Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T08:05:29.866Z Has data issue: false hasContentIssue false

9 - Autonoetic consciousness

from Part II - Cognitive and neurosciences

Published online by Cambridge University Press:  18 December 2009

Hans. J. Markowitsch
Affiliation:
University of Bielefeld, Bielefeld, Germany
Tilo Kircher
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Anthony David
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Abstract

The term ‘consciousness’ and its possible cerebral representation are discussed in this chapter. A direct relation between consciousness, especially autonoetic consciousness, and memory - the episodic memory system - is outlined. Episodic memory is defined as the context-embedded memory system which allows mental travelling in time - into both the future and the past. The development and lifelong stability of a controlled, self-generated and self-reflected mental framework which allows us to evaluate past episodes and to anticipate the framework of ones happening in the future constitutes the basis for an integrated - autonoetically conscious - personality. Evidence for the importance of certain brain structures - particularly of the right hemispheric prefrontal and anterior temporal cortex - in processing autonoetic consciousness is provided and patients with impaired consciