Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T01:18:39.488Z Has data issue: false hasContentIssue false

9 - Aluminum Nitride and Diamond Membranes for Tunable Micro-optics

from Part II - Devices and materials

Published online by Cambridge University Press:  05 December 2015

Steffen Leopold
Affiliation:
Technische Universität Ilmenau, Fachgebiet Mikromechanische Systeme, Ilmenau, Germany
Fabian Knöbber
Affiliation:
University of Freiburg, Germany
Daniel Pätz
Affiliation:
Technische Universität Ilmenau, Fachgebiet Technische Optik, Ilmenau, Germany
Hans Zappe
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Claudia Duppé
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Get access

Summary

Introduction

Flexible membranes are the most frequently used components to conceive optical elements with tunable optical functionality, that is tunable micro-optical elements. They can be deformed actively by a variety of techniques, such as hydraulic pressure and thermo-mechanic or piezo-electric actuation. The optical tuning range of the resulting components depends on the amount of deformation generated during the actuation. Next to the optical quality of the membrane material, the strength of the deforming forces as well as the elasticity of the membranes are crucial parameters for the performance of tunable micro-optics. One of the most critical tasks when designing tunable optical elements is the trade-off between stability and tunability of the optical element. Stability is needed to achieve good, reliable, and reproducible optical performance. Elasticity and nonplastic deformation is required to achieve easy and reproducible tuning over a wide tuning range. In order to fulfil the requirements of both, the appropriate choice of material is of utmost importance for the performance of tunable micro-optical components. In this chapter, we discuss nanocrystalline solid materials (such as aluminum nitride, AlN or nanocrystalline diamond, NCD layers) in detail as these represent an excellent basis for tunable optical membranes. These nanocrystalline materials show good optical uniformity and transparency over a broad spectral range. A tailor-made microtechnological process guarantees thin layers that are only a few 100 nm thick. In consequence, the membranes made of the new material possess mechanical properties that are ideally suited for tunable components and offer new perspectives for the development of optical elements and systems.

In this chapter, we will chiefly focus on the processing, performance, and specific material properties of nanocrystalline AlN and NCD membranes. Many of the optical design issues related to the application of such membrane devices in complex optical microsystems for imaging performance will be reported in Chapter 15, “Adaptive Scanning Micro-eye.” To begin with, we will discuss some basic considerations with regard to the optical performance of spherically and non-spherically deformed membrane systems. Some of the performances here have only become possible thanks to the new material properties available by using nanocrystalline solid membranes. In Section 9.3 we address the processing and material characteristics of AlN membranes. We will specifically address the exciting mechanical properties that become feasible, as well as the performance under thermomechanical actuation. NCD membranes will thus be the focus of Section 9.4.

Type
Chapter
Information
Tunable Micro-optics , pp. 219 - 240
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd El-Maksoud, R. H., Hillenbrand, M., Sinzinger, S. & Sasian, J. (2012), ‘Optical performance of coherent and incoherent imaging systems in the presence of ghost images’, Applied Optics 51(30), 7134–7143.CrossRefGoogle ScholarPubMed
Achard, J., Silva, F., Tallaire, A., Bonnin, X., Lombardi, G., Hassouni, K. & Gicquel, A. (2007), ‘High quality MPACVD diamond single crystal growth: high microwave power density regime’, Journal of Physics D: Applied Physics 40(20), 6175–6188.CrossRefGoogle Scholar
Amberg, M., Oeder, A., Sinzinger, S., Hands, P. J. W. & Love, G. D. (2007), ‘Tuneable planar integrated optical systems’, Optics Express 15(17), 10607–10614.CrossRefGoogle ScholarPubMed
Beams, J.W. (1959), ‘Mechanical properties of thin films of gold and silver,’ in C. A., Neugebauer, ed., Structure and Properties of Thin Films, Wiley, New York.Google Scholar
Butler, J. E. & Sumant, A. V. (2008), ‘The CVD of nanodiamond materials’, Chemical Vapor Deposition 14(7-8), 145–160.CrossRefGoogle Scholar
Butler, J. & Woodin, R. (1994), ‘Thin film diamond growth mechanisms,’ in A., Lettington & J., Steeds, eds., Thin Film Diamond, Springer, Netherlands, pp. 15–30.Google Scholar
Çetinörgü, E. (2009), ‘A new method to experimentally determine the thermal expansion coefficient, Poisson's ratio and Young's modulus of thin films’, Journal of Materials Science 44(8), 2167–2170.
Edwards, D. F. (1985), Handbook of Optical Constants of Solid, Academic Press.Google Scholar
Fuener, M., Wild, C. & Koidl, P. (1998), ‘Novel microwave plasma reactor for diamond synthesis’, Applied Physics Letters 72(10), 1149.CrossRefGoogle Scholar
Fujiwara, H. (2007), Spectroscopic Ellipsometry, John Wiley & Sons, Ltd, Chichester, UK, pp.258–259.
Gajewski, W., Achatz, P., Williams, O., Haenen, K., Bustarret, E., Stutzmann, M. & Garrido, J. (2009), ‘Electronic and optical properties of boron-doped nanocrystalline diamond films’, Physical Review B 79(4), 045206.CrossRefGoogle Scholar
Hees, J., Heidrich, N., Pletschen, W., Sah, R. E.,Wolfer, M.,Williams, O. A., Lebedev, V., Nebel, C. E. & Ambacher, O. (2013), ‘Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films.’, Nanotechnology 24(2), 025601.CrossRefGoogle ScholarPubMed
Hees, J., Kriele, A. & Williams, O.A. (2011), ‘Electrostatic self-assembly of diamond nanoparticles’, Chemical Physics Letters 509(1-3), 12–15.CrossRefGoogle Scholar
Heidrich, N., Iankov, D., Hees, J., Pletschen, W., Sah, R. E., Kirste, L., Zuerbig, V., Nebel, C., Ambacher, O. & Lebedev, V. (2013), ‘Enhanced mechanical performance of AlN/nanodiamond micro-resonators’, Journal of Micromechanics and Microengineering 23(12), 125017.CrossRefGoogle Scholar
Hu, Z. G. & Hess, P. (2006), ‘Optical constants and thermo-optic coefficients of nanocrystalline diamond films at 30-500◦C’, Applied Physics Letters 89(8), 081906.CrossRefGoogle Scholar
Kaushik, A., Kahn, H. & Heuer, A. H. (2005), ‘Wafer-level mechanical characterization of silicon nitride mems’, Journal of Microelectromechanical Systems 14(2), 359–367.Google Scholar
Knoebber, F., Bludau, O., Williams, O. A., Sah, R. E., Kirste, L., Baeumler, M., Leopold, S., Paetz, D., Nebel, C. E., Ambacher, O., Cimalla, V. & Lebedev, V. (2010), ‘Diamond/AlN thin films for optical applications’, in AIP Conference Proceedings 2010, pp. 205–208.Google Scholar
Knoebber, F., Zuerbig, V.,Heidrich, N., Hees, J., Sah, R. E., Baeumler, M., Leopold, S., Paetz, D., Ambacher, O. & Lebedev, V. (2012), ‘Static and dynamic characterization of AlN and nanocrystalline diamond membranes’, Physica Status Solidi (A) 209(10), 1835–1842.Google Scholar
Kriele, A., Williams, O., Wolfer, M., Brink, D., Müller-Sebert, W. & Nebel, C. E. (2009), ‘Tuneable optical lenses from diamond thin films’, Applied Physics Letters 95(3), 031905.CrossRefGoogle Scholar
Laermer, F., Schilp, A., Funk, K. & Offenberg, M. (1999), ‘Bosch deep silicon etching: improving uniformity and etch rate for advanced MEMS applications’, in Twelfth IEEE International Conference on Micro Electro Mechanical Systems 1999, IEEE, pp. 211–216.Google Scholar
Lebedev, V., Knöbber, F., Heidrich, N., Sah, R. E., Pletschen, W., Cimalla, V. & Ambacher, O. (2012), ‘Evaluation of AIN material properties through vibration analysis of thin membranes’, Physica Status Solidi (C) 9(2), 403–406.CrossRefGoogle Scholar
Leopold, S., Paetz, D., Knoebber, F., Ambacher, O., Sinzinger, S. & Hoffmann, M. (2013a), ‘Tunable cylindrical microlenses based on aluminum nitride membranes’, in W., Piyawattanametha & Y.-H., Park, eds, SPIE MOEMS-MEMS, SPIE Proceedings, SPIE, p. 861611.CrossRefGoogle Scholar
