranenko , P. Servati , C.-H. Lee , and A. Sazonov , “Amorphous silicon display backplanes on plastic substrates,” J. Disp. Technol., vol. 2, no. 4, pp. 364–371, 2006. CrossRef | Google Scholar
    Nathan, A. [35] A. Nathan , et al., “Flexible electronics: the next ubiquitous platform,” Proc. IEEE., vol. 100, no. Special Centennial Issue, pp. 1486–1517, 2012. CrossRef | Google Scholar
    Petti, L. [36] L. Petti , et al., “Metal oxide semiconductor thin-film transistors for flexible electronics,” Appl. Phys. Rev., vol. 3, no. 2, p. 021303, 2016. CrossRef | Google Scholar
    Sporea, R. Trainor, M. Young, N. Shannon, J. Silva, S. [37] R. Sporea , M. Trainor , N. Young , J. Shannon , and S. Silva , “Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits,” Sci. Rep., vol. 4, 2014. Google Scholar
  • PubMed
  • Kim, S. J. Choi, K. Lee, B. Kim, Y. Hong, B. H. [38] S. J. Kim , K. Choi , B. Lee , Y. Kim , and B. H. Hong , “Materials for flexible, stretchable electronics: graphene and 2D materials,” Ann. Rev. Mater. Res., vol. 45, pp. 63–84, 2015. CrossRef | Google Scholar
    Akinwande, D. Petrone, N. Hone, J. [39] D. Akinwande , N. Petrone , and J. Hone , “Two-dimensional flexible nanoelectronics,” Nat. Commun., vol. 5, p. 5678, 2014. CrossRef | Google Scholar
  • PubMed
  • García Núñez, C. Navaraj, W. T. Polat, E. O. Dahiya, R. [40] C. García Núñez , W. T. Navaraj , E. O. Polat , and R. Dahiya , “Energy autonomous flexible and transparent tactile skin,” Adv. Funct. Mater, vol. 27, no. 18, 2017. Google Scholar
    Polat, E. O. Balci, O. Kakenov, N. Uzlu, H. B. Kocabas, C. Dahiya, R. [41] E. O. Polat , O. Balci , N. Kakenov , H. B. Uzlu , C. Kocabas , and R. Dahiya , “Synthesis of large area graphene for high performance in flexible optoelectronic devices,” Sci. Rep., vol. 5, p. 16744, 2015. CrossRef | Google Scholar
  • PubMed
  • Wang, C. [42] C. Wang , et al., “Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications,” Nano Lett., vol. 12, no. 3, pp. 1527–1533, 2012. CrossRef | Google Scholar
  • PubMed
  • Lau, P. H. [43] P. H. Lau , et al., “Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates,” Nano Lett., vol. 13, no. 8, pp. 3864–3869, 2013. CrossRef | Google Scholar
  • PubMed
  • Khan, S. Dahiya, R. S. Lorenzelli, L. [44] S. Khan , R. S. Dahiya , and L. Lorenzelli , “Flexible thermoelectric generator based on transfer printed Si microwires,” in Solid State Device Research Conference (ESSDERC), 2014 44th European, 2014, pp. 86–89: IEEE. CrossRef | Google Scholar
    Khan, S. Yogeswaran, N. Taube, W. Lorenzelli, L. Dahiya, R. 80[45] S. Khan , N. Yogeswaran , W. Taube , L. Lorenzelli , and R. Dahiya , “Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers,” J. Micromech. Microeng., vol. 25, no. 12, p. 125019, 2015. CrossRef | Google Scholar
    Khan, S. Lorenzelli, L. Dahiya, R. [46] S. Khan , L. Lorenzelli , and R. Dahiya , “Flexible MISFET devices from transfer printed Si microwires and spray coating,” IEEE. J. Electron. Devi., vol. 4, no. 4, pp. 189–196, 2016. CrossRef | Google Scholar
    Dang, W. Vinciguerra, V. Lorenzelli, L. Dahiya, R. [47] W. Dang , V. Vinciguerra , L. Lorenzelli , and R. Dahiya , “Printable stretchable interconnects,” Flex. Print. Electron., vol. 2, no. 1, p. 013003, 2017. CrossRef | Google Scholar
    Dahiya, R. S. Adami, A. Collini, C. Lorenzelli, L. [48] R. S. Dahiya , A. Adami , C. Collini , and L. Lorenzelli , “Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates,” Microelectron. Eng., vol. 98, pp. 502–507, 2012. CrossRef | Google Scholar
    Shakthivel, D. García Núñez, C. Dahiya, R. [49] D. Shakthivel , C. García Núñez , and R. Dahiya , “Inorganic semiconducting nanowires for flexible electronics,” United Scholars Publications, USA, 2016. Google Scholar
    Choi, M.-C. Kim, Y. Ha, C.-S. [50] M.-C. Choi , Y. Kim , and C.-S. Ha , “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci., vol. 33, no. 6, pp. 581–630, 2008. CrossRef | Google Scholar
    Kwiat, M. Cohen, S. Pevzner, A. Patolsky, F. [51] M. Kwiat , S. Cohen , A. Pevzner , and F. Patolsky , “Large-scale ordered 1D-nanomaterials arrays: Assembly or not?,” Nano Today, vol. 8, no. 6, pp. 677–694, 2013. CrossRef | Google Scholar
    Long, Y.-Z. Yu, M. Sun, B. Gu, C.-Z. Fan, Z. [52] Y.-Z. Long , M. Yu , B. Sun , C.-Z. Gu , and Z. Fan , “Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics,” Chem. Soc. Rev., vol. 41, no. 12, pp. 4560–4580, 2012. CrossRef | Google Scholar
  • PubMed
  • Javey, A. Nam, S. Friedman, R. S. Yan, H. Lieber, C. M. [53] A. Javey , S. Nam , R. S. Friedman , H. Yan , and C. M. Lieber , “Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics,” Nano Lett., vol. 7, no. 3, pp. 773–777, 2007. CrossRef | Google Scholar
  • PubMed
  • Shakthivel, D. Liu, F. Núñez, C. G. Taube, W. Dahiya, R. [54] D. Shakthivel , F. Liu , C. G. Núñez , W. Taube , and R. Dahiya , “Nanomaterials processing for flexible electronics,” in Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on, 2017, pp. 2102–2106: IEEE. CrossRef | Google Scholar
    Su, B. Wu, Y. Jiang, L. [55] B. Su , Y. Wu , and L. Jiang , “The art of aligning one-dimensional (1D) nanostructures,” Chem. Soc. Rev., vol. 41, no. 23, pp. 7832–7856, 2012. CrossRef | Google Scholar
  • PubMed
  • Dahiya, R. Gottardi, G. Laidani, N. [56] R. Dahiya , G. Gottardi , and N. Laidani , “PDMS residues-free micro/macrostructures on flexible substrates,” Microelectron. Eng., vol. 136, pp. 57–62, 2015. CrossRef | Google Scholar
    Fan, Z. [57] Z. Fan , et al., “Toward the development of printable nanowire electronics and sensors,” Adv. Mater., vol. 21, no. 37, pp. 3730–3743, 2009. CrossRef | Google Scholar
    Wang, N. Cai, Y. Zhang, R. Q. 81[58] N. Wang , Y. Cai , and R. Q. Zhang , “Growth of nanowires,” Mater. Sci. Eng. Rep., vol. 60, no. 1–6, pp. 1–51, 3/31/ 2008. CrossRef | Google Scholar
    Zhang, A. Zheng, G. Lieber, C. M. [59] A. Zhang , G. Zheng , and C. M. Lieber , Nanowires: Building blocks for nanoscience and nanotechnology. Springer, 2016. CrossRef | Google Scholar
    Amato, M. Palummo, M. Rurali, R. Ossicini, S. [60] M. Amato , M. Palummo , R. Rurali , and S. Ossicini , “Silicon–germanium nanowires: chemistry and physics in play, from basic principles to advanced applications,” Chem. Rev., vol. 114, no. 2, pp. 1371–1412, 2013. CrossRef | Google Scholar
  • PubMed
  • Singh, N. [61] N. Singh , et al., “Si, SiGe nanowire devices by top-down technology and their applications,” IEEE. T. Electron. Dev., vol. 55, no. 11, pp. 3107–3118, 2008. CrossRef | Google Scholar
    Hobbs, R. G. Petkov, N. Holmes, J. D. [62] R. G. Hobbs , N. Petkov , and J. D. Holmes , “Semiconductor nanowire fabrication by bottom-up and top-down paradigms,” Chem. Mater., vol. 24, no. 11, pp. 1975–1991, 2012. CrossRef | Google Scholar
    Wagner, R. S. Ellis, W. C. [63] R. S. Wagner and W. C. Ellis , “Vapor‐liquid‐solid mechanism of single crystal growth,” Appl. Phys. Lett, vol. 4, no. 5, pp. 89–90, 1964. CrossRef | Google Scholar
    Wagner, R. Doherty, C. [64] R. Wagner and C. Doherty , “Controlled vapor‐liquid‐solid growth of silicon crystals,” J. Electrochem. Soc., vol. 113, no. 12, pp. 1300–1305, 1966. CrossRef | Google Scholar
    Wagner, R. Ooherty, C. [65] R. Wagner and C. Ooherty , “Mechanism of branching and kinking during VLS crystal growth,” J. Electrochem. Soc., vol. 115, no. 1, pp. 93–99, 1968. CrossRef | Google Scholar
    Liu, X. Long, Y.-Z. Liao, L. Duan, X. Fan, Z. [66] X. Liu , Y.-Z. Long , L. Liao , X. Duan , and Z. Fan , “Large-scale integration of semiconductor nanowires for high-performance flexible electronics,” ACS Nano, vol. 6, no. 3, pp. 1888–1900, 2012. CrossRef | Google Scholar
