Skip to main content Accessibility help
×
  • Cited by 150
Publisher:
Cambridge University Press
Online publication date:
November 2017
Print publication year:
2017
Online ISBN:
9781316882603

Book description

This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curie–Weiss and Ising models, the Gaussian free field, O(n) models, and models with Kać interactions. Using classical concepts such as Gibbs measures, pressure, free energy, and entropy, the book exposes the main features of the classical description of large systems in equilibrium, in particular the central problem of phase transitions. It treats such important topics as the Peierls argument, the Dobrushin uniqueness, Mermin–Wagner and Lee–Yang theorems, and develops from scratch such workhorses as correlation inequalities, the cluster expansion, Pirogov–Sinai Theory, and reflection positivity. Written as a self-contained course for advanced undergraduate or beginning graduate students, the detailed explanations, large collection of exercises (with solutions), and appendix of mathematical results and concepts also make it a handy reference for researchers in related areas.

Reviews

'Rigorous Statistical Mechanics has a long tradition, starting in the 1960s with Dobrushin, Lanford, Ruelle, Sinai and many other mathematical physicists. Yet, surprisingly, there has not been an up-to-date textbook on an introductory level. This gap is bridged masterly by the present book. It addresses the curious newcomer by employing a carefully designed structure, which starts from a physics introduction and then uses the two-dimensional Ising model as a stepping-stone towards the richness of the subject. The book will be enjoyed by students and researchers with an interest in either theoretical condensed matter physics or probability theory.'

Herbert Spohn - Technische Universität München

'An excellent introduction to classical equilibrium statistical mechanics. There is clear concern with the understanding of ideas and concepts behind the various tools and models. Topics are presented through examples, making this book a genuine ‘concrete mathematical introduction'. While reading it, my first wish was to use it as soon as possible in a course. It is a ‘must’ for the libraries of graduate programs in mathematics or mathematical physics.'

Maria Eulália Vares - Universidade Federal do Rio de Janeiro

'This book is a marvelous introduction to equilibrium statistical mechanics for mathematically inclined readers, which does not sacrifice clarity in the pursuit of mathematical rigor. The book starts with basic definitions and a crash course in thermodynamics, and gets to sophisticated topics such as cluster expansions, the Pirogov-Sinai theory and infinite volume Gibbs measures through the discussion of concrete models. This book should be on the bookshelf of any serious student, researcher and teacher of mathematical statistical mechanics.'

Ofer Zeitouni - Weizmann Institute, Israel

'Sacha Friedli and Yvan Velenik have succeeded in writing a unique, modern treatise on equilibrium statistical mechanics. They cover many fundamental concepts, techniques and examples in a didactic manner, providing a remarkable source of knowledge, grounded and refined by years of experience. Stimulating and appealing, this book is likely to inspire generations of students and scientists.'

Francis Comets - Université Paris Diderot

'The authors have created an impressive book that shows its strengths in several ways: thoughtful organization and a well-designed presentation, real attention to the needs of the reader, and a very nice guide to the existing literature. It could be a model of how mathematical physics should be presented.'

Bill Satzer Source: MAA Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] A. A., Abrikosov. Fundamentals of the theory of metals. North-Holland, Amsterdam, New York, 1988.
[2] R., Ahlswede and D. E., Daykin. An inequality for the weights of two families of sets, their unions and intersections. Z.Wahrsch. Verw. Gebiete, 43(3):183–185, 1978.
[3] M., Aizenman. Translation invariance and instability of phase coexistence in the twodimensional Ising system. Comm. Math. Phys., 73(1):83–94, 1980.
[4] M., Aizenman. Geometric analysis of ϕ4 fields and Ising models. I, II. Comm. Math. Phys., 86(1):1–48, 1982.
[5] M., Aizenman. D. J., Barsky, and R., Fernández. The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys., 47(3–4):343–374, 1987.
[6] M., Aizenman. J., Bricmont, and J. L., Lebowitz. Percolation of the minority spins in high-dimensional Isingmodels. J. Stat. Phys., 49(3–4):859–865, 1987.
[7] M., Aizenman and R. Fernández. On the critical behavior of themagnetization in highdimensional Isingmodels. J. Stat. Phys., 44(3–4):393–454, 1986.
[8] M., Aizenman. H., Duminil-Copin, and V., Sidoravicius. Random currents and continuity of Ising model's spontaneous magnetization. Comm. Math. Phys., 334(2):719–742, 2015.
[9] M., Aizenman and R., Graham. On the renormalized coupling constant and the susceptibility in ϕ field theory and the Ising model in four dimensions. Nucl. Phys. B, 225(2, FS 9):261–288, 1983.
[10] N., Alon and J. H., Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2008.
[11] A. F., Andreev. Singularity of thermodynamic quantities at a first order phase transition point. Sov. Phys. JETP, 18(5):1415–1416, 1964.
[12] T., Andrews. The Bakerian Lecture: On the continuity of the gaseous and liquid states of matter. Phil. Trans. R. Soc. London, 159:575–590, 1869.
[13] T., Asano. Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Japan, 29:350–359, 1970.
[14] N. W., Ashcroft and N. D., Mermin. Solid state physics. Saunders College, Philadelphia, PA, 1976.
[15] R. J., Baxter. Onsager and Kaufman's calculation of the spontaneous magnetization of the Ising model. J. Stat. Phys., 145(3):518–548, 2011.
[16] R. J., Baxter. Onsager and Kaufman's calculation of the spontaneous magnetization of the Ising model: II. J. Stat. Phys., 149(6):1164–1167, 2012.
[17] R. J., Baxter. Exactly solved models in statistical mechanics. Academic Press, Inc. [Harcourt Brace Jovanovich], London, 1989. Reprint of the 1982 original.
[18] O., Benois. T., Bodineau, and E., Presutti. Large deviations in the van der Waals limit. Stoch. Proc. Appl., 75(1):89–104, 1998.
[19] V., Berezinski. Destruction of long-range order in one-dimensional and twodimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP, 32, 1971.
[20] M., Biskup. C., Borgs, J. T., Chayes, L. J., Kleinwaks, and R., Kotecký. Partition function zeros at first-order phase transitions: a general analysis. Comm. Math. Phys., 251(1):79–131, 2004.
[21] M., Biskup. C., Borgs, J. T., Chayes, and R., Kotecký. Partition function zeros at first-order phase transitions: Pirogov–Sinai theory. J. Stat. Phys., 116(1–4):97–155, 2004.
[22] M., Biskup. Reflection positivity and phase transitions in lattice spin models. In Methods of contemporarymathematical statistical physics, volume 1970 of LectureNotes in Mathematics, pages 1–86. Springer, Berlin, 2009.
[23] M., Biskup and L., Chayes. Rigorous analysis of discontinuous phase transitions via mean-field bounds. Comm. Math. Phys., 238(1–2):53–93, 2003.
[24] M., Biskup. L., Chayes, and N., Crawford. Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys., 122(6):1139–1193, 2006.
[25] M., Blume. Theory of the first-order magnetic phase change in UO2. Phys. Rev., 141:517–524, 1966.
[26] T., Bodineau. The Wulff construction in three and more dimensions. Comm. Math. Phys., 207(1):197–229, 1999.
