Skip to main content Accessibility help
  • Print publication year: 2020
  • Online publication date: April 2020

3 - Volcanotectonic Deformation


Polygenetic volcanoes, to a first approximation, behave as is they are elastic. When subject to loading such as magmatic excess pressure in a chamber or overpressure in a dike, the volcano deformation is, so long as the loading is small, roughly linear elastic. When related to pressure changes in the source chamber, the measured deformation is referred to as inflation when the volcano surface rises (during magma-pressure increase) and as deflation when the surface falls or subsides (during magma-pressure decrease). If the loading generates stresses that reach the strength of the rock, then fractures form or reactivate. Slip on shear fractures, that is, faults, commonly triggers earthquakes, which can be used to monitor the state of stress in the volcano as well as magma movement through dike or sheet propagation. Some stresses are sufficiently large to form or reactivate the boundary faults of grabens or the ring-faults of collapse calderas. Similarly, the stresses may result in lateral or sector collapses, that is, landslides. The earthquake activity in volcanoes is treated in Chapter 4, and vertical and lateral collapses in Chapter 5.

Acocella, V., 2007. Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth-Science Reviews, 85, 125160.
Acocella, V., Cifelli, F., Funiciello, R., 2000. Analogue models of collapse calderas and resurgent domes. Journal of Volcanology and Geothermal Research, 104, 8196.
Al Shehri, A., Gudmundsson, A., 2018. Modelling of surface stresses and fracturing during dyke emplacement: application to the 2009 episode at Harrat Lunayyir, Saudi Arabia. Journal of Volcanology and Geothermal Research, 356, 278303.
Anderson, E. M., 1936. The dynamics of formation of cone sheets, ring dykes and cauldron subsidences. Proceedings of the Royal Society of Edinburgh, 56, 128163.
Barnett, Z. A., Gudmundsson, A., 2014. Numerical modelling of dykes deflected into sills to form a magma chamber. Journal of Volcanology and Geothermal Research, 281, 111.
Bonafede, M., Dragoni, M., Quareni, F., 1986. Displacement and stress fields produced by a centre of dilation and by a pressure source in a viscoelastic half-space: application to the study of ground deformation and seismic activity at Campi Flegrei, Italy. Geophysical Journal of the Royal Astronomical Society, 87, 455485.
Cloos, E., 1955. Experimental analysis of fracture patterns. Bulletin of the Geological Society of America, 66, 241256.
Cole, J. W., Milner, D. M., Spinks, K. D. 2005. Calderas and caldera structures: a review. Earth-Science Reviews, 69, 126.
Delaney, P. T., McTigue, D. F., 1994. Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kilauea Volcano. Bulletin of Volcanology, 56, 417424.
Dzurisin, D., 2006. Volcano Deformation: New Geodetic Monitoring Techniques. Berlin: Springer Verlag.
Fagents, S. A., Gregg, T. K. P., Lopes, R. M. C. (eds.), 2013. Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. Cambridge: Cambridge University Press.
Fialko, Y., Khazan, Y., Simons, M., 2001. Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146, 181190.
Fossen, H., 2016. Structural Geology, 2nd edn. Cambridge: Cambridge University Press.
Fossen, H., Gabrielsen, R. H., 1996. Experimental modelling of extensional fault systems by use of plaster. Journal of Structural Geology, 18, 673687.
Gautneb, H., Gudmundsson, A., 1992. Effect of local and regional stress fields on sheet emplacement in West Iceland. Journal of Volcanology and Geothermal Research, 51, 339356.
Geshi, N., Shimano, T., Chiba, T., Nakada, S., 2002. Caldera collapse during the 2000 eruption of Miyakejima volcano, Japan. Bulletin of Volcanology, 64, 5568.
Geyer, A., Marti, J., 2014. A short review of our current understanding of the development of ring faults during collapse caldera formation. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00022
Gudmundsson, A., 1995. Infrastructure and mechanics of volcanic systems in Iceland. Journal of Volcanology and Geothermal Research, 64, 122.
Gudmundsson, A., 1998. Magma chambers modeled as cavities explain the formation of rift zone central volcanoes and their eruption and intrusion statistics. Journal of Geophysical Research, 103, 74017412.
Gudmundsson, A., 2003. Surface stresses associated with arrested dykes in rift zones. Bulletin of Volcanology, 65, 606619.
Gudmundsson, A., 2006. How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth-Science Reviews, 79, 131.