  • PubMed
  • Shakthivel, D. Taube, W. Raghavan, S. Dahiya, R. [67] D. Shakthivel , W. Taube , S. Raghavan , and R. Dahiya , “VLS growth mechanism of Si-nanowires for flexible electronics,” in IEEE 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), 2015, pp. 349–352. Google Scholar
    Fan, H. J. Bertram, F. Dadgar, A. Christen, J. Krost, A. Zacharias, M. [68] H. J. Fan , F. Bertram , A. Dadgar , J. Christen , A. Krost , and M. Zacharias , “Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence,” Nanotechnology, vol. 15, no. 11, p. 1401, 2004. CrossRef | Google Scholar
    Dai, Z. R. Pan, Z. W. Wang, Z. L. [69] Z. R. Dai , Z. W. Pan , and Z. L. Wang , “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater, vol. 13, no. 1, pp. 9–24, 2003. CrossRef | Google Scholar
    Scott, C. D. Arepalli, S. Nikolaev, P. Smalley, R. E. [70] C. D. Scott , S. Arepalli , P. Nikolaev , and R. E. Smalley , “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Appl. Phys. A-Mater., vol. 72, no. 5, pp. 573–580, May 2001. CrossRef | Google Scholar
    Jung, S. H. [71] S. H. Jung , et al., “High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen,” Appl. Phys. A-Mater., vol. 76, no. 2, pp.285–286, Feb 2003. CrossRef | Google Scholar
    Shang, N. G. Tan, Y. Y. Stolojan, V. Papakonstantinou, P. Silva, S. R. P. 82[72] N. G. Shang , Y. Y. Tan , V. Stolojan , P. Papakonstantinou , and S. R. P. Silva , “High-rate low-temperature growth of vertically aligned carbon nanotubes,” Nanotechnology, vol. 21, no. 50, p. 6, Dec 2010. CrossRef | Google Scholar
  • PubMed
  • Tan, Y. Y. [73] Y. Y. Tan , et al., “Photo-thermal chemical vapor deposition growth of graphene,” Carbon, vol. 50, no. 2, pp.668–673, Feb 2012. CrossRef | Google Scholar
    Ahn, J.-H. [74] J.-H. Ahn , et al., “Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials,” Science, vol. 314, no. 5806, pp.1754–1757, 2006. CrossRef | Google Scholar
  • PubMed
  • Yerushalmi, R. Jacobson, Z. A. Ho, J. C. Fan, Z. Javey, A. [75] R. Yerushalmi , Z. A. Jacobson , J. C. Ho , Z. Fan , and A. Javey , “Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing,” Appl. Phys. Lett, vol. 91, no. 20, p. 203104, 2007. CrossRef | Google Scholar
    Schmidt, V. Wittemann, J. V. Gösele, U. [76] V. Schmidt , J. V. Wittemann , and U. Gösele , “Growth, thermodynamics, and electrical properties of silicon nanowires,” Chem. Rev., vol. 110, no. 1, pp. 361–388, 2010. CrossRef | Google Scholar
  • PubMed
  • Schmidt, V. Wittemann, J. V. Senz, S. Gösele, U. [77] V. Schmidt , J. V. Wittemann , S. Senz , and U. Gösele , “Silicon nanowires: a review on aspects of their growth and their electrical properties,” Adv. Mater., vol. 21, no. 25–26, pp. 2681–2702, 2009. CrossRef | Google Scholar
    Boskovic, B. O. Stolojan, V. Khan, R. U. A. Haq, S. Silva, S. R. P. [78] B. O. Boskovic , V. Stolojan , R. U. A. Khan , S. Haq , and S. R. P. Silva , “Large-area synthesis of carbon nanofibres at room temperature,” Nat. Mater., vol. 1, no. 3, pp.165–168, Nov 2002. CrossRef | Google Scholar
  • PubMed
  • Wang, Y. Schmidt, V. Senz, S. Gösele, U. [79] Y. Wang , V. Schmidt , S. Senz , and U. Gösele , “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nat. Nanotechnol., vol. 1, no. 3, pp.186–189, 2006. CrossRef | Google Scholar
  • PubMed
  • Schmid, H. [80] H. Schmid , et al., “Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si (111) using silane,” J. Appl. Phys., vol. 103, no. 2, p. 024304, 2008. CrossRef | Google Scholar
    Lew, K.-K. Redwing, J. M. [81] K.-K. Lew and J. M. Redwing , “Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates,” J. Cryst. Growth., vol. 254, no. 1, pp.14–22, 2003. CrossRef | Google Scholar
    Fan, H. J. Werner, P. Zacharias, M. [82] H. J. Fan , P. Werner , and M. Zacharias , “Semiconductor nanowires: from self‐organization to patterned growth,” Small, vol. 2, no. 6, pp.700–717, 2006. CrossRef | Google Scholar
  • PubMed
  • Ross, F. M. [83] F. M. Ross , “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys., vol. 73, no. 11, p.114501, 2010. CrossRef | Google Scholar
    Hannon, J. Kodambaka, S. Ross, F. Tromp, R. [84] J. Hannon , S. Kodambaka , F. Ross , and R. Tromp , “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, vol. 440, no. 7080, pp.69–71, 2006. CrossRef | Google Scholar
    Wen, C.-Y. [85] C.-Y. Wen , et al., “Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires,” Phys. Rev. Lett., vol. 107, no. 2, p. 025503, 2011. CrossRef | Google Scholar
    Moutanabbir, O. Isheim, D. Blumtritt, H. Senz, S. Pippel, E. Seidman, D. N. 83[86] O. Moutanabbir , D. Isheim , H. Blumtritt , S. Senz , E. Pippel , and D. N. Seidman , “Colossal injection of catalyst atoms into silicon nanowires,” Nature, vol. 496, no. 7443, pp.78–82, 2013. CrossRef | Google Scholar
  • PubMed
  • Allen, J. E. [87] J. E. Allen , et al., “High-resolution detection of Au catalyst atoms in Si nanowires,” Nat. Nanotechnol., vol. 3, no. 3, pp.168–173, 2008. CrossRef | Google Scholar
  • PubMed
  • Lensch-Falk, J. L. Hemesath, E. R. Perea, D. E. Lauhon, L. J. [88] J. L. Lensch-Falk , E. R. Hemesath , D. E. Perea , and L. J. Lauhon , “Alternative catalysts for VSS growth of silicon and germanium nanowires,” J. Mater. Chem., 10.1039/B817391E vol. 19, no. 7, pp.849–857, 2009. CrossRef | Google Scholar
    Baron, T. Gordon, M. Dhalluin, F. Ternon, C. Ferret, P. Gentile, P. [89] T. Baron , M. Gordon , F. Dhalluin , C. Ternon , P. Ferret , and P. Gentile , “Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi,” Appl. Phys. Lett., vol. 89, no. 23, p.233111, 2006. CrossRef | Google Scholar
    Cao, L. Garipcan, B. Atchison, J. S. Ni, C. Nabet, B. Spanier, J. E. [90] L. Cao , B. Garipcan , J. S. Atchison , C. Ni , B. Nabet , and J. E. Spanier , “Instability and transport of metal catalyst in the growth of tapered silicon nanowires,” Nano Lett., vol. 6, no. 9, pp. 1852–1857, 2006. CrossRef | Google Scholar
  • PubMed
  • Schmidt, V. Senz, S. Gösele, U. [91] V. Schmidt , S. Senz , and U. Gösele , “Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism,” Phys. Rev. B, vol. 75, no. 4, p.045335, 2007. CrossRef | Google Scholar
    Pinion, C. W. Nenon, D. P. Christesen, J. D. Cahoon, J. F. [92] C. W. Pinion , D. P. Nenon , J. D. Christesen , and J. F. Cahoon , “Identifying crystallization- and incorporation-limited regimes during vapor–liquid–solid growth of Si nanowires,” ACS Nano, vol. 8, no. 6, pp. 6081–6088, 2014. CrossRef | Google Scholar
  • PubMed
  • Dubrovskii, V. G. [93] V. G. Dubrovskii , Nucleation theory and growth of nanostructures. Springer, 2014. CrossRef | Google Scholar
    Handbook, A. [94] A. Handbook , “Vol. 3: Alloy phase diagrams,” ASM International, vol. 9, p. 2, 1992. Google Scholar
    Sunkara, M. K. Sharma, S. Miranda, R. Lian, G. Dickey, E. [95] M. K. Sunkara , S. Sharma , R. Miranda , G. Lian , and E. Dickey , “Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method,” Appl. Phys. Lett, vol. 79, no. 10, pp. 1546–1548, 2001. CrossRef | Google Scholar
    Sharma, S. Sunkara, M. [96] S. Sharma and M. Sunkara , “Direct synthesis of single-crystalline silicon nanowires using molten gallium and silane plasma,” Nanotechnology, vol. 15, no. 1, p. 130, 2003. CrossRef | Google Scholar
    Choi, S.-Y. Fung, W. Y. Lu, W. [97] S.-Y. Choi , W. Y. Fung , and W. Lu , “Growth and electrical properties of Al-catalyzed Si nanowires,” Appl. Phys. Lett., vol. 98, no. 3, p. 033108, 2011. Google Scholar