[27] T., Bodineau. Translation invariant Gibbs states for the Ising model. Probab. Theory Related Fields, 135(2):153–168, 2006.
[28] T., Bodineau. D., Ioffe, and Y., Velenik. Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys., 41(3):1033–1098, 2000.
[29] T., Bodineau. D., Ioffe, and Y., Velenik. Winterbottom construction for finite range ferromagnetic models: an L1-approach. J. Stat. Phys., 105(1–2):93–131, 2001.
[30] V. I., Bogachev. Measure theory. Vols. I, II. Springer-Verlag, Berlin, 2007.
[31] B., Bollobás and O., Riordan. Percolation. Cambridge University Press, New York, 2006.
[32] C. A., Bonato. J., Fernando Perez, and A., Klein. TheMermin-Wagner phenomenon and cluster properties of one- and two-dimensional systems. J. Stat. Phys., 29(2):159–175, 1982.
[33] J., Borcea and P. Brändén. The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability. Invent.Math., 177(3):541–569, 2009.
[34] C., Borgs and J. Z., Imbrie. A unified approach to phase diagrams in field theory and statisticalmechanics. Comm. Math. Phys., 123(2):305–328, 1989.
[35] C., Borgs and R. Kotecký. A rigorous theory of finite-size scaling at first-order phase transitions. J. Stat. Phys., 61(1–2):79–119, 1990.
[36] M., Born and K., Fuchs. The statistical mechanics of condensing systems. Proc. R. Soc. London A, 166(926):391–414, 1938.
[37] A., Bovier. Statistical mechanics of disordered systems: A mathematical perspective. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, l, 2006.
[38] A., Bovier and F., den Hollander. Metastability: A potential-theoretic approach, volume 351 of Grundlehren der MathematischenWissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham, 2015.
[39] A., Bovier and M. Zahradník. The low-temperature phase of Kac–Isingmodels. J. Stat. Phys., 87(1–2):311–332, 1997.
[40] R., Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, revised edition, 2008.
[41] H. J., Brascamp, E. H., Lieb, and J. L., Lebowitz. The statistical mechanics of anharmonic lattices. In Proceedings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Vol. 1. Invited papers, volume 46, pages 393–404, 1975.
[42] H. J., Brascamp and E. H., Lieb. On extensions of the Brunn–Minkowski and Prékopa– Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Functional Anal., 22(4):366–389, 1976.
[43] O., Bratteli and D. W., Robinson. Operator algebras and quantum statistical mechanics. 1. Texts andMonographs in Physics. Springer-Verlag, New York, second edition, 1987.
[44] O., Bratteli and D. W., Robinson. Operator algebras and quantum statistical mechanics. 2. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1997.
[45] P., Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999.
[46] J., Bricmont. A., El Mellouki, and J. Fröhlich. Random surfaces in statisticalmechanics: roughening, rounding, wetting,…. J. Stat. Phys., 42(5–6):743–798, 1986.
[47] J., Bricmont. J. R., Fontaine, and L. J., Landau. On the uniqueness of the equilibrium state for plane rotators. Comm. Math. Phys., 56(3):281–296, 1977.
[48] J., Bricmont. K., Kuroda, and J. L., Lebowitz. First order phase transitions in lattice and continuous systems: extension of Pirogov-Sinai theory. Comm. Math. Phys., 101(4):501–538, 1985.
[49] J., Bricmont. J. L., Lebowitz, and C. E., Pfister. On the local structure of the phase separation line in the two-dimensional Ising system. J. Stat. Phys., 26(2):313–332, 1981.
[50] J., Bricmont and J., Slawny. First order phase transitions and perturbation theory. In Statistical mechanics and field theory: mathematical aspects (Groningen, 1985), volume 257 of Lecture Notes in Physics, pages 10–51. Springer, Berlin, 1986.
[51] J., Bricmont and J., Slawny. Phase transitions in systems with a finite number of dominant ground states. J. Stat. Phys., 54(1–2):89–161, 1989.
[52] J., Bricmont. J.-R., Fontaine, and J. L., Lebowitz. Surface tension, percolation, and roughening. J. Stat. Phys., 29(2):193–203, 1982.
[53] J., Bricmont, J. L., Lebowitz, and C. E., Pfister. On the surface tension of lattice systems. In Third International Conference on Collective Phenomena (Moscow, 1978), volume 337 of Annals of the New York Academy of Sciences, pages 214–223. New York Academy of Sciences, New York, 1980.
[54] S. G., Brush. The kind of motion we call heat: a history of the kinetic theory of gases in the 19th century, volume 6. North-Holland, New York, 1976.
[55] S. G., Brush. History of the Lenz-Ising model. Rev. Mod. Phys., 39:883–893, 1967.
[56] D., Brydges. J. Fröhlich, and T., Spencer. The random walk representation of classical spin systems and correlation inequalities. Comm. Math. Phys., 83(1):123–150, 1982.
[57] D. C., Brydges. Lectures on the renormalisation group. In Statistical mechanics, volume 16 of IAS/Park City Mathematics Series, pages 7–93. American Mathematical Society, Providence, RI, 2009.
[58] H. B., Callen. Thermodynamics. JohnWiley & Sons, Inc., New York, 1960.
[59] F., Camia. C., Garban, and C. M., Newman. The Isingmagnetization exponent on Z2 is 1/15. Probab. Theory Related Fields, 160(1–2):175–187, 2014.
[60] M., Campanino, D., Ioffe. and Y., Velenik. Ornstein–Zernike theory for finite-range Ising models above Tc. Probab. Theory Related Fields, 125(3):305–349, 2003.
[61] H. W., Capel. On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica, 32(5):966–988, 1966.
[62] M., Cassandro and E., Presutti. Phase transitions in Ising systems with long but finite range interactions. Markov Process. Related Fields, 2(2):241–262, 1996.
[63] C., Cercignani. Ludwig Boltzmann: The man who trusted atoms. Oxford University Press, Oxford, 1998.
[64] R., Cerf and Á., Pisztora. On the Wulff crystal in the Ising model. Ann. Probab., 28(3):947–1017, 2000.
[65] P. M., Chaikin and T. C., Lubensky. Principles of condensed matter physics. Cambridge University Press, Cambridge, 1995.
[66] S., Chatterjee. Stein's method for concentration inequalities. Probab. Theory Related Fields, 138(1–2):305–321, 2007.
[67] J. T., Chayes. L., Chayes, and R. H., Schonmann. Exponential decay of connectivities in the two-dimensional Isingmodel. J. Stat. Phys., 49(3–4):433–445, 1987.
[68] L., Chayes. Mean field analysis of low-dimensional systems. Comm. Math. Phys., 292(2):303–341, 2009.
[69] L., Chayes and J., Machta. Graphical representations and cluster algorithms II. Physica A: Stat.Mech. Appl., 254(3–4):477–516, 1998.
[70] D., Cimasoni and H., Duminil-Copin. The critical temperature for the Ising model on planar doubly periodic graphs. Electron. J. Probab., 18(44), 2013.
[71] J. B., Conway. Functions of one complex variable, volume 11 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1978.
[72] L., Coquille. Examples of DLR states which are not weak limits of finite volume Gibbs measures with deterministic boundary conditions. J. Stat. Phys., 159(4):958–971, 2015.