Leopold, S., Paetz, D., Knoebber, F., Polster, T., Ambacher, O., Sinzinger, S. & Hoffmann, M. (2011), ‘Tunable refractive beam steering using aluminum nitride thermal actuators’, Proceedings of SPIE 7931, MEMS Adaptive Optics V, 79310B (14 February 2011).CrossRefGoogle Scholar
Leopold, S., Polster, T., Paetz, D., Knoebber, F., Ambacher, O., Sinzinger, S. & Hoffmann, M. (2013b), ‘OEMS tunable microlens made of aluminum nitride membranes’, Journal of Micro/Nanolithography, MEMS, and MOEMS 12(2), 023012.CrossRefGoogle Scholar
Mehner, H., Leopold, S. & Hoffmann, M. (2013), ‘Variation of the intrinsic stress gradient in thin aluminum nitride films’, Journal of Micromechanics and Microengineering 23(9), 095030.CrossRefGoogle Scholar
Mott, N. F. (1969), ‘Conduction in non-crystalline materials’, Philosophical Magazine 19(160), 835–852.CrossRefGoogle Scholar
Okada, Y. & Tokumaru, Y. (1984), ‘Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K’, Journal of Applied Physics 56(2), 314.CrossRefGoogle Scholar
Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. (2006), ‘Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air’, Journal of the American Chemical Society 128(35), 11635–11642.CrossRefGoogle ScholarPubMed
Pan, J. Y., Lin, P., Maseeh, F. & Senturia, S. D. (1990), ‘Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films, in IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop, pp. 70–73.Google Scholar
Pätz, D., Leopold, S., Knöbber, F., Sinzinger, S., Hoffmann, M. & Ambacher, O. (2010), ‘Tunable compound eye cameras’, in Microlenses and Microcameras, Vol. 7716, pp. 77160K–77160K–7.
Pätz, D., Sinzinger, S., Leopold, S. & Hoffmann, M. (2013), ‘Imaging systems with aspherically tunable micro-optical elements’, in Imaging and Applied Optics, Optical Society of America, p. ITu1E.4.CrossRefGoogle Scholar
Popovici, G. & Prelas, M. a. (1992), ‘Nucleation and selective deposition of diamond thin films’, Physica Status Solidi (A) 132(2), 233–252.CrossRefGoogle Scholar
Sharda, T., Soga, T. & Jimbo, T. (2003), ‘Optical properties of nanocrystalline diamond films by prism coupling technique’, Journal of Applied Physics 93(1), 101.CrossRefGoogle Scholar
Stoney, G. G. (1909), ‘The tension of metallic films deposited by electrolysis’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 82(553), 172–175.CrossRefGoogle Scholar
Swain, G. M. (1994), ‘The use of CVD diamond thin films in electrochemical systems’, Advanced Materials 6(5), 388–392.CrossRefGoogle Scholar
Thokala, R. & Chaudhuri, J. (1995), ‘Calculated elastic constants of wide band gap semiconductor thin films with a hexagonal crystal structure for stress problems’, Thin Solid Films 266(2), 189–191.CrossRefGoogle Scholar
Timoshenko, S. P. (1940), Theory of Plates and Shells, Engineering Societies Monographs, McGraw-Hill Book Company, Inc., New York.Google Scholar
Ugural, A. C. (1999), Stresses in Plates and Shells, 2nd edn, WCB/McGraw Hill, Boston.Google Scholar
Wang, J., Butler, J., Hsu, D. & Nguyen, T.-C. (2002), ‘CVD polycrystalline diamond high-Q micromechanical resonators’, in ‘Fifteenth IEEE International Conference on Micro Electro Mechanical Systems’, IEEE, pp. 657–660.Google Scholar
Werner, J., Hillenbrand, M., Zhao, M. & Sinzinger, S. (2013), ‘An optimization method for radial nurbs surfaces’, in 114. Jahrestagung DGaO, Braunschweig, May 21–25, ISSN: 1614–8436.
Wild, C., Herres, N. & Koidl, P. (1990), ‘Texture formation in polycrystalline diamond films’, Journal of Applied Physics 68(3), 973.CrossRefGoogle Scholar
Wild, C. & Woerner, E. (2008), The CVD Diamond Booklet, Diamond Materials GmbH.Google Scholar
Williams, O. (2011), ‘Nanocrystalline diamond’, Diamond and Related Materials 20(5-6), 621–640.CrossRefGoogle Scholar
Wilson, E. A. (1993), ‘Analysis of beam steering with decentered microlens arrays’, Optical Engineering 32.Google Scholar
Zuerbig, V., Hees, J., Pletschen, W., Sah, R., Wolfer, M., Kirste, L., Heidrich, N., Nebel, C., Ambacher, O. & Lebedev, V. (2014), ‘Elastic properties of ultrathin diamond/AlN membranes’, Thin Solid Films 558, 267–271.CrossRefGoogle Scholar
Zuerbig, V., Paetz, D., Pletschen, W., Hees, J., Sah, R. E., Kirste, L., Heidrich, N., Cimalla, V., Nebel|C., Ambacher|O. & Lebedev, V. (2013a), ‘Piezo-actuated tunable diamond/AlN micro lenses’, in Transducers & Eurosensors: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems, IEEE, pp. 2317–2320.Google Scholar
Zuerbig, V., Pletschen, W., Hees, J., Sah, R., Kirste, L., Heidrich, N., Nebel, C., Ambacher, O. & Lebedev, V. (2013b), ‘Transparent diamond electrodes for tunable micro-optical devices’, Diamond and Related Materials 38, 101–103.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×