    Arbiol, J. Kalache, B. Cabarrocas, P. R. i Morante, J. R Morral, A. F. i [98] J. Arbiol , B. Kalache , P. R. i. Cabarrocas , J. R. Morante , and A. F. i. Morral , “Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism,” Nanotechnology, vol. 18, no. 30, p. 305606, 2007. CrossRef | Google Scholar
    Khan, S. Lorenzelli, L. Dahiya, R. S. [99] S. Khan , L. Lorenzelli , and R. S. Dahiya , “Technologies for printing sensors and electronics over large flexible substrates: a review,” IEEE. Sens. J., vol. 15, no. 6, pp. 3164–3185, 2015. CrossRef | Google Scholar
    Kim, D.-H. 84[100] D.-H. Kim , et al., “Stretchable and foldable silicon integrated circuits,” Science, vol. 320, no. 5875, pp. 507–511, 2008. CrossRef | Google Scholar
  • PubMed
  • Kang, S. J. [101] S. J. Kang , et al., “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat. Nanotechnol., vol. 2, no. 4, p. 230, 2007. CrossRef | Google Scholar
  • PubMed
  • Han, H. Huang, Z. Lee, W. [102] H. Han , Z. Huang , and W. Lee , “Metal-assisted chemical etching of silicon and nanotechnology applications,” Nano Today, vol. 9, no. 3, pp. 271–304, 2014. CrossRef | Google Scholar
    Lu, W. Lieber, C. M. [103] W. Lu and C. M. Lieber , “Nanoelectronics from the bottom up,” Nat. Mater., vol. 6, no. 11, pp. 841–850, 2007. CrossRef | Google Scholar
  • PubMed
  • Cui, Y. Lieber, C. M. [104] Y. Cui and C. M. Lieber , “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, no. 5505, pp. 851–853, 2001. CrossRef | Google Scholar
  • PubMed
  • Fuhrmann, B. Leipner, H. S. Höche, H.-R. Schubert, L. Werner, P. Gösele, U. [105] B. Fuhrmann , H. S. Leipner , H.-R. Höche , L. Schubert , P. Werner , and U. Gösele , “Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy,” Nano Lett., vol. 5, no. 12, pp. 2524–2527, 2005. CrossRef | Google Scholar
  • PubMed
  • Morales, A. M. Lieber, C. M. [106] A. M. Morales and C. M. Lieber , “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, no. 5348, pp. 208–211, 1998. CrossRef | Google Scholar
  • PubMed
  • Zhang, Y. [107] Y. Zhang , et al., “Silicon nanowires prepared by laser ablation at high temperature,” Appl. Phys. Lett., vol. 72, no. 15, pp. 1835–1837, 1998. CrossRef | Google Scholar
    Lee, J.-S. Kang, M.-I. Kim, S. Lee, M.-S. Lee, Y.-K. [108] J.-S. Lee , M.-I. Kang , S. Kim , M.-S. Lee , and Y.-K. Lee , “Growth of zinc oxide nanowires by thermal evaporation on vicinal Si (100) substrate,” J. Cryst. Growth., vol. 249, no. 1, pp. 201–207, 2003. CrossRef | Google Scholar
    Bierman, M. J. Lau, Y. A. Kvit, A. V. Schmitt, A. L. Jin, S. [109] M. J. Bierman , Y. A. Lau , A. V. Kvit , A. L. Schmitt , and S. Jin , “Dislocation-driven nanowire growth and Eshelby twist,” Science, vol. 320, no. 5879, pp. 1060–1063, 2008. CrossRef | Google Scholar
  • PubMed
  • Khalaf, M. M. Ibrahimov, H. G. Ismailov, E. H. [110] M. M. Khalaf , H. G. Ibrahimov , and E. H. Ismailov , “Nanostructured materials: importance, synthesis and characterization—a review,” Chemistry Journal vol. 2, no. 3, pp. 118–125, 2012. Google Scholar
    Hitchman, M. L. Jensen, K. F. [111] M. L. Hitchman and K. F. Jensen , Chemical vapor deposition: principles and applications. Elsevier, 1993. Google Scholar
    Pierson, H. O. [112] H. O. Pierson , Handbook of chemical vapor deposition: principles, technology and applications. William Andrew, 1999. Google Scholar
    Kim, B. Tersoff, J. Kodambaka, S. Reuter, M. Stach, E. Ross, F. [113] B. Kim , J. Tersoff , S. Kodambaka , M. Reuter , E. Stach , and F. Ross , “Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth,” Science, vol. 322, no. 5904, pp. 1070–1073, 2008. CrossRef | Google Scholar
  • PubMed
  • Hofmann, S. 85[114] S. Hofmann , et al., “In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation,” Nano Lett., vol. 7, no. 3, pp. 602–608, 2007. CrossRef | Google Scholar
  • PubMed
  • Gamalski, A. Ducati, C. Hofmann, S. [115] A. Gamalski , C. Ducati , and S. Hofmann , “Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth,” J. Phys. Chem. B, vol. 115, no. 11, pp. 4413–4417, 2011. Google Scholar
    Xiang, J. Lu, W. Hu, Y. Wu, Y. Yan, H. Lieber, C. M. [116] J. Xiang , W. Lu , Y. Hu , Y. Wu , H. Yan , and C. M. Lieber , “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, vol. 441, no. 7092, pp. 489–493, 2006. CrossRef | Google Scholar
  • PubMed
  • Qian, F. Li, Y. Gradecak, S. Wang, D. Barrelet, C. J. Lieber, C. M. [117] F. Qian , Y. Li , S. Gradecak , D. Wang , C. J. Barrelet , and C. M. Lieber , “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett., vol. 4, no. 10, pp. 1975–1979, 2004. CrossRef | Google Scholar
    Schmid, H. Björk, M. T. Knoch, J. Karg, S. Riel, H. Riess, W. [118] H. Schmid , M. T. Björk , J. Knoch , S. Karg , H. Riel , and W. Riess , “Doping limits of grown in situ doped silicon nanowires using phosphine,” Nano Lett., vol. 9, no. 1, pp. 173–177, 2008. CrossRef | Google Scholar
    Wallentin, J. Borgström, M. T. [119] J. Wallentin and M. T. Borgström , “Doping of semiconductor nanowires,” J. Mater. Res., vol. 26, no. 17, pp. 2142–2156, 2011. CrossRef | Google Scholar
    Yang, C. Zhong, Z. Lieber, C. M. [120] C. Yang , Z. Zhong , and C. M. Lieber , “Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires,” Science, vol. 310, no. 5752, pp. 1304–1307, 2005. CrossRef | Google Scholar
  • PubMed
  • Givargizov, E. [121] E. Givargizov , “Fundamental aspects of VLS growth,” J. Cryst. Growth., vol. 31, pp. 20–30, 1975. CrossRef | Google Scholar
    Givargizov, E. I. Sheftal, N. N. [122] E. I. Givargizov and N. N. Sheftal , “Morphology of silicon whiskers grown by the VLS-technique,” J. Cryst. Growth, vol. 9, no. 0, pp. 326–329, 5, 1971. CrossRef | Google Scholar
    Bootsma, G. Gassen, H. [123] G. Bootsma and H. Gassen , “A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane,” J. Cryst. Growth, vol. 10, no. 3, pp. 223–234, 1971. CrossRef | Google Scholar
    Kodambaka, S. Tersoff, J. Reuter, M. Ross, F. [124] S. Kodambaka , J. Tersoff , M. Reuter , and F. Ross , “Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires,” Phys. Rev. Lett., vol. 96, no. 9, p. 096105, 2006. CrossRef | Google Scholar
  • PubMed
  • Laidler, K. J. [125] K. J. Laidler , Chemical Kinetics. Delhi: Pearson Education, 2008. Google Scholar
    Fröberg, L. Seifert, W. Johansson, J. [126] L. Fröberg , W. Seifert , and J. Johansson , “Diameter-dependent growth rate of InAs nanowires,” Phys. Rev. B, vol. 76, no. 15, p. 153401, 2007. CrossRef | Google Scholar
    Kashchiev, D. [127] D. Kashchiev , “Dependence of the growth rate of nanowires on the nanowire diameter,” Cryst. Growth. Des., vol. 6, no. 5, pp. 1154–1156, 2006. CrossRef | Google Scholar
    Shakthivel, D. Raghavan, S. [128] D. Shakthivel and S. Raghavan , “Vapor-liquid-solid growth of Si nanowires: A kinetic analysis,” J. Appl. Phys., vol. 112, no. 2, p. 024317, 2012. CrossRef | Google Scholar
    Mårtensson, T. 86[129] T. Mårtensson , et al., “Epitaxial III−V Nanowires on Silicon,” Nano Lett., vol. 4, no. 10, pp. 1987–1990, 2004. CrossRef | Google Scholar
    Zhang, R. Q. Lifshitz, Y. Lee, S. T. [130] R. Q. Zhang , Y. Lifshitz , and S. T. Lee , “Oxide‐assisted growth of semiconducting nanowires,” Adv. Mater., vol. 15, no. 7–8, pp. 635–640, 2003. CrossRef | Google Scholar
    Kolb, F. [131] F. Kolb , et al., “Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism,” J. Electrochem. Soc., vol. 151, no. 7, pp. G472–G475, 2004. CrossRef | Google Scholar
    Huang, M. H. Wu, Y. Feick, H. Tran, N. Weber, E. Yang, P. [132] M. H. Huang , Y. Wu , H. Feick , N. Tran , E. Weber , and P. Yang , “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., vol. 13, no. 2, pp. 113–116, 2001. CrossRef | Google Scholar