[73] L., Coquille and Y., Velenik. A finite-volume version of Aizenman–Higuchi theorem for the 2d Ising model. Probab. Theory Related Fields, 153(1–2):25–44, 2012.
[74] A., Dembo and O., Zeitouni. Large deviations techniques and applications, volume 38 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition.
[75] F., den Hollander. Large deviations, volume 14 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 2000.
[76] J.-D., Deuschel. G., Giacomin, and D., Ioffe. Large deviations and concentration properties for ∇ϕinterface models. Probab. Theory Related Fields, 117(1):49–111, 2000.
[77] J.-D., Deuschel and D. W., Stroock. Large deviations, volume 137 of Pure and Applied Mathematics. Academic Press, Boston,MA, 1989.
[78] J.-D., Deuschel. D. W., Stroock, and H., Zessin. Microcanonical distributions for lattice gases. Comm. Math. Phys., 139(1):83–101, 1991.
[79] R., Dobrushin, R., Kotecký, and S., Shlosman. Wulff construction: A global shape from local interaction, volume 104 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1992. Translated from the Russian by the authors.
[80] R. L., Dobrushin. Existence of a phase transition in the two-dimensional and threedimensional Isingmodels. Sov. Phys. Dokl., 10:111–113, 1965.
[81] R. L., Dobrushin. Gibbs states describing a coexistence of phases for the threedimensional isingmodel. Theory Probab. Appl., 17(3):582–600, 1972.
[82] R. L., Dobrushin. Estimates of semi-invariants for the Isingmodel at low temperatures. In Topics in statistical and theoretical physics, volume 177 of American Mathematical Society Translations Series 2, pages 59–81. American Mathematical Society, Providence, RI, 1996.
[83] R. L., Dobrushin and S. B., Shlosman. Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics. Comm. Math. Phys., 42:31–40, 1975.
[84] R. L., Dobrushin and S. B., Shlosman. Nonexistence of one- and two-dimensional Gibbs fields with noncompact group of continuous symmetries. In Multicomponent random systems, volume 6 of Advances in Probability and Related Topics, pages 199–210. Dekker, New York, 1980.
[85] R. L., Dobrushin and S. B., Shlosman. The problem of translation invariance of Gibbs states at low temperatures. In Mathematical physics reviews, volume 5 of Soviet Sci. Rev. Sect. C Math. Phys. Rev., pages 53–195. Harwood Academic, Chur, 1985.
[86] R. L., Dobrushin and S. B., Shlosman. Completely analytical interactions: constructive description. J. Stat. Phys., 46(5–6):983–1014, 1987.
[87] R. L., Dobrushin and M., Zahradník. Phase diagrams for continuous-spin models: an extension of the Pirogov-Sinaı theory. In Mathematical problems of statistical mechanics and dynamics, volume 6 ofMathematics and its Applications (Soviet Ser.), pages 1–123. Reidel, Dordrecht, 1986.
[88] R. L., Dobrushin. Description of a random field by means of conditional probabilities and conditions for its regularity. Teor. Verojatnost. i Primenen, 13:201–229, 1968.
[89] C., Domb. The critical point: A historical introduction to the modern theory of critical phenomena. CRC Press, Boca Raton, FL, 1996.
[90] T. C., Dorlas. Statistical mechanics: Fundamentals and model solutions. IOP Publishing, Bristol, 1999.
[91] H., Duminil-Copin. Geometric representations of lattice spin models. Cours Peccot du Collège de France. Éditions Spartacus, 2015.
[92] H., Duminil-Copin. Parafermionic observables and their applications to planar statistical physics models, volume 25 of Ensaios Matemáticos [Mathematical Surveys]. Sociedade Brasileira deMatemática, Rio de Janeiro, 2013.
[93] H., Duminil-Copin. A proof of first order phase transition for the planar randomcluster and Potts models with q & 1. In Proceedings of Stochastic Analysis on Large Scale Interacting Systems in RIMS Kokyuroku Besssatsu, 2016.
[94] H., Duminil-Copin and S., Smirnov. Conformal invariance of lattice models. In Probability and statistical physics in two and more dimensions, volume 15 of Clay Mathematics Proceedings, pages 213–276. American Mathematical Society, Providence, RI, 2012.
[95] M., Duneau. D., Iagolnitzer, and B., Souillard. Strong cluster properties for classical systems with finite range interaction. Comm. Math. Phys., 35:307–320, 1974.
[96] F., Dunlop. Zeros of partition functions via correlation inequalities. J. Stat. Phys., 17(4):215–228, 1977.
[97] E. B., Dynkin. Sufficient statistics and extreme points. Ann. Probab., 6(5):705–730, 1978.
[98] F. J., Dyson. E. H., Lieb, and B., Simon. Phase transitions in the quantum Heisenberg model. Phys. Rev. Lett., 37(3):120–123, 1976.
[99] F. J., Dyson. Existence of a phase-transition in a one-dimensional Ising ferromagnet. Comm. Math. Phys., 12(2):91–107, 1969.
[100] R. S., Ellis. Entropy, large deviations, and statistical mechanics. Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1985 original.
[101] R., Fernández. Gibbsianness and non-Gibbsianness in lattice random fields. In Mathematical statistical physics, pages 731–799. Elsevier B. V., Amsterdam, 2006.
[102] R., Fernández, J., Fröhlich, and A. D., Sokal. Random walks, critical phenomena, and triviality in quantum field theory. Texts andMonographs in Physics. Springer-Verlag, Berlin, 1992.
[103] R., Fernández and A., Procacci. Cluster expansion for abstract polymer models. New bounds from an old approach. Comm. Math. Phys., 274(1):123–140, 2007.
[104] R., Fernández. Contour ensembles and the description of Gibbsian probability distributions at low temperature. 21o Colóquio Brasileiro de Matemática. [21st Brazilian Mathematics Colloquium]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997.
[105] M. E., Fisher. The theory of equilibrium critical phenomena. Rep. Prog. Phys., 30(2):615, 1967.
[106] M. E., Fisher. The theory of condensation and the critical point. Physics, 3(5):255, 1967.
[107] M. E., Fisher. Walks, walls, wetting, and melting. J. Stat. Phys., 34(5–6):667–729, 1984.
[108] H., Föllmer. Random fields and diffusion processes. In École d'Été de Probabilités de Saint-Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Mathematics, pages 101–203. Springer, Berlin, 1988.
[109] C. M., Fortuin and P. W., Kasteleyn. On the random-cluster model. I. Introduction and relation to othermodels. Physica, 57:536–564, 1972.
[110] C. M., Fortuin. P. W., Kasteleyn, and J., Ginibre. Correlation inequalities on some partially ordered sets. Comm. Math. Phys., 22:89–103, 1971.
[111] S. H., Friedberg, A. J., Insel, and L. E., Spence. Linear algebra. Prentice Hall, Upper Saddle River, NJ, third edition, 1997.
[112] S., Friedli. On the non-analytic behavior of thermodynamic potentials at first-order phase transitions. PhD thesis, École Polytechnique Fédérale de Lausanne, 2003.
[113] S., Friedli and C.-E., Pfister. Non-analyticity and the van der Waals limit. J. Stat. Phys., 114(3–4):665–734, 2004.
[114] S., Friedli and C.-É., Pfister. On the singularity of the free energy at a first order phase transition. Comm. Math. Phys., 245(1):69–103, 2004.