Gudmundsson, A., 2007. Conceptual and numerical models of ring-fault formation. Journal of Volcanology and Geothermal Research, 164, 142160.
Gudmundsson, A., 2009. Toughness and failure of volcanic edifices. Tectonophysics, 471, 2735.
Gudmundsson, A., 2011a. Rock Fractures in Geological Processes. Cambridge: Cambridge University Press.
Gudmundsson, A., 2011b. Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics, 500, 5064.
Gudmundsson, A., 2012a. Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas, and landslides. Natural Hazards and Earth System Sciences, 12, 22412258.
Gudmundsson, A., 2012b. Magma chambers: formation, local stresses, excess pressures, and compartments. Journal of Volcanology and Geothermal Research, 237–238, 1941.
Gudmundsson, A., Nilsen, K., 2006. Ring-faults in composite volcanoes: structures, models and stress fields associated with their formation. In Troise, C., De Natle, G., Kilburn, C. R. .J. (eds.), Mechanism of Activity and Unrest at Large Calderas. Geological Society of London Special Publications, 269. London: Geological Society of London, pp. 83108.
Gudmundsson, A., Philipp, L., 2006. How local stress fields prevent volcanic eruptions. Journal of Volcanology and Geothermal Research, 158, 257268.
Gudmundsson, A., Lotveit, I. F., 2012. Sills as fractured hydrocarbon reservoirs: examples and models. In Spence, G. H., Redfern, J., Aguilera, R, et al. (eds.), Advances in the Study of Fractured Reservoirs. Geological Society of London Special Publications, 374. London: Geological Society of London, pp. 251271.
Gudmundsson, A., Friese, N., Galindo, I., Philipp, S. L., 2008. Dike-induced reverse faulting in a graben. Geology, 36, 123126.
Gudmundsson, A., Lecoeur, N., Mohajeri, N., Thordarson, T., 2014. Dike emplacement at Bardarbunga, Iceland, induces unusual stress changes, caldera deformation, and earthquakes. Bulletin of Volcanology, 76, 869, doi:10.1007/s00445-014-0869-8.
Isida, M., 1955. On the tension of a semi-infinite plate with an elliptic hole. Scientific Papers of the Faculty of Engineering, Tokushima University. 5, 7595.
Jaeger, J. C., Cook, N. G. W., Zimmerman, R. W., 2007. Fundamentals of Rock Mechanics, 4th edn. Oxford: Blackwell.
Janssen, V., 2008. GPS-Based Volcano Deformation. Saarbrücken: VDM Verlag.
Johnson, D. J., Sigmundsson, F., Delaney, P. T., 2000. Comment on ‘‘Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kilauea Volcano’’ by T. T. Delaney and D. F. McTigue. Bulletin of Volcanology, 61, 491493.
Kusumoto, S., Gudmundsson, A., 2014. Displacement and stress fields around rock fractures opened by irregular overpressure variations. Frontiers in Earth Science, 2, doi:10.3389/feart.2014.00007
Kusumoto, S., Geshi, N., Gudmundsson, A., 2013. Inverse modeling for estimating fluid-overpressure distributions and stress intensity factors from arbitrary open-fracture geometry. Journal of Structural Geology, 46, 9298.
Love, A. E. H., 1927. A Treatise on the Mathematical Theory of Elasticity. New York, NY: Dover.
Lu, Z., Dzurisin, D., 2014. InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Berlin: Springer Verlag.
Martì, J., Gudmundsson, A., 2000. The Las Canadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. Journal of Volcanology and Geothermal Research, 103, 161173.
Marti, J., Ablay, G. J., Redshaw, L. T., Sparks, R. S. J., 1994. Experimental studies of collapse calderas. Journal Geological Society London, 151, 919929.
Marti, J., Geyer, A., Folch, A., Gottsmann, J., 2008. A review on collapse caldera modelling. In Gottsmann, J., Marti, J. (eds), Caldera Volcanism: Analysis, Modelling and Response. Amsterdam: Elsevier, pp. 233283.
McClay, K. R., Ellis, P. G., 1987. Analogue models of extensional fault geometries. In Coward, M. P., Dewey, J. F., Hancock, P. L. (eds), Continental Extensional Tectonics. Geological Society of London Special Publications, 28. London: Geological Society of London, pp. 109125.
McTigue, D. F., 1987. Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. Journal of Geophysical Research, 92, 12931–12940.
Melan, E., 1932. Point force at internal point in a semi-infinite plate. Zeitschrift fur Angewandte Mathematik und Mechanik, 12, 343346 (in German).