    Persson, A. I. Larsson, M. W. Stenström, S. Ohlsson, B. J. Samuelson, L. Wallenberg, L. R. [133] A. I. Persson , M. W. Larsson , S. Stenström , B. J. Ohlsson , L. Samuelson , and L. R. Wallenberg , “Solid-phase diffusion mechanism for GaAs nanowire growth,” Nat. Mater., vol. 3, no. 10, pp. 677–681, 2004. CrossRef | Google Scholar
  • PubMed
  • Kamins, T. Li, X. Williams, R. S. Liu, X. [134] T. Kamins , X. Li , R. S. Williams , and X. Liu , “Growth and structure of chemically vapor deposited Ge nanowires on Si substrates,” Nano Lett., vol. 4, no. 3, pp. 503–506, 2004. CrossRef | Google Scholar
    Dubrovskii, V. Sibirev, N. Cirlin, G. [135] V. Dubrovskii , N. Sibirev , and G. Cirlin , “Kinetic model of the growth of nanodimensional whiskers by the vapor-liquid-crystal mechanism,” Tech. Phys. Lett., vol. 30, no. 8, pp. 682–686, 2004. CrossRef | Google Scholar
    Hofmann, S. [136] S. Hofmann , et al., “Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth,” Nat. Mater., vol. 7, no. 5, p. 372, 2008. CrossRef | Google Scholar
  • PubMed
  • Zhao, H. Zhou, S. Hasanali, Z. Wang, D. [137] H. Zhao , S. Zhou , Z. Hasanali , and D. Wang , “Influence of pressure on silicon nanowire growth kinetics,” J. Phys. Chem. B, vol. 112, no. 15, pp. 5695–5698, 2008. Google Scholar
    Pal, D. Kowar, M. Daw, A. Roy, P. [138] D. Pal , M. Kowar , A. Daw , and P. Roy , “Modelling of silicon epitaxy using silicon tetrachloride as the source,” Microelectr. J., vol. 26, no. 6, pp. 507–514, 1995. CrossRef | Google Scholar
    Zambov, L. [139] L. Zambov , “Kinetics of homogeneous decomposition of silane,” J. Cryst. Growth, vol. 125, no. 1, pp. 164–174, 1992. CrossRef | Google Scholar
    Dubrovskii, V. Sibirev, N. Cirlin, G. Harmand, J. Ustinov, V. [140] V. Dubrovskii , N. Sibirev , G. Cirlin , J. Harmand , and V. Ustinov , “Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy,” Phys. Rev. E, vol. 73, no. 2, p. 021603, 2006. CrossRef | Google Scholar
  • PubMed
  • Johansson, J. Wacaser, B. A. Dick, K. A. Seifert, W. [141] J. Johansson , B. A. Wacaser , K. A. Dick , and W. Seifert , “Growth related aspects of epitaxial nanowires,” Nanotechnology, vol. 17, no. 11, p. S355, 2006. CrossRef | Google Scholar
    Hirth, J. P. Pound, G. M. [142] J. P. Hirth and G. M. Pound , Condensation and evaporation; nucleation and growth kinetics. Macmillan, 1963. Google Scholar
    Markov, I. [143] I. Markov , “Crystal growth for beginners: fundamentals of nucleation,” Crystal Growth and Epitaxy, p. 69, 1995. CrossRef | Google Scholar
    Wacaser, B. A. Dick, K. A. Johansson, J. Borgström, M. T. Deppert, K. Samuelson, L. 87[144] B. A. Wacaser , K. A. Dick , J. Johansson , M. T. Borgström , K. Deppert , and L. Samuelson , “Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires,” Adv. Mater., vol. 21, no. 2, pp. 153–165, 2009. CrossRef | Google Scholar
    Shakthivel, D. Rathkanthiwar, S. Raghavan, S. [145] D. Shakthivel , S. Rathkanthiwar , and S. Raghavan , “Si nanowire growth on sapphire: Classical incubation, reverse reaction, and steady state supersaturation,” J. Appl. Phys., vol. 117, no. 16, p. 164302, 2015. CrossRef | Google Scholar
    Kalache, B. i Cabarrocas, P. R. i Morral, A. F. [146] B. Kalache , P. R. i Cabarrocas , and A. F. i Morral , “Observation of incubation times in the nucleation of silicon nanowires obtained by the vapor–liquid–solid method,” Jpn. J. Appl. Phys., vol. 45, no. 2L, p. L190, 2006. CrossRef | Google Scholar
    Kreupl, F. [147] F. Kreupl , et al., “Carbon nanotubes in interconnect applications,” Microelectron. Eng., vol. 64, no. 1–4, pp. 399–408, Oct 2002. CrossRef | Google Scholar
    Kroto, H. W. Heath, J. R. Obrien, S. C. Curl, R. F. Smalley, R. E. [148] H. W. Kroto , J. R. Heath , S. C. Obrien , R. F. Curl , and R. E. Smalley , “C-60 – Buckminsterfullerene,” (in English), Nature, vol. 318, no. 6042, pp. 162–163, 1985. CrossRef | Google Scholar
    Iijima, S. [149] S. Iijima , “Helical Microtubules of Graphitic Carbon,” Nature, vol. 354, no. 6348, pp. 56–58, Nov 1991. CrossRef | Google Scholar
    Wei, B. Q. Vajtai, R. Ajayan, P. M. [150] B. Q. Wei , R. Vajtai , and P. M. Ajayan , “Reliability and current carrying capacity of carbon nanotubes,” (in English), Appl. Phys. Lett., vol. 79, no. 8, pp. 1172–1174, Aug 2001. CrossRef | Google Scholar
    Frank, S. Poncharal, P. Wang, Z. L. de Heer, W. A. [151] S. Frank , P. Poncharal , Z. L. Wang , and W. A. de Heer , “Carbon nanotube quantum resistors” (in English), Science, vol. 280, no. 5370, pp. 1744–1746, Jun 1998. CrossRef | Google Scholar
  • PubMed
  • Dresselhaus, M. S. Dresselhaus, G. Avouris, P. [152] M. S. Dresselhaus , G. Dresselhaus , and P. Avouris , Carbon nanotubes: synthesis, structure, properties, and applications, Springer Books 2001. CrossRef | Google Scholar
    Hata, K. Futaba, D. N. Mizuno, K. Namai, T. Yumura, M. Iijima, S. [153] K. Hata , D. N. Futaba , K. Mizuno , T. Namai , M. Yumura , and S. Iijima , “Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes,” Science, vol. 306, no. 5700, pp. 1362–1364, Nov 19 2004. CrossRef | Google Scholar
  • PubMed
  • Thostenson, E. T. Ren, Z. F. Chou, T. W. [154] E. T. Thostenson , Z. F. Ren , and T. W. Chou , “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., vol. 61, no. 13, pp. 1899–1912, 2001. CrossRef | Google Scholar
    Dresselhaus, M. S. Dresselhaus, G. Saito, R. Jorio, A. [155] M. S. Dresselhaus , G. Dresselhaus , R. Saito , and A. Jorio , “Raman spectroscopy of carbon nanotubes,” Phys. Rep., vol. 409, no. 2, pp. 47–99, Mar 2005. CrossRef | Google Scholar
    Saito, R. Dresselhaus, G. Dresselhaus, M. S. [156] R. Saito , G. Dresselhaus , and M. S. Dresselhaus , Physical properties of carbon nanotubes, London: Imperial College Press, 1998. CrossRef | Google Scholar
    Popov, V. N. [157] V. N. Popov , “Carbon nanotubes: properties and application,” Mater. Sci. Eng. Rep., vol. 43, no. 3, pp. 61–102, Jan 15 2004. CrossRef | Google Scholar
    Dresselhaus, M. S. Jorio, A. Saito, R. 88[158] M. S. Dresselhaus , A. Jorio , and R. Saito , “Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy,” in Annu. Rev. Conden. Ma. P, vol. 1, 2010, pp. 89–108. CrossRef | Google Scholar
    Park, S. Vosguerichian, M. Bao, Z. [159] S. Park , M. Vosguerichian , and Z. Bao , “A review of fabrication and applications of carbon nanotube film-based flexible electronics,” Nanoscale, vol. 5, no. 5, pp. 1727–1752, 2013. CrossRef | Google Scholar
  • PubMed
  • Tans, S. J. [160] S. J. Tans , et al., “Individual single-wall carbon nanotubes as quantum wires,” Nature, vol. 386, no. 6624, pp. 474–477, Apr 1997. CrossRef | Google Scholar
    Bachtold, A. [161] A. Bachtold , et al., “Aharonov-Bohm oscillations in carbon nanotubes,” Nature, vol. 397, no. 6721, pp. 673–675, 1999. CrossRef | Google Scholar
    Roth, S. Krstic, V. Rikken, G. [162] S. Roth , V. Krstic , and G. Rikken , “Quantum transport in carbon nanotubes,” Curr. Appl. Phys., vol. 2, no. 2, pp. 155–161, 2002. CrossRef | Google Scholar
    Maruyama, R. Nam, Y. W. Han, J. H. Strano, M. S. [163] R. Maruyama , Y. W. Nam , J. H. Han , and M. S. Strano , “Well-defined single-walled carbon nanotube fibers as quantum wires: Ballistic conduction over micrometer-length scales,” Curr. Appl. Phys., vol. 11, no. 6, pp. 1414–1418, Nov 2011. CrossRef | Google Scholar
    Kong, J. [164] J. Kong , et al., “Quantum interference and ballistic transmission in nanotube electron waveguides,” Phys. Rev. Lett., vol. 87, no. 10, p. 4, Sep 2001, Art. no. 106801. CrossRef | Google Scholar
  • PubMed
  • Javey, A. Guo, J. Wang, Q. Lundstrom, M. Dai, H. J. [165] A. Javey , J. Guo , Q. Wang , M. Lundstrom , and H. J. Dai , “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654–657, Aug 2003. CrossRef | Google Scholar