[115] J., Fröhlich, R., Israel. E. H., Lieb, and B., Simon. Phase transitions and reflection positivity. I. General theory and long range lattice models. Comm. Math. Phys., 62(1):1–34, 1978.
[116] J., Fröhlich, R., Israel. E. H., Lieb, and B., Simon. Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions. J. Stat. Phys., 22(3):297–347, 1980.
[117] J., Fröhlich and E. H., Lieb. Phase transitions in anisotropic lattice spin systems. Comm. Math. Phys., 60(3):233–267, 1978.
[118] J., Fröhlich, B., Simon. and T., Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys., 50(1):79–95, 1976.
[119] J., Fröhlich and C., Pfister. On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Comm. Math. Phys., 81(2):277–298, 1981.
[120] J., Fröhlich and P.-F., Rodriguez. Some applications of the Lee-Yang theorem. J. Math. Phys., 53(9):095218, 15, 2012.
[121] J., Fröhlich and P.-F., Rodríguez. On cluster properties of classical ferromagnets in an external magnetic field. J. Stat. Phys., 166(3):828–840, 2017.
[122] J., Fröhlich and T., Spencer. The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and theCoulomb gas. Comm. Math. Phys., 81(4):527–602, 1981.
[123] J., Fröhlich and T., Spencer. The phase transition in the one-dimensional Ising model with 1/r2 interaction energy. Comm. Math. Phys., 84(1):87–101, 1982.
[124] T., Funaki and H., Spohn. Motion by mean curvature from the Ginzburg–Landau ∇ϕ interfacemodel. Comm. Math. Phys., 185(1):1–36, 1997.
[125] T., Funaki. Stochastic interface models. In Lectures on probability theory and statistics, volume 1869 of Lecture Notes in Mathematics, pages 103–274. Springer, Berlin, 2005.
[126] M., Gagnebin and Y., Velenik. Upper bound on the decay of correlations in a general class of O(N)-symmetric models. Comm. Math. Phys., 332(3):1235–1255, 2014.
[127] G., Gallavotti. Instabilities and phase transitions in the Ising model: a review. Riv. Nuovo Cimento, 2(2):133–169, 1972.
[128] G., Gallavotti and S., Miracle-Solé. Statistical mechanics of lattice systems. Comm. Math. Phys., 5:317–323, 1967.
[129] G., Gallavotti and S., Miracle-Solé. Equilibrium states of the Ising model in the twophase region. Phys. Rev. B, 5:2555–2559, 1972.
[130] G., Gallavotti. Statisticalmechanics: A short treatise. Texts andMonographs in Physics. Springer-Verlag, Berlin, 1999.
[131] R. J., Gardner. The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3):355–405, 2002.
[132] H.-O., Georgii, O., Häggström, and C., Maes. The random geometry of equilibrium phases. In Phase transitions and critical phenomena, volume 18 of Phase Transitions and Critical Phenomena, pages 1–142. Academic Press, San Diego, CA, 2001.
[133] H.-O., Georgii. The equivalence of ensembles for classical systems of particles. J. Stat. Phys., 80(5–6):1341–1378, 1995.
[134] H.-O., Georgii. Gibbs measures and phase transitions, volume 9 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, second edition, 2011.
[135] H.-O., Georgii and Y., Higuchi. Percolation and number of phases in the twodimensional Isingmodel. J. Math. Phys., 41(3):1153–1169, 2000.
[136] G., Giacomin. Aspects of statistical mechanics of random surfaces. Notes of lectures given in Fall 2001 at IHP, 2002.
[137] J. W., Gibbs. Elementary principles in statistical mechanics: developed with especial reference to the rational foundation of thermodynamics. Dover, New York, 1960. Original publication year: 1902.
[138] J., Ginibre. Simple proof and generalization of Griffiths' second inequality. Phys. Rev. Lett., 23:828–830, 1969.
[139] J., Ginibre. General formulation of Griffiths' inequalities. Comm. Math. Phys., 16:310–328, 1970.
[140] J., Glimm and A., Jaffe. Quantum physics: A functional integral point of view. Springer- Verlag, New York, second edition, 1987.
[141] L., Greenberg and D., Ioffe. On an invariance principle for phase separation lines. Ann. Inst. H. Poincaré Probab. Statist., 41(5):871–885, 2005.
[142] R. B., Griffiths. Correlation in Ising ferromagnets I, II. J. Math. Phys., 8:478–489, 1967.
[143] R. B., Griffiths. C. A., Hurst, and S., Sherman. Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys., 11:790–795, 1970.
[144] R. B., Griffiths. Peierls proof of spontaneousmagnetization in a two-dimensional Ising ferromagnet. Phys. Rev. (2), 136:A437–A439, 1964.
[145] R. B., Griffiths. A proof that the free energy of a spin system is extensive. J. Math. Phys., 5:1215–1222, 1964.
[146] R. B., Griffiths. Rigorous results and theorems. In Phase transitions and critical phenomena, volume 1, pages 7–109. Academic Press, New York, 1972.
[147] R. B., Griffiths and P. A., Pearce. Mathematical properties of position-space renormalization-group transformations. J. Stat. Phys., 20(5):499–545, 1979.
[148] C., Grillenberger and U., Krengel. On the spatial constant of superadditive set functions in Rd. In Ergodic theory and related topics (Vitte, 1981), volume 12 of Mathematical Research, pages 53–57. Akademie-Verlag, Berlin, 1982.
[149] G., Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.
[150] G., Grimmett. The random-cluster model, volume 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
[151] G., Grimmett. Probability on graphs: Random processes on graphs and lattices, volume 1 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, Cambridge, 2010.
[152] G. R., Grimmett and D. R., Stirzaker. Probability and random processes. Oxford University Press, New York, third edition, 2001.
[153] J., Groeneveld. Two theorems on classical many-particle systems. Phys. Lett., 3:50–51, 1962.
[154] C., Gruber, A., Hintermann, and D., Merlini. Group analysis of classical lattice systems, volume 60 of Lecture Notes in Physics. Springer-Verlag, Berlin, New York, 1977.
[155] C., Gruber and H., Kunz. General properties of polymer systems. Comm. Math. Phys., 22:133–161, 1971.
[156] O., Häggström. Finite Markov chains and algorithmic applications, volume 52 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2002.
[157] G. C., Hegerfeldt and C. R., Nappi. Mixing properties in lattice systems. Comm. Math. Phys., 53(1):1–7, 1977.
[158] B., Helffer and J., Sjöstrand. On the correlation for Kac-likemodels in the convex case. J. Stat. Phys., 74(1–2):349–409, 1994.
[159] P. C., Hemmer, H., Holden, and S. Kjelstrup, Ratkje. Autobiographical commentary of Lars Onsager. In The collected works of Lars Onsager (with commentary), volume 17 of World Scientific Series in 20th Century Physics. World Scientific, Singapore, 1996.
[160] Y., Higuchi. On the absence of non-translation invariant Gibbs states for the twodimensional Ising model. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Colloquia Mathematica Societatis János Bolyai, pages 517–534. North-Holland, Amsterdam, 1981.
[161] Y., Higuchi. On some limit theorems related to the phase separation line in the twodimensional Isingmodel. Z.Wahrsch. Verw. Gebiete, 50(3):287–315, 1979.
[162] P., Holický, R., Kotecký, and M., Zahradník. Phase diagram of horizontally invariant Gibbs states for lattice models. Ann. Inst. H. Poincaré, 3(2):203–267, 2002.
[163] R., Holley. Remarks on the FKG inequalities. Comm. Math. Phys., 36:227–231, 1974.
[164] W., Holsztynski and J., Slawny. Peierls condition and number of ground states. Comm. Math. Phys, 61:177–190, 1978.
[165] K., Huang. Statistical mechanics. JohnWiley & Sons, New York, second edition, 1987.
[166] J., Hubbard. Calculation of partition functions. Phys. Rev. Lett., 3:77–78, 1959.
[167] K., Husimi. Statistical mechanics of condensation. In H., Yukawa, editor, Proceedings of the International Conference of Theoretical Physics. Science Council of Japan, 1954.
[168] J. Z., Imbrie. Phase diagrams and cluster expansions for low temperature P(ϕ)2 models. I. The phase diagram. Comm. Math. Phys., 82(2):261–304, 1981/82.
[169] D., Ioffe. S., Shlosman, and Y., Velenik. 2D models of statistical physics with continuous symmetry: the case of singular interactions. Comm. Math. Phys., 226(2):433–454, 2002.
[170] D., Ioffe. Large deviations for the 2D Ising model: a lower bound without cluster expansions. J. Stat. Phys., 74(1–2):411–432, 1994.
[171] D., Ioffe. Exact large deviation bounds up to Tc for the Isingmodel in two dimensions. Probab. Theory Related Fields, 102(3):313–330, 1995.
[172] D., Ioffe. Stochastic geometry of classical and quantum Ising models. In Methods of contemporary mathematical statistical physics, volume 1970 of Lecture Notes in Mathematics, pages 87–127. Springer, Berlin, 2009.
[173] D., Ioffe and R. H., Schonmann. Dobrushin–Kotecký–Shlosman theorem up to the critical temperature. Comm. Math. Phys., 199(1):117–167, 1998.
[174] S. N., Isakov. Nonanalytic features of the first order phase transition in the Isingmodel. Comm. Math. Phys., 95(4):427–443, 1984.
[175] E., Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 31(1):253– 258, 1925.
[176] R. B., Israel. Convexity in the theory of lattice gases. Princeton University Press, Princeton, NJ, 1979.
[177] R. B., Israel. Banach algebras and Kadanoff transformations. In Random Fields, pages 593–608. North Holland, Amsterdam, 1981.
[178] R. B., Israel. Existence of phase transitions for long-range interactions. Comm. Math. Phys., 43:59–68, 1975.
[179] K. R., Ito. Clustering in low-dimensional SO(N)-invariant statistical models with longrange interactions. J. Stat. Phys., 29(4):747–760, 1982.
[180] J. L., Jacobsen, C. R., Scullard, and A. J., Guttmann. On the growth constant for squarelattice self-avoiding walks. J. Phys. A: Math. Theor., 49, 494004, 2016.
[181] E. T., Jaynes. Information theory and statistical mechanics. Phys. Rev. (2), 106:620–630, 1957.
[182] I., Jensen. Improved lower bounds on the connective constants for two-dimensional self-avoiding walks. J. Phys. A, 37(48):11521–11529, 2004.
[183] M., Kac. Mathematical mechanisms of phase transitions. In M., Chretien, E. P., Gross, and S., Deser, editors, Statistical physics: phase transitions and superfluidity, volume 1. Gordon and Breach, New York, 1968.
[184] M., Kac, G. E., Uhlenbeck, and P. C., Hemmer. On the van derWaals theory of the vaporliquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys., 4: 216– 228, 1963.
[185] B., Kahn and G. E., Uhlenbeck. On the theory of condensation. Physica, 5(5):399–416, 1938.
[186] O., Kallenberg. Foundations of modern probability. Probability and its Applications. Springer-Verlag, New York, second edition, 2002.
[187] G., Keller. Equilibrium states in ergodic theory, volume 42 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1998.
[188] D. G., Kelly and S., Sherman. General Griffiths's inequality on correlation in Ising ferromagnets. J. Math. Phys., 9:466–484, 1968.
[189] H., Kesten. Percolation theory for mathematicians, volume 2 of Progress in Probability and Statistics. Birkhäuser, Boston, MA, 1982.
[190] A. I., Khinchin. Mathematical foundations of statistical mechanics. Dover, New York, 1949. Translated by G., Gamow.
[191] A. I., Khinchin. Mathematical foundations of information theory. Dover New York, 1957. Translated by R. A., Silverman and M. D., Friedman.
[192] R., Kindermann and J. L., Snell. Markov random fields and their applications, volume 1 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1980.
[193] A., Klein. L. J., Landau, and D. S., Shucker. On the absence of spontaneous breakdown of continuous symmetry for equilibrium states in two dimensions. J. Stat. Phys., 26(3):505–512, 1981.
[194] F., Kos, D., Poland, D., Simmons-Duffin, and A., Vichi. Precision islands in the Ising and O(n) models. J. High Energy Phys., 2016.
[195] J. M., Kosterlitz and D. J., Thouless. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys., 6(7):1181, 1973.
[196] R., Kotecký and D., Preiss. Cluster expansion for abstract polymer models. Comm. Math. Phys., 103(3):491–498, 1986.
[197] R., Kotecký and S. B., Shlosman. First-order phase transitions in large entropy lattice models. Comm. Math. Phys., 83(4):493–515, 1982.
[198] R., Kotecký, A. D., Sokal. and J. M., Swart. Entropy-driven phase transition in lowtemperature antiferromagnetic Potts models. Comm. Math. Phys., 330(3):1339–1394, 2014.
[199] F., Koukiou. D., Petritis, and M., Zahradník. Extension of the Pirogov-Sinaı theory to a class of quasiperiodic interactions. Comm. Math. Phys., 118(3):365–383, 1988.
[200] H. A., Kramers and G. H., Wannier. Statistics of the two-dimensional ferromagnet. I. Phys. Rev. (2), 60:252–262, 1941.
[201] H., Kunz and C.-E., Pfister. First order phase transition in the plane rotator ferromagneticmodel in two dimensions. Comm. Math. Phys., 46(3):245–251, 1976.
[202] H., Kunz. C. E., Pfister, and P.-A., Vuillermot. Inequalities for some classical spin vector models. J. Phys. A, 9(10):1673–1683, 1976.
[203] L., Laanait. A., Messager, S., Miracle-Solé, J., Ruiz, and S., Shlosman. Interfaces in the Pottsmodel. I. Pirogov–Sinai theory of the Fortuin–Kasteleyn representation. Comm. Math. Phys., 140(1):81–91, 1991.
[204] O. E., Lanford. III and D., Ruelle. Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Phys., 13:194–215, 1969.
[205] O. E., Lanford. Entropy and equilibrium states in classical statistical mechanics. In Statistical mechanics and mathematical problems, pages 1–113. Springer, Berlin, Heidelberg, 1973.
[206] J. S., Langer. Statistical theory of the decay of metastable states. Ann. Phys., 54(2):258– 275, 1969.
[207] D. A., Lavis. Equilibrium statisticalmechanics of latticemodels. Theoretical and Mathematical Physics. Springer, Dordrecht, 2015.
[208] G., Lawler. Schramm–Loewner evolution (SLE). In Statistical mechanics, volume 16 of IAS/Park City Mathematics Series, pages 231–295. American Mathematical Society, Providence, RI, 2009.
[209] G. F., Lawler. Intersections of random walks: Probability and its applications. Birkhäuser, Boston, MA, 1991.
[210] G. F., Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
[211] G. F., Lawler and V., Limic. Random walk: a modern introduction, volume 123 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
[212] J.-F., Le Gall. Mouvement brownien, martingales et calcul stochastique, volume 71 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2013.
[213] A. Le, Ny. Introduction to (generalized) Gibbs measures, volume 15 of Ensaios Matemáticos [Mathematical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro, 2008.
[214] J. L., Lebowitz. A., Mazel, and E., Presutti. Liquid-vapor phase transitions for systems with finite-range interactions. J. Stat. Phys., 94(5–6):955–1025, 1999.
[215] J. L., Lebowitz and O., Penrose. Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition. J. Math. Phys., 7:98–113, 1966.
[216] J. L., Lebowitz and O., Penrose. Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems. Comm. Math. Phys., 11:99–124, 1968/1969.
[217] J. L., Lebowitz and C. E., Pfister. Surface tension and phase coexistence. Phys. Rev. Lett., 46(15):1031–1033, 1981.
[218] J. L., Lebowitz. Coexistence of phases in Ising ferromagnets. J. Stat. Phys., 16(6):463– 476, 1977.
[219] J. L., Lebowitz and A., Martin-Löf. On the uniqueness of the equilibrium state for Ising spin systems. Comm. Math. Phys., 25:276–282, 1972.
[220] T. D., Lee and C. N., Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 87(3):410–419, 1952.
[221] W., Lenz. Beiträg zum Verständnis dermagnetischen Eigenschaften in festen Körpern, Phys. Z., 21: 613–615, 1920.
[222] J. T., Lewis. C.-E., Pfister, and W. G., Sullivan. The equivalence of ensembles for lattice systems: some examples and a counterexample. J. Stat. Phys., 77(1–2):397–419, 1994.
[223] J. T., Lewis. C.-E., Pfister, and W. G., Sullivan. Entropy, concentration of probability and conditional limit theorems. Markov Proc. Related Fields, 1(3):319–386, 1995.
[224] E. H., Lieb and J., Yngvason. The physics and mathematics of the second law of thermodynamics. Phys. Rep., 310(1):96, 1999.
[225] T. M., Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag, Berlin, 2005. Reprint of the 1985 original.
[226] V. A., Malyshev. Phase transitions in classical Heisenberg ferromagnets with arbitrary parameter of anisotropy. Comm. Math. Phys., 40:75–82, 1975.
[227] V. A., Malyshev and R. A., Minlos. Gibbs random fields: Cluster expansions, volume 44 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by R., Kotecký and P., Holický.
[228] A. I., Markushevich. Theory of functions of a complex variable.Volumes I, II, III. Chelsea Publishing, New York, English edition, 1977. Translated and edited by Richard A. Silverman.
[229] A., Martin-Löf. Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Comm. Math. Phys., 32:75–92, 1973.
[230] A., Martin-Löf. Statistical mechanics and the foundations of thermodynamics, volume 101 of Lecture Notes in Physics. Springer-Verlag, Berlin-New York, 1979.
[231] F., Martinelli. E., Olivieri, and R. H., Schonmann. For 2-D lattice spin systems weak mixing implies strongmixing. Comm. Math. Phys., 165(1):33–47, 1994.
[232] F., Martinelli. Lectures on Glauber dynamics for discrete spin models. In Lectures on probability theory and statistics (Saint-Flour, 1997), volume 1717 of Lecture Notes in Mathematics, pages 93–191. Springer, Berlin, 1999.
[233] D. H., Martirosian. Translation invariant Gibbs states in the q-state Potts model. Comm. Math. Phys., 105(2):281–290, 1986.
[234] V., Mastropietro. Non-perturbative renormalization. World Scientific, Hackensack, NJ, 2008.
[235] J. C., Maxwell. On the dynamical evidence of the molecular constitution of bodies. Nature, 11:357–359, 1875.
[236] J. E., Mayer. The statistical mechanics of condensing systems. I. J. Chem. Phys., 5(1):67–73, 1937.
[237] O. A., McBryan and T., Spencer. On the decay of correlations in SO(n)-symmetric ferromagnets. Comm. Math. Phys., 53(3):299–302, 1977.
[238] O. A., McBryan and J., Rosen. Existence of the critical point in ϕ4 field theory. Comm. Math. Phys., 51(2):97–105, 1976.
[239] B., McCoy and T. T., Wu. The two-dimensional Ising model. Harvard University Press, Harvard, MA, 1973.
[240] F., Merkl and H., Wagner. Recurrent random walks and the absence of continuous symmetry breaking on graphs. J. Stat. Phys., 75(1–2):153–165, 1994.
[241] N. D., Mermin. Absence of ordering in certain classical systems. J. Math. Phys., 8(5):1061–1064, 1967.
[242] N. D., Mermin and H., Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenbergmodels. Phys. Rev. Lett., 17:1133–1136, 1966.
[243] A., Messager. S., Miracle-Solé, and J., Ruiz. Upper bounds on the decay of correlations in SO(N)-symmetric spin systems with long range interactions. Ann. Inst. H. Poincaré Sect. A (N.S.), 40(1):85–96, 1984.
[244] A., Messager. S., Miracle-Solé, and J., Ruiz. Convexity properties of the surface tension and equilibrium crystals. J. Stat. Phys., 67(3–4):449–470, 1992.
[245] M., Mézard and A., Montanari. Information, physics, and computation. Oxford Graduate Texts. Oxford University Press, Oxford, 2009.
[246] P., Miłos and R., Peled. Delocalization of two-dimensional random surfaces with hardcore constraints. Comm. Math. Phys., 340(1):1–46, 2015.
[247] R. A., Minlos. Introduction to mathematical statistical physics, volume 19 of University Lecture Series. American Mathematical Society, Providence, RI, 2000.
[248] R. A., Minlos and Ja. G., Sinaı. The phenomenon of “separation of phases” at low temperatures in certain lattice models of a gas. I. Mat. Sb. (N.S.), 73 (115):375–448, 1967.
[249] M., Miyamoto. Statistical mechanics: A mathematical approach. Nippon-Hyoron-Sha Co., Ltd., 2004 (in Japanese).
[250] J. L., Monroe and P. A., Pearce. Correlation inequalities for vector spin models. J. Stat. Phys., 21(6):615–633, 1979.
[251] P., Mörters and Y., Peres. Brownian motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.
[252] A., Naddaf. On the decay of correlations in non-analytic SO(n)-symmetric models. Comm. Math. Phys., 184(2):387–395, 1997.
[253] C. M., Newman and L. S., Schulman. Complex free energies and metastable lifetimes. J. Stat. Phys., 23(2):131–148, 1980.
[254] C. M., Newman. Topics in disordered systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1997.
[255] M., Niss. History of the Lenz–Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci., 59(3):267–318, 2005.
[256] M., Niss. History of the Lenz–Ising model 1950–1965: from irrelevance to relevance. Arch. Hist. Exact Sci., 63(3):243–287, 2009.
[257] M., Niss. History of the Lenz–Ising model 1965–1971: the role of a simple model in understanding critical phenomena. Arch. Hist. Exact Sci., 65(6):625–658, 2011.
[258] E., Olivieri and M. E., Vares. Large deviations and metastability, volume 100 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2005.
[259] L., Onsager. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. (2), 65:117–149, 1944.
[260] A., Pais. Einstein and the quantum theory. Rev. Mod. Phys., 51:863–914, 1979.
[261] J., Palmer. Planar Ising correlations, volume 49 of Progress in Mathematical Physics. Birkhäuser Boston, Inc., Boston,MA, 2007.
[262] Y. M., Park. Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. I. Cluster expansion. Comm. Math. Phys., 114(2):187–218, 1988.
[263] Y. M., Park. Extension of Pirogov-Sinai theory of phase transitions to infinite range interactions. II. Phase diagram. Comm. Math. Phys., 114(2):219–241, 1988.
[264] R. K., Pathria. Statisticalmechanics. Elsevier Science, 2011.
[265] E. A., Pechersky. The Peierls condition (or GPS condition) is not always satisfied. SelectaMath. Soviet., 3(1):87–91, 1983/84.
[266] R. E., Peierls. On Ising's ferromagnet model. Proc. Cambridge Phil. Soc., 32:477–481, 1936.
[267] A., Pelissetto and E., Vicari. Critical phenomena and renormalization-group theory. Phys. Rep., 368(6):549–727, 2002.
[268] X., Peng. H., Zhou, B.-B., Wei, J., Cui, J., Du, and R.-B., Liu. Experimental observation of Lee-Yang zeros. Phys. Rev. Lett., 114:010601, 2015.
[269] O., Penrose. Convergence of fugacity expansions for fluids and lattice gases. J. Math. Phys., 4:1312–1320, 1963.
[270] C.-E., Pfister. Large deviations and phase separation in the two-dimensional Ising model. Helv. Phys. Acta, 64(7):953–1054, 1991.
[271] C.-E., Pfister. Interface free energy or surface tension: definition and basic properties, 2009. arXiv:0911.5232.
[272] C.-E., Pfister and Y., Velenik. Large deviations and continuum limit in the 2D Ising model. Probab. Theory Related Fields, 109(4):435–506, 1997.
[273] C.-E., Pfister. On the symmetry of the Gibbs states in two-dimensional lattice systems. Comm. Math. Phys., 79(2):181–188, 1981.
[274] C.-E., Pfister. Thermodynamical aspects of classical lattice systems. In In and out of equilibrium (Mambucaba, 2000), volume 51 of Progress in Probability, pages 393– 472. Birkhäuser, Boston, MA, 2002.
[275] C.-E., Pfister. On the nature of isotherms at first order phase transitions for classical latticemodels. Ensaios Mat., 9:1–90, 2005.
[276] A., Pisztora. Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields, 104(4):427–466, 1996.
[277] A., Pönitz and P., Tittmann. Improved upper bounds for self-avoiding walks in Zd. Electron. J. Combin., 7:Research Paper 21, 10 pp. (electronic), 2000.
[278] C., Preston. Random fields, volume 534 of Lecture Notes in Mathematics. Springer- Verlag, Berlin, New York, 1976.
[279] E., Presutti. Scaling limits in statistical mechanics and microstructures in continuum mechanics. Theoretical andMathematical Physics. Springer, Berlin, 2009.
[280] V., Privman and L. S., Schulman. Analytic continuation at first-order phase transitions. J. Stat. Phys., 29(2):205–229, 1982.
[281] V., Privman and L. S., Schulman. Analytic properties of thermodynamic functions at first-order phase transitions. J. Phys. A, 15(5):L231–L238, 1982.
[282] B., Prum. Processus sur un réseau et mesures de Gibbs: Applications. Techniques Stochastiques [Stochastic Techniques].Masson, Paris, 1986.
[283] F., Rassoul-Agha and T., Seppäläinen. A course on large deviations with an introduction to Gibbs measures, volume 162 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015.
[284] M., Reed and B., Simon. Methods of modern mathematical physics. I. Functional analysis. Academic Press, New York, second edition, 1980.
[285] H., Robbins. A remark on Stirling's formula. Amer.Math. Monthly, 62:26–29, 1955.
[286] A. W., Roberts and D. E., Varberg. Convex functions, volume 57 of Pure and Applied Mathematics. Academic Press, New York, London, 1973.
[287] R. T., Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, NJ, 1970.
[288] U. A., Rozikov. Gibbsmeasures on Cayley trees.World Scientific, Hackensack, NJ, 2013.
[289] D., Ruelle. Statistical mechanics: Rigorous results. World Scientific, River Edge, NJ, 1999. Reprint of the 1989 edition.
[290] D., Ruelle. Extension of the Lee-Yang circle theorem.Phys. Rev. Lett., 26:303–304, 1971.
[291] D., Ruelle. Thermodynamic formalism: The mathematical structures of equilibrium statistical mechanics. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2004.
[292] A., Sakai. Lace expansion for the Ising model. Comm. Math. Phys., 272(2):283–344, 2007.
[293] O. M., Sarig. Thermodynamic formalism for countable Markov shifts. Ergodic Theory Dynam. Syst., 19(6):1565–1593, 1999.
[294] O. M., Sarig. Lecture notes on thermodynamic formalism for topological Markov shifts. Penn State, PA, 2009.
[295] R. H., Schonmann. Projections of Gibbs measures may be non-Gibbsian. Comm. Math. Phys., 124(1):1–7, 1989.
[296] R. H., Schonmann and S. B., Shlosman. Constrained variational problem with applications to the Isingmodel. J. Stat. Phys., 83(5-6):867–905, 1996.
[297] R. H., Schonmann and S. B., Shlosman.Wulff droplets and the metastable relaxation of kinetic Ising models. Comm. Math. Phys., 194(2):389–462, 1998.
[298] F., Schwabl. Statisticalmechanics. Springer-Verlag, Berlin, second edition, 2006.
[299] J. P., Sethna. Statistical mechanics: Entropy, order parameters, and complexity, volume 14 of OxfordMaster Series in Physics. Oxford University Press, Oxford, 2006.
[300] G. L., Sewell. Quantum theory of collective phenomena. Monographs on the Physics and Chemistry of Materials. The Clarendon Press, New York, 1986.
[301] C. E., Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27:379– 423, 623–656, 1948.
[302] S., Sheffield. Random surfaces. Astérisque, 304:vi+175, 2005.
[303] S., Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3-4):521–541, 2007.
[304] S. B., Shlosman. Phase transitions for two-dimensional models with isotropic shortrange interactions and continuous symmetries. Comm. Math. Phys., 71(2):207–212, 1980.
[305] S. B., Shlosman. Themethod of reflection positivity in the mathematical theory of firstorder phase transitions. Russ.Math. Surv., 41(3):83–134, 1986.
[306] S. B., Shlosman. Signs of the Ising model Ursell functions. Comm. Math. Phys., 102(4):679–686, 1986.
[307] B., Simon. Fifteen problems in mathematical physics. In Perspectives in mathematics, pages 423–454. Birkhäuser, Basel, 1984.
[308] B., Simon. The statistical mechanics of lattice gases. Vol. I. Princeton Series in Physics. Princeton University Press, Princeton, NJ, 1993.
[309] B., Simon. A remark on Dobrushin's uniqueness theorem. Comm. Math. Phys., 68(2):183–185, 1979.
[310] B., Simon and R. B., Griffiths. The (ϕ4)2 field theory as a classical Ising model. Comm. Math. Phys., 33:145–164, 1973.
[311] Y. G., Sinaı. Gibbs measures in ergodic theory. Uspehi Mat. Nauk, 27(4(166)):21–64, 1972.
[312] Y. G., Sinaı. Theory of phase transitions: rigorous results, volume 108 of International Series in Natural Philosophy. Pergamon Press, Oxford, 1982. Translated from the Russian by J. Fritz, A. Krámli, P. Major and D. Szász.
[313] Ya G., Sinaı, editor. Mathematical problems of statistical mechanics, volume 2 of Advanced Series in Nonlinear Dynamics. World Scientific, Teaneck, NJ, 1991. Collection of papers.
[314] L., Sklar. Physics and chance: Philosophical issues in the foundations of statistical mechanics. Cambridge University Press, Cambridge, 1993.
[315] G., Slade. The lace expansion and its applications, volume 1879 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2006. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004.
[316] J., Slawny. Low-temperature properties of classical lattice systems: phase transitions and phase diagrams. In Phase transitions and critical phenomena, Volume 11, pages 127–205. Academic Press, London, 1987.
[317] S. B., Šlosman. Decrease of correlations in two-dimensional models with continuous group symmetry. Teoret.Mat. Fiz., 37(3):427–430, 1978.
[318] A. D., Sokal. A rigorous inequality for the specific heat of an Ising or ϕ4 ferromagnet. Phys. Lett. A, 71(5–6):451–453, 1979.
[319] F., Spitzer. Principles of random walks, volume 34 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1976.
[320] F. L., Spitzer. Introduction aux processus de Markov à paramètre dans Zν. In École d'Été de Probabilités de Saint-Flour, III–1973, pages 114–189. Lecture Notes in Mathematics, Volume 390. Springer, Berlin, 1974.
[321] D. L., Stein and C. M., Newman. Spin glasses and complexity. Primers in Complex Systems. Princeton University Press, Princeton, NJ, 2013.
[322] R. L., Stratonovich. On a method of calculating quantum distribution functions. Doklady Akad. Nauk S.S.S.R., 2:416, 1957.
[323] R. H., Swendsen and J.-S., Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58:86–88, 1987.
[324] K., Symanzik. Euclidean quantumfield theory. In R., Jost, editor, Local quantum theory. Academic Press, New York, 1969.
[325] M., Talagrand. Spin glasses: a challenge for mathematicians. Cavity and mean field models, volume 46 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series ofModern Surveys in Mathematics. Springer-Verlag, Berlin, 2003.
[326] M., Talagrand. Mean fieldmodels for spin glasses. Volume I, Basic examples, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys inMathematics. Springer-Verlag, Berlin, 2011.
[327] M., Talagrand. Mean field models for spin glasses. Volume II. Advanced replicasymmetry and low temperature, volume 55 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series ofModern Surveys in Mathematics. Springer, Heidelberg, 2011.
[328] H. N., V. Temperley. The Mayer theory of condensation tested against a simple model of the imperfect gas. Proc. Phys. Soc., London, A, 67(3):233, 1954.
[329] A., Thess. The entropy principle: Thermodynamics for the unsatisfied. Springer-Verlag, Berlin, 2011.
[330] C. J., Thompson. Upper bounds for Ising model correlation functions. Comm. Math. Phys., 24:61–66, 1971/1972.
[331] C. J., Thompson. Mathematical statistical mechanics. Macmillan, New York; Collier- Macmillan, London, 1972.
[332] C. J., Thompson. Validity of mean-field theories in critical phenomena. Prog. Theor. Phys., 87(3):535–559, 1992.
[333] Á., Timár. Boundary-connectivity via graph theory. Proc. Amer. Math. Soc., 141(2):475–480, 2013.
[334] H., Touchette. The large deviation approach to statistical mechanics. Phys. Rep., 478(1–3):1–69, 2009.
[335] D., Ueltschi. Cluster expansions and correlation functions. Mosc. Math. J., 4(2):511–522, 536, 2004.
[336] D. C., Ullrich. Complex made simple, volume 97 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[337] H. D., Ursell. The evaluation of Gibbs' phase-integral for imperfect gases. Math. Proc. Cambridge Phil. Soc., 23:685–697, 1927.
[338] H., van Beijeren. Interface sharpness in the Ising system. Comm. Math. Phys., 40(1):1–6, 1975.
[339] J. D. van der, Waals. Over de Continuiteit van de Gas- en Vloeistoftoestand. PhD thesis, Hoogeschool te Leiden, 1873.
[340] B. L. van der, Waerden. Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen. Z. Phys., 118(7):473–488, 1941.
[341] A. C. D. van, Enter. R. Fernández, F. den, Hollander, and F., Redig. Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys., 226(1):101–130, 2002.
[342] A. van, Enter, C., Maes, and S., Shlosman. Dobrushin's program on Gibbsianity restoration: weakly Gibbs and almost Gibbs random fields. In On Dobrushin's way: From probability theory to statistical physics, volume 198 of American Mathematical Society Translation Series 2, pages 59–70. American Mathematical Society, Providence, RI, 2000.
[343] A. C. D. van, Enter. R. Fernández, and A. D., Sokal. Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys., 72(5–6):879–1167, 1993.
[344] A. C. D. van, Enter and S. B., Shlosman. Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries. Comm. Math. Phys., 255(1):21–32, 2005.
[345] L., van Hove. Quelques propriétés générales de l'intégrale de configuration d'un système de particules avec interaction. Physica, 15:951–961, 1949.
[346] Y., Velenik. Entropic repulsion of an interface in an external field. Probab. Theory Related Fields, 129(1):83–112, 2004.
[347] Y., Velenik. Localization and delocalization of random interfaces. Probab. Surv., 3:112–169, 2006.
[348] W., Werner. Topics on the two-dimensional Gaussian free field. Lecture notes, ETH Zurich, 2014.
[349] W., Werner. Random planar curves and Schramm–Loewner evolutions. In Lectures on probability theory and statistics, volume 1840 of Lecture Notes in Mathematics, pages 107–195. Springer, Berlin, 2004.
[350] W., Werner. Percolation etmodèle d'Ising, volume 16 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2009.
[351] D., Williams. Probability with martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.
[352] C. N., Yang. The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. (2), 85:808–816, 1952.
[353] C. N., Yang and T. D., Lee. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. (2), 87:404–409, 1952.
[354] M., Zahradník. An alternate version of Pirogov-Sinaı theory. Comm. Math. Phys., 93(4):559–581, 1984.
[355] M., Zahradník. Contourmethods and Pirogov-Sinai theory for continuous spin lattice models. In On Dobrushin's way: From probability theory to statistical physics, volume 198 of American Mathematical Society Translation Series 2, pages 197–220. American Mathematical Society, Providence, RI, 2000.
[356] J. M., Ziman. Principles of the theory of solids. Cambridge University Press, Cambridge, second edition, 1972.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.