Mindlin, R. D., 1936. Force at a point in the interior of a semi-infinite solid. Physics, 7, 195202.
Mogi, K., 1958. Relations between eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute University of Tokyo, 36, 99134.
Niemczyk, O. (ed.), 1943. The Fractures of Iceland (Spalten auf Island). Stuttgart: Wittwer (in German).
Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 11351154.
Okada, Y., 1992. Internal deformation due to shear and tensile faults in half-space. Bulletin of the Seismological Society of America, 82, 10181040.
Philipp, S., Philipp, S.L., Afsar, F., Gudmundsson, A., 2013. Effects of mechanical layering on the emplacement of hydrofractures and fluid transport in reservoirs. Frontiers of Earth Science, 1, doi:10.3389/feart.2013.00004.
Pollard, D. D., Fletcher, R. C., 2005. Fundamentals of Structural Geology. Cambridge: Cambridge University Press.
Pollard, D. D., Johnson, A. M., 1973. Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, II. Bending and failure of overburden layers and sill formation. Tectonophysics, 18, 311354.
Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. T., Okamura, A. T., 1983. Surface deformation in volcanic rift zones. Tectonophysics, 94, 541584.
Press, F. 1965. Displacements, strains, and tilts at teleseismic distances. Journal of Geophysical Research, 70, 23952412.
Ramberg, H., 1967. Gravity, Deformation and the Earth’s Crust. Cambridge, MA: Academic Press.
Rubin, A. M., Pollard, D. D., 1988. Dike-induced faulting in rift zones of Iceland and Afar. Geology, 16, 413417.
Ruch, J., Acocella, V., Geshi, N., Nobile, A., Corbi, F., 2012. Kinematic analysis of vertical collapse on volcanoes using experimental models time series. Journal of Geophysical Research, 117, doi:10.1029/2012JB009229.
Saada, A. S., 2009. Elasticity Theory and Applications, 2nd edn. London: Roundhouse.
Sadowsky, M. A., Sternberg, E., 1947. Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavity. Journal of Applied Mechanics, 14, A191A201.
Sadowsky, M. A., Sternberg, E., 1949. Stress concentration around a triaxial ellipsoidal cavity. Journal of Applied Mechanics, 16, 149157.
Savin, G. N., 1961. Stress Concentration Around Holes. New York, NY: Pergamon.
Segall, P., 2010. Earthquake and Volcano Deformation. Princeton (New Jersey): Princeton University Press.
Segall, P., Llenos, A. L., Yun, S. H., Bradley, A. M., Syracuse, E. M., 2013. Time-dependent dike propagation from joint inversion of seismicity and deformation data. Journal of Geophysical Research, 118, doi:10.1002/2013JB010251.
Sigmundsson, F., Hooper, A., Hreinsdottir, S., et al., 2015. Segmented lateral dyke growth in a rifting event at Bardarbunga Volcanic System, Iceland. Nature, 517, 191–195.
Sigurdsson, H., Houghton, B. F., McNutt, S. R., Rymer, H., Stix, J. (eds.), 2000. Encylopedia of Volcanoes. New York, NY: Academic Press.
Sigurdsson, O., 1980. Surface deformation of the Krafla Fissure Swarm in two rifting events. Journal of Geophysical Research, 47, 154159.
Sneddon, I. N., Lowengrub, M., 1969. Crack Problems in the Classical Theory of Elasticity. New York, NY: Wiley.
Soutas-Little, R. W., 1973. Elasticity. New York, NY: Dover.
Steketee, J. A., 1958a. On Volterra’s dislocations in a semi-infinite elastic medium. Canadian Journal of Physics, 36, 192205.
Steketee, J. A., 1958b. Some geophysical applications of the elasticity theory of dislocation. Canadian Journal of Physics, 36, 11681198.
Sun, R. J. 1969. Theoretical size of hydraulically induced horizontal fractures and corresponding surface uplift in an idealized medium. Journal of Geophysical Research, 74, 59956011.
Timoshenko, S., Goodier, J. N., 1970. Theory of Elasticity, 3rd edn. New York, NY: McGraw-Hill.
Volterra, V., 1907. On the equilibrium of multiply connected elastic bodies. Annales scientifiques de l’École Normale Supérieure, 24, 401517 (in French; English translation).
Weertman, J., 1996. Dislocation Based Fracture Mechanics. London: World Scientific.
Zobin, V. M., 2003. Introduction to Volcanic Seismology. London: Elsevier.