  • PubMed
  • Rutherglen, C. Burke, P. [166] C. Rutherglen and P. Burke , “Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes,” Small, vol. 5, no. 8, pp. 884–906, Apr 2009. CrossRef | Google Scholar
  • PubMed
  • Fan, Y. W. Goldsmith, B. R. Collins, P. G. [167] Y. W. Fan , B. R. Goldsmith , and P. G. Collins , “Identifying and counting point defects in carbon nanotubes,” Nat. Mater., vol. 4, no. 12, pp. 906–911, Dec 2005. CrossRef | Google Scholar
  • PubMed
  • Ando, Y. Zhao, X. Sugai, T. Kumar, M. [168] Y. Ando , X. Zhao , T. Sugai , and M. Kumar , “Growing carbon nanotubes,” Mater. Today., vol. 7, no. 10, pp. 22–29, 2004. CrossRef | Google Scholar
    Ando, Y. [169] Y. Ando , “Carbon nanotube: the inside story,” J. Nanosci. Nanotechno., vol. 10, no. 6, pp. 3726–3738, Jun 2010. CrossRef | Google Scholar
  • PubMed
  • Colbert, D. T. [170] D. T. Colbert , et al., “Growth and sintering of fullerene nanotubes,” Science, vol. 266, no. 5188, pp. 1218–1222, Nov 1994. CrossRef | Google Scholar
  • PubMed
  • Ebbesen, T. W. Ajayan, P. M. [171] T. W. Ebbesen and P. M. Ajayan , “Large-scale synthesis of carbon nanotubes,” Nature vol. 358, pp. 220–222, 1992. CrossRef | Google Scholar
    Ebbesen, T. W. Ajayan, P. M. Hiura, H. Tanigaki, K. [172] T. W. Ebbesen , P. M. Ajayan , H. Hiura , and K. Tanigaki , “Purification of nanotubes,” Nature, Letter vol. 367, no. 6463, pp. 519–519, Feb 1994. CrossRef | Google Scholar
    Tessonnier, J.-P. Su, D. S. 89[173] J.-P. Tessonnier and D. S. Su , “Recent progress on the growth mechanism of carbon nanotubes: a review,” Chemsuschem, vol. 4, no. 7, pp. 824–847, 2011. CrossRef | Google Scholar
  • PubMed
  • Anazawa, K. Shimotani, K. Manabe, C. Watanabe, H. Shimizu, M. [174] K. Anazawa , K. Shimotani , C. Manabe , H. Watanabe , and M. Shimizu , “High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field,” Appl. Phys. Lett., vol. 81, no. 4, pp. 739–741, Jul 2002. CrossRef | Google Scholar
    McAlpine, M. C. Ahmad, H. Wang, D. Heath, J. R. [175] M. C. McAlpine , H. Ahmad , D. Wang , and J. R. Heath , “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater., vol. 6, no. 5, p. 379, 2007. CrossRef | Google Scholar
  • PubMed
  • Farhat, S. [176] S. Farhat , et al., “Diameter control of single-walled carbon nanotubes using argon-helium mixture gases,” J. Chem. Phys., vol. 115, no. 14, pp. 6752–6759, Oct 2001. CrossRef | Google Scholar
    Guo, T. [177] T. Guo , et al., “Uranium stabilization of C28 – a tetravalent fullerene,” Science, vol. 257, no. 5077, pp. 1661–1664, Sep 1992. CrossRef | Google Scholar
  • PubMed
  • Thess, A. [178] A. Thess , et al., “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, no. 5274, pp. 483–487, Jul 1996. CrossRef | Google Scholar
  • PubMed
  • Bandow, S. Rao, A. M. Williams, K. A. Thess, A. Smalley, R. E. Eklund, P. C. [179] S. Bandow , A. M. Rao , K. A. Williams , A. Thess , R. E. Smalley , and P. C. Eklund , “Purification of single-wall carbon nanotubes by microfiltration,” J. Phys. Chem. B, Letter vol. 101, no. 44, pp. 8839–8842, Oct 1997. CrossRef | Google Scholar
    Ishii, H. [180] H. Ishii , et al., “Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures,” Nature, vol. 426, no. 6966, pp. 540–544, Dec 2003. CrossRef | Google Scholar
    Eklund, P. C. [181] P. C. Eklund , et al., “Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser,” Nano Lett., vol. 2, no. 6, pp. 561–566, Jun 2002. CrossRef | Google Scholar
    Bolshakov, A. P. [182] A. P. Bolshakov , et al., “A novel CW laser-powder method of carbon single-wall nanotubes production,” Diam. Relat. Mater., vol. 11, no. 3–6, pp. 927–930, Mar–Jun 2002. CrossRef | Google Scholar
    Endo, M. Takeuchi, K. Igarashi, S. Kobori, K. Shiraishi, M. Kroto, H. W. [183] M. Endo , K. Takeuchi , S. Igarashi , K. Kobori , M. Shiraishi , and H. W. Kroto , “The production and structure of pyrolytic carbon nanotubes (PNTs),” J. Phys. Chem. Solids., vol. 54, no. 12, pp. 1841–1848, Dec 1993. CrossRef | Google Scholar
    Kumar, M. Ando, Y. [184] M. Kumar and Y. Ando , “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechno., vol. 10, no. 6, pp. 3739–3758, Jun 2010. CrossRef | Google Scholar
  • PubMed
  • Ren, Z. F. [185] Z. F. Ren , et al., “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Appl. Phys. Lett., vol. 75, no. 8, pp. 1086–1088, Aug 1999. CrossRef | Google Scholar
    Ren, Z. F. 90[186] Z. F. Ren , et al., “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, vol. 282, no. 5391, pp. 1105–1107, Nov 1998. CrossRef | Google Scholar
    Yudasaka, M. Kikuchi, R. Matsui, T. Ohki, Y. Yoshimura, S. Ota, E. [187] M. Yudasaka , R. Kikuchi , T. Matsui , Y. Ohki , S. Yoshimura , and E. Ota , “Specific conditions for Ni catalyzed carbon nanotube growth by chemical-vapor-deposition,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2477–2479, Oct 1995. CrossRef | Google Scholar
    Yudasaka, M. Kikuchi, R. Ohki, Y. Ota, E. Yoshimura, S. [188] M. Yudasaka , R. Kikuchi , Y. Ohki , E. Ota , and S. Yoshimura , “Behavior of Ni in carbon nanotube nucleation,” Appl. Phys. Lett., vol. 70, no. 14, pp. 1817–1818, Apr 1997. CrossRef | Google Scholar
    Seah, C.-M. Chai, S.-P. Mohamed, A. R. [189] C.-M. Seah , S.-P. Chai , and A. R. Mohamed , “Synthesis of aligned carbon nanotubes,” Carbon, vol. 49, no. 14, pp. 4613–4635, Nov 2011. CrossRef | Google Scholar
    Azam, M. A. Manaf, N. S. A. Talib, E. Bistamam, M. S. A. [190] M. A. Azam , N. S. A. Manaf , E. Talib , and M. S. A. Bistamam , “Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review,” Ionics, vol. 19, no. 11, pp. 1455–1476, 2013. CrossRef | Google Scholar
    Sinnott, S. B. [191] S. B. Sinnott , et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett., vol. 315, no. 1–2, pp. 25–30, Dec 1999. CrossRef | Google Scholar
    Li, Q. [192] Q. Li , et al., “Sustained growth of ultralong carbon nanotube arrays for fiber spinning,” Adv. Mater., vol. 18, no. 23, pp. 3160–3163, Dec 4 2006. CrossRef | Google Scholar
    Amama, P. B. [193] P. B. Amama , et al., “Role of water in super growth of single-walled carbon nanotube carpets,” Nano Lett., vol. 9, no. 1, pp. 44–49, 2009. CrossRef | Google Scholar
  • PubMed
  • Wen, Q. [194] Q. Wen , et al., “Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 um/s,” Chem. Mater., vol. 22, no. 4, pp. 1294–1296, 2010. CrossRef | Google Scholar
    Cassell, A. M. Raymakers, J. A. Kong, J. Dai, H. J. [195] A. M. Cassell , J. A. Raymakers , J. Kong , and H. J. Dai , “Large scale CVD synthesis of single-walled carbon nanotubes,” J. Phys. Chem. B, vol. 103, no. 31, pp. 6484–6492, Aug 1999. CrossRef | Google Scholar
    Dai, H. J. [196] H. J. Dai , et al., “Controlled chemical routes to nanotube architectures, physics, and devices,” (in English), J. Phys. Chem. B, vol. 103, no. 51, pp. 11246–11255, Dec 1999. CrossRef | Google Scholar
    Kong, J. Cassell, A. M. Dai, H. J. [197] J. Kong , A. M. Cassell , and H. J. Dai , “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, no. 4–6, pp. 567–574, Aug 1998. CrossRef | Google Scholar
    Kong, J. Soh, H. T. Cassell, A. M. Quate, C. F. Dai, H. J. [198] J. Kong , H. T. Soh , A. M. Cassell , C. F. Quate , and H. J. Dai , “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, no. 6705, pp. 878–881, Oct 1998. CrossRef | Google Scholar
    Ahmad, M. Anguita, J. V. Stolojan, V. Carey, J. D. Silva, S. R. P. [199] M. Ahmad , J. V. Anguita , V. Stolojan , J. D. Carey , and S. R. P. Silva , “Efficient coupling of optical energy for rapid catalyzed nanomaterial growth: high-quality carbon nanotube synthesis at low substrate 91temperatures,” ACS Appl. Mater. Inter, vol. 5, no. 9, pp. 3861–3866, May 8 2013. CrossRef | Google Scholar
    Ahmad, M. [200] M. Ahmad , et al., “High quality carbon nanotubes on conductive substrates grown at low temperatures,” Adv. Funct. Mater, vol. 25, no. 28, pp. 4419–4429, 2015. CrossRef | Google Scholar
    Ahmad, M. [201] M. Ahmad , “Carbon nanotube based integrated circuit interconnects,” University of Surrey, Faculty of Engineering and Physical Sciences, Department of Electronic Engineering Thesis (Ph.D.) – University of Surrey, 2013. Google Scholar
    Chen, G. Y. Jensen, B. Stolojan, V. Silva, S. R. P. [202] G. Y. Chen , B. Jensen , V. Stolojan , and S. R. P. Silva , “Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies,” Carbon, vol. 49, no. 1, pp. 280–285, Jan 2011. CrossRef | Google Scholar
    Su, M. Zheng, B. Liu, J. [203] M. Su , B. Zheng , and J. Liu , “A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity,” Chem. Phys. Lett., vol. 322, no. 5, pp. 321–326, May 2000. CrossRef | Google Scholar
    Alexandrescu, R. [204] R. Alexandrescu , et al., “Synthesis of carbon nanotubes by CO2-laser-assisted chemical vapour deposition,” Infrared. Phys. Techn., vol. 44, no. 1, pp. 43–50, Feb 2003. CrossRef | Google Scholar
    Maruyama, S. Miyauchi, Y. Murakami, Y. Chiashi, S. [205] S. Maruyama , Y. Miyauchi , Y. Murakami , and S. Chiashi , “Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol,” New. J. Phys., vol. 5, p. 12, Oct 2003. CrossRef | Google Scholar
    Bower, C. Zhu, W. Jin, S. H. Zhou, O. [206] C. Bower , W. Zhu , S. H. Jin , and O. Zhou , “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett., vol. 77, no. 6, pp. 830–832, Aug 2000. CrossRef | Google Scholar
    Merkulov, V. I. Lowndes, D. H. Wei, Y. Y. Eres, G. Voelkl, E. [207] V. I. Merkulov , D. H. Lowndes , Y. Y. Wei , G. Eres , and E. Voelkl , “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Appl. Phys. Lett., vol. 76, no. 24, pp. 3555–3557, Jun 2000. CrossRef | Google Scholar
    Teo, K. B. K. [208] K. B. K. Teo , et al., “Uniform patterned growth of carbon nanotubes without surface carbon,” Appl. Phys. Lett, vol. 79, no. 10, pp. 1534–1536, Sep 2001. CrossRef | Google Scholar
    Anguita, J. V. Cox, D. C. Ahmad, M. Tan, Y. Y. Allam, J. Silva, S. R. P. [209] J. V. Anguita , D. C. Cox , M. Ahmad , Y. Y. Tan , J. Allam , and S. R. P. Silva , “Highly transmissive carbon nanotube forests grown at low substrate temperature,” Adv. Funct. Mater., 2013. CrossRef | Google Scholar
    Chhowalla, M. [210] M. Chhowalla , et al., “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 90, no. 10, pp. 5308–5317, Nov 15 2001. CrossRef | Google Scholar
    Maruyama, S. Kojima, R. Miyauchi, Y. Chiashi, S. Kohno, M. [211] S. Maruyama , R. Kojima , Y. Miyauchi , S. Chiashi , and M. Kohno , “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett., vol. 360, no. 3–4, pp. 229–234, Jul 10 2002. CrossRef | Google Scholar
    Sen, R. Govindaraj, A. Rao, C. N. R. 92[212] R. Sen , A. Govindaraj , and C. N. R. Rao , “Carbon nanotubes by the metallocene route,” Chem. Phys. Lett., vol. 267, no. 3–4, pp. 276–280, Mar 21 1997. CrossRef | Google Scholar
    Kumar, M. Ando, Y. [213] M. Kumar and Y. Ando , “A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor,” Chem. Phys. Lett., vol. 374, no. 5–6, pp. 521–526, Jun 18 2003. CrossRef | Google Scholar
    Li, Q. W. Yan, H. Zhang, J. Liu, Z. F. [214] Q. W. Li , H. Yan , J. Zhang , and Z. F. Liu , “Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition,” Carbon, vol. 42, no. 4, pp. 829–835, 2004. CrossRef | Google Scholar
    Yuan, D. Ding, L. Chu, H. Feng, Y. McNicholas, T. P. Liu, J. [215] D. Yuan , L. Ding , H. Chu , Y. Feng , T. P. McNicholas , and J. Liu , “Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts,” Nano Lett., vol. 8, no. 8, pp. 2576–2579, Aug 2008. CrossRef | Google Scholar
  • PubMed
  • Seidel, R. Duesberg, G. S. Unger, E. Graham, A. P. Liebau, M. Kreupl, F. [216] R. Seidel , G. S. Duesberg , E. Unger , A. P. Graham , M. Liebau , and F. Kreupl , “Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model,” J. Phys. Chem. B, vol. 108, no. 6, pp. 1888–1893, Feb 12 2004. CrossRef | Google Scholar
    Meshot, E. R. Plata, D. L. Tawfick, S. Zhang, Y. Verploegen, E. A. Hart, A. J. [217] E. R. Meshot , D. L. Plata , S. Tawfick , Y. Zhang , E. A. Verploegen , and A. J. Hart , “Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst,” ACS Nano, vol. 3, no. 9, pp. 2477–2486, Sep 2009. CrossRef | Google Scholar
  • PubMed
  • Lee, K. Y. [218] K. Y. Lee , et al., “Vertically aligned growth of carbon nanotubes with long length and high density,” J. Vac. Sci. Technol. B., vol. 23, no. 4, pp. 1450–1453, Jul–Aug 2005. CrossRef | Google Scholar
    Nessim, G. D. [219] G. D. Nessim , et al., “Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment,” Nano Lett., vol. 8, no. 11, pp. 3587–3593, Nov 2008. CrossRef | Google Scholar
  • PubMed
  • Carey, J. D. Ong, L. L. Silva, S. R. P. [220] J. D. Carey , L. L. Ong , and S. R. P. Silva , “Formation of low-temperature self-organized nanoscale nickel metal islands,” Nanotechnology, vol. 14, no. 11, pp. 1223–1227, Nov 2003. CrossRef | Google Scholar
    Bayer, B. C. [221] B. C. Bayer , et al., “Co-catalytic solid-state reduction applied to carbon nanotube growth,” J. Phys. Chem. B, vol. 116, no. 1, pp. 1107–1113, Jan 12 2012. Google Scholar
    Ago, H. Nakamura, K. Uehara, N. Tsuji, M. [222] H. Ago , K. Nakamura , N. Uehara , and M. Tsuji , “Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO,” J. Phys. Chem. B, vol. 108, no. 49, pp. 18908–18915, Dec 9 2004. CrossRef | Google Scholar
    Jung, Y. J. Wei, B. Q. Vajtai, R. Ajayan, P. M. [223] Y. J. Jung , B. Q. Wei , R. Vajtai , and P. M. Ajayan , “Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns,” Nano Lett., vol. 3, no. 4, pp. 561–564, Apr 2003. CrossRef | Google Scholar
    Esconjauregui, S. 93[224] S. Esconjauregui , et al., “Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects,” ACS Nano, vol. 4, no. 12, pp. 7431–7436, Dec 2010. CrossRef | Google Scholar
  • PubMed
  • Yokoyama, D. [225] D. Yokoyama , et al., “Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing,” Appl. Phys. Lett., vol. 91, no. 26, p. 263101, Dec 24 2007. CrossRef | Google Scholar
    Okuno, H. [226] H. Okuno , et al., “CNT integration on different materials suitable for VLSI interconnects,” C. R. Phys., vol. 11, no. 5–6, pp. 381–388, Jun–Jul 2010. CrossRef | Google Scholar
    van der Veen, M. H. [227] M. H. van der Veen , et al., “Electrical characterization of CNT contacts with Cu Damascene top contact,” Microelectron. Eng., vol. 106, pp. 106–111, Jun 2013. CrossRef | Google Scholar
    Li, J. [228] J. Li , et al., “Bottom-up approach for carbon nanotube interconnects,” Appl. Phys. Lett, vol. 82, no. 15, pp. 2491–2493, Apr 2003. CrossRef | Google Scholar
    Zhang, H. Wu, B. Hu, W. Liu, Y. [229] H. Zhang , B. Wu , W. Hu , and Y. Liu , “Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1324–1336, 2011. CrossRef | Google Scholar
  • PubMed
  • Harutyunyan, A. R. [230] A. R. Harutyunyan , et al., “Preferential growth of single-walled carbon nanotubes with metallic conductivity,” Science, vol. 326, no. 5949, p. 116, 2009. CrossRef | Google Scholar
  • PubMed
  • Krupke, R. Hennrich, F. v. Löhneysen, H. Kappes, M. M. [231] R. Krupke , F. Hennrich , H. v. Löhneysen , and M. M. Kappes , “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, p. 344, 2003. CrossRef | Google Scholar
  • PubMed
  • Mureau, N. Mendoza, E. Silva, S. R. P. Hoettges, K. F. Hughes, M. P. [232] N. Mureau , E. Mendoza , S. R. P. Silva , K. F. Hoettges , and M. P. Hughes , “In situ and real time determination of metallic and semiconducting single-walled carbon nanotubes in suspension via dielectrophoresis,” Appl. Phys. Lett, vol. 88, no. 24, p. 243109, 2006. CrossRef | Google Scholar
    Collins, P. G. Arnold, M. S. Avouris, P. [233] P. G. Collins , M. S. Arnold , and P. Avouris , “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science, vol. 292, no. 5517, p. 706, 2001. CrossRef | Google Scholar
  • PubMed
  • Yudasaka, M. Zhang, M. Iijima, S. [234] M. Yudasaka , M. Zhang , and S. Iijima , “Diameter-selective removal of single-wall carbon nanotubes through light-assisted oxidation,” Chem. Phys. Lett., vol. 374, no. 1, pp. 132–136, 2003. CrossRef | Google Scholar
    Zheng, M. [235] M. Zheng , et al., “Structure-based carbon nanotube sorting by sequence-dependent DNA assembly,” Science, vol. 302, no. 5650, p. 1545, 2003. CrossRef | Google Scholar
  • PubMed
  • Tu, X. Manohar, S. Jagota, A. Zheng, M. [236] X. Tu , S. Manohar , A. Jagota , and M. Zheng , “DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes,” Nature, vol. 460, p. 250, 2009. CrossRef | Google Scholar
  • PubMed
  • Takeshi, T. Hehua, J. Yasumitsu, M. Hiromichi, K. 94[237] T. Takeshi , J. Hehua , M. Yasumitsu , and K. Hiromichi , “High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis,” Appl. Phys. Express, vol. 1, no. 11, p. 114001, 2008. Google Scholar
    Tanaka, T. [238] T. Tanaka , et al., “Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes,” Nano Lett., vol. 9, no. 4, pp. 1497–1500, 2009. CrossRef | Google Scholar
  • PubMed
  • Duan, W. H. Wang, Q. Collins, F. [239] W. H. Duan , Q. Wang , and F. Collins , “Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, pp. 1407–1413, 2011. CrossRef | Google Scholar
    Silvera-Batista, C. A. Scott, D. C. McLeod, S. M. Ziegler, K. J. [240] C. A. Silvera-Batista , D. C. Scott , S. M. McLeod , and K. J. Ziegler , “A mechanistic study of the selective retention of SDS-suspended single-wall carbon nanotubes on agarose gels,” J. Phys. Chem. B, vol. 115, no. 19, pp. 9361–9369, 2011. Google Scholar
    Arnold, M. S. Green, A. A. Hulvat, J. F. Stupp, S. I. Hersam, M. C. [241] M. S. Arnold , A. A. Green , J. F. Hulvat , S. I. Stupp , and M. C. Hersam , “Sorting carbon nanotubes by electronic structure using density differentiation,” Nat. Nanotechnol., vol. 1, p. 60, 2006. CrossRef | Google Scholar
  • PubMed
  • Liu, H. Nishide, D. Tanaka, T. Kataura, H. [242] H. Liu , D. Nishide , T. Tanaka , and H. Kataura , “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun., vol. 2, p. 309, 2011. CrossRef | Google Scholar
  • PubMed
  • Xu, S. Wang, Z. L. [243] S. Xu and Z. L. Wang , “One-dimensional ZnO nanostructures: solution growth and functional properties,” Nano. Res., vol. 4, no. 11, pp. 1013–1098, November 01 2011. CrossRef | Google Scholar
    Wang, Z. L. [244] Z. L. Wang , “ZnO nanowire and nanobelt platform for nanotechnology,” Mater. Sci. Eng. Rep., vol. 64, no. 3, pp. 33–71, 2009. CrossRef | Google Scholar
    Das, S. Ghosh, S. [245] S. Das and S. Ghosh , “Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis,” Dalton. T., vol. 42, no. 5, pp. 1645–1656, 2013. CrossRef | Google Scholar
  • PubMed
  • Pan, Z. W. Dai, Z. R. Wang, Z. L. [246] Z. W. Pan , Z. R. Dai , and Z. L. Wang , “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, p. 1947, 2001. CrossRef | Google Scholar
  • PubMed
  • Park, W. I. Yi, G. C. Kim, M. Y. Pennycook, S. J. [247] W. I. Park , G. C. Yi , M. Y. Kim , and S. J. Pennycook , “ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy,” Adv. Mater., vol. 14, no. 24, pp. 1841–1843, Dec 2002. CrossRef | Google Scholar
    Heo, Y. W. [248] Y. W. Heo , et al., “Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy,” Appl. Phys. Lett., vol. 81, no. 16, pp. 3046–3048, 2002. CrossRef | Google Scholar
    Hong, J. I. Bae, J. Wang, Z. L. Snyder, R. L. [249] J. I. Hong , J. Bae , Z. L. Wang , and R. L. Snyder , “Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays,” Nanotechnology, vol. 20, no. 8, p. 5, Feb 2009. CrossRef | Google Scholar
  • PubMed
  • Laudise, R. A. Ballman, A. A. 95[250] R. A. Laudise and A. A. Ballman , “Hydrothermal synthesis of zinc oxide and zinc sulfide,” J. Phys. Chem., vol. 64, no. 5, pp. 688–691, 1960. CrossRef | Google Scholar
    Verges, M. A. Mifsud, A. Serna, C. J. [251] M. A. Verges , A. Mifsud , and C. J. Serna , “Formation of rod-like zinc oxide microcrystals in homogeneous solutions,” J. Chem. Soc. Faraday. T., vol. 86, no. 6, pp. 959–963, 1990. CrossRef | Google Scholar
    Vayssieres, L. Keis, K. Lindquist, S.-E. Hagfeldt, A. [252] L. Vayssieres , K. Keis , S.-E. Lindquist , and A. Hagfeldt , “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B, vol. 105, no. 17, pp. 3350–3352, 2001. CrossRef | Google Scholar
    Nayak, J. Sahu, S. N. Kasuya, J. Nozaki, S. [253] J. Nayak , S. N. Sahu , J. Kasuya , and S. Nozaki , “Effect of substrate on the structure and optical properties of ZnO nanorods,” J. Phys. D. Appl. Phys., vol. 41, no. 11, p. 6, Jun 2008. CrossRef | Google Scholar
    Chang, P. C. Lu, J. G. [254] P. C. Chang and J. G. Lu , “ZnO nanowire field-effect transistors,” IEEE. T. Electron. Dev., vol. 55, no. 11, pp. 2977–2987, Nov 2008. CrossRef | Google Scholar
    Xu, S. [255] S. Xu , et al., “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc., vol. 130, no. 45, pp. 14958–14959, 2008. CrossRef | Google Scholar
  • PubMed
  • Govender, K. Boyle, D. S. Kenway, P. B. O’Brien, P. [256] K. Govender , D. S. Boyle , P. B. Kenway , and P. O’Brien , “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, no. 16, pp. 2575–2591, 2004. CrossRef | Google Scholar
    Ashfold, M. N. R. Doherty, R. P. Ndifor-Angwafor, N. G. Riley, D. J. Sun, Y. [257] M. N. R. Ashfold , R. P. Doherty , N. G. Ndifor-Angwafor , D. J. Riley , and Y. Sun , “The kinetics of the hydrothermal growth of ZnO nanostructures,” Thin Solid Films, vol. 515, no. 24, pp. 8679–8683, Oct 2007. CrossRef | Google Scholar
    Sugunan, A. Warad, H. C. Boman, M. Dutta, J. [258] A. Sugunan , H. C. Warad , M. Boman , and J. Dutta , “Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine,” J. Sol-Gel. Sci. Techn, vol. 39, no. 1, pp. 49–56, July 01 2006. CrossRef | Google Scholar
    Xu, S. Lao, C. Weintraub, B. Wang, Z. L. [259] S. Xu , C. Lao , B. Weintraub , and Z. L. Wang , “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces,” J. Mater. Res., vol. 23, no. 8, pp. 2072–2077, Aug 2008. CrossRef | Google Scholar
    Greene, L. E. [260] L. E. Greene , et al., “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Edit., vol. 42, no. 26, pp. 3031–3034, 2003. CrossRef | Google Scholar
  • PubMed
  • Park, H.-H. [261] H.-H. Park , et al., “Position-controlled hydrothermal growth of ZnO nanorods on arbitrary substrates with a patterned seed layer via ultraviolet-assisted nanoimprint lithography,” Cryst. Eng. Comm., vol. 15, no. 17, pp. 3463–3469, 2013. CrossRef | Google Scholar
    Liu, J. She, J. C. Deng, S. Z. Chen, J. Xu, N. S. [262] J. Liu , J. C. She , S. Z. Deng , J. Chen , and N. S. Xu , “Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emission 96characteristics,” J. Phys. Chem. B, vol. 112, no. 31, pp. 11685–11690, Aug 2008. Google Scholar
    Ma, T. Guo, M. Zhang, M. Zhang, Y. J. Wang, X. D. [263] T. Ma , M. Guo , M. Zhang , Y. J. Zhang , and X. D. Wang , “Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays,” Nanotechnology, vol. 18, no. 3, p. 7, Jan 2007. CrossRef | Google Scholar
  • PubMed
  • Le, H. Q. Chua, S. J. Loh, K. P. Fitzgerald, E. A. Koh, Y. W. [264] H. Q. Le , S. J. Chua , K. P. Loh , E. A. Fitzgerald , and Y. W. Koh , “Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis,” Nanotechnology, vol. 17, no. 2, pp. 483–488, Jan 2006. CrossRef | Google Scholar
    Pauporté, T. Lincot, D. Viana, B. Pellé, F. [265] T. Pauporté , D. Lincot , B. Viana , and F. Pellé , “Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition,” Appl. Phys. Lett, vol. 89, no. 23, p. 233112, 2006. CrossRef | Google Scholar
    Law, M. Greene, L. E. Johnson, J. C. Saykally, R. Yang, P. [266] M. Law , L. E. Greene , J. C. Johnson , R. Saykally , and P. Yang , “Nanowire dye-sensitized solar cells,” Nat. Mater., vol. 4, p. 455, 2005. CrossRef | Google Scholar
  • PubMed
  • Xu, C. Shin, P. Cao, L. Gao, D. [267] C. Xu , P. Shin , L. Cao , and D. Gao , “Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells,” J. Phys. Chem. B, vol. 114, no. 1, pp. 125–129, 2010. Google Scholar
    Zhou, Y. Wu, W. B. Hu, G. D. Wu, H. T. Cui, S. G. [268] Y. Zhou , W. B. Wu , G. D. Hu , H. T. Wu , and S. G. Cui , “Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine,” Mater. Res. Bull., vol. 43, no. 8–9, pp. 2113–2118, 2008. CrossRef | Google Scholar
    Tian, Z. R. Voigt, J. A. Liu, J. McKenzie, B. McDermott, M. J. [269] Z. R. Tian , J. A. Voigt , J. Liu , B. McKenzie , and M. J. McDermott , “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., vol. 124, no. 44, pp. 12954–12955, 2002. CrossRef | Google Scholar
  • PubMed
  • Xu, L. Guo, Y. Liao, Q. Zhang, J. Xu, D. [270] L. Xu , Y. Guo , Q. Liao , J. Zhang , and D. Xu , “Morphological control of ZnO nanostructures by electrodeposition,” J. Phys. Chem. B, vol. 109, no. 28, pp. 13519–13522, 2005. CrossRef | Google Scholar
  • PubMed
  • Tian, Z. R. [271] Z. R. Tian , et al., “Complex and oriented ZnO nanostructures,” Nat. Mater., vol. 2, p. 821, 2003. CrossRef | Google Scholar
  • PubMed
  • Ni, Y. H. Wei, X. W. Ma, X. Hong, J. M. [272] Y. H. Ni , X. W. Wei , X. Ma , and J. M. Hong , “CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals,” J. Cryst. Growth, vol. 283, no. 1–2, pp. 48–56, Sep 2005. CrossRef | Google Scholar
    Wang, Y. X. Fan, X. Y. Sun, J. [273] Y. X. Wang , X. Y. Fan , and J. Sun , “Hydrothermal synthesis of phosphate-mediated ZnO nanosheets,” Mater. Lett., vol. 63, no. 3–4, pp. 350–352, 2009. Google Scholar
    Sun, Y. Wang, L. Yu, X. Chen, K. [274] Y. Sun , L. Wang , X. Yu , and K. Chen , “Facile synthesis of flower-like 3D ZnO superstructures via solution route,” Cryst. Eng. Comm., vol. 14, no.9, pp.3199–3204, 2012. CrossRef | Google Scholar
    Ko, S. H. [275] S. H. Ko , et al., “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett., vol. 11, no.2, pp.666–671, 2011. CrossRef | Google Scholar
  • PubMed
  • Wanit, M. 97[276] M. Wanit , et al., “ZnO nano-tree growth study for high efficiency solar cell,” Energy Procedia, vol.14, pp.1093–1098, 2012. CrossRef | Google Scholar
    Zhang, T. Dong, W. Keeter-Brewer, M. Konar, S. Njabon, R. N. Tian, Z. R. [277] T. Zhang , W. Dong , M. Keeter-Brewer , S. Konar , R. N. Njabon , and Z. R. Tian , “Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites,” J. Am. Chem. Soc., vol. 128, no. 33, pp. 10960–10968, 2006. CrossRef | Google Scholar
  • PubMed
  • Alenezi, M. R. [278] M. R. Alenezi , “Nanostructured zinc oxide sensors,” Thesis (Ph.D.) – University of Surrey, 2014. Google Scholar
    Tian, J. H. [279] J. H. Tian , et al., “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology, vol. 22, no.24, p. 9, May 2011, Art. no. 245601. CrossRef | Google Scholar
  • PubMed
  • Lee, J. H. [280] J. H. Lee , “Gas sensors using hierarchical and hollow oxide nanostructures: overview,” Sens. Actuator B-Chem., vol. 140, no. 1, pp. 319–336, Jun 2009. CrossRef | Google Scholar
    Chou, T. P. Zhang, Q. F. Fryxell, G. E. Cao, G. Z. [281] T. P. Chou , Q. F. Zhang , G. E. Fryxell , and G. Z. Cao , “Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency,” Adv. Mater., vol. 19, no. 18, Sep 2007. CrossRef | Google Scholar
    Cao, A. M. [282] A. M. Cao , et al., “Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors,” J. Phys. Chem. B, vol. 110, no. 32, pp. 15858–15863, Aug 2006. CrossRef | Google Scholar
  • PubMed
  • Zhang, L. Wang, W. Chen, Z. Zhou, L. Xu, H. Zhu, W. [283] L. Zhang , W. Wang , Z. Chen , L. Zhou , H. Xu , and W. Zhu , “Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts,” J. Mater. Chem., vol. 17, no. 24, pp. 2526–2532, 2007. CrossRef | Google Scholar
    Xu, H. Zheng, Z. Zhang, L. Z. Zhang, H. L. Deng, F. [284] H. Xu , Z. Zheng , L. Z. Zhang , H. L. Zhang , and F. Deng , “Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: large-scale synthesis and high photocatalytic activity,” J. Solid State Chem., vol. 181, no. 9, pp. 2516–2522, Sep 2008. CrossRef | Google Scholar
    Sun, S. Wang, W. Xu, H. Zhou, L. Shang, M. Zhang, L. [285] S. Sun , W. Wang , H. Xu , L. Zhou , M. Shang , and L. Zhang , “Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis,” J. Phys. Chem. B, vol. 112, no. 46, pp. 17835–17843, 2008. Google Scholar
    Qin, Y. Wang, X. Wang, Z. L. [286] Y. Qin , X. Wang , and Z. L. Wang , “Microfibre–nanowire hybrid structure for energy scavenging,” Nature, vol. 451, p. 809, 2008. CrossRef | Google Scholar
  • PubMed
  • Yang, H. Hao, L. Zhao, N. Du, C. Wang, Y. [287] H. Yang , L. Hao , N. Zhao , C. Du , and Y. Wang , “Hierarchical porous hydroxyapatite microsphere as drug delivery carrier,” Cryst. Eng. Comm., vol. 15, no. 29, pp. 5760–5763, 2013. CrossRef | Google Scholar
    Zhang, Y. Xu, J. Xiang, Q. Li, H. Pan, Q. Xu, P. [288] Y. Zhang , J. Xu , Q. Xiang , H. Li , Q. Pan , and P. Xu , “Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas 98sensor properties,” J. Phys. Chem. B, vol. 113, no. 9, pp. 3430–3435, 2009. Google Scholar
    Wen, J. G. Lao, J. Y. Wang, D. Z. Kyaw, T. M. Foo, Y. L. Ren, Z. F. [289] J. G. Wen , J. Y. Lao , D. Z. Wang , T. M. Kyaw , Y. L. Foo , and Z. F. Ren , “Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons,” Chem. Phys. Lett., vol. 372, no. 5, pp. 717–722, 2003. CrossRef | Google Scholar
    Liu, B. Zeng, H. C. [290] B. Liu and H. C. Zeng , “Hollow ZnO microspheres with complex nanobuilding units,” Chem. Mater., vol. 19, no. 24, pp. 5824–5826, 2007. CrossRef | Google Scholar
    Gao, P. X. Wang, Z. L. [291] P. X. Gao and Z. L. Wang , “Nanopropeller arrays of zinc oxide,” Appl. Phys. Lett., vol. 84, no. 15, pp. 2883–2885, 2004. CrossRef | Google Scholar
    Baca, A. J. [292] A. J. Baca , et al., “Semiconductor wires and ribbons for high‐performance flexible electronics,” Angew. Chem. Int. Edit., vol. 47, no. 30, pp.5524–5542, 2008. CrossRef | Google Scholar
  • PubMed
  • Huang, Xian Bioresorbable Materials and Their Application in Electronics Xian Huang CrossRef | Google Scholar
    Pecunia, Vincenzo Organic and Amorphous-Metal-Oxide Flexible Analogue Electronics Vincenzo Pecunia et al. CrossRef | Google Scholar
    Núñez, Carlos García Large-Area Electronics Based on Micro/Nanostructures and the Manufacturing Technologies Carlos García Núñez et al. Google Scholar
    Gao, Shuo Nathan, Arokia A Flexible Multi-Functional Touch Panel for Multi-Dimensional Sensing in Interactive Displays Shuo Gao and Arokia Nathan CrossRef | Google Scholar
    Shakthivel, Dhayalan 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics Dhayalan Shakthivel et al. Google Scholar

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Abstract views

    Total abstract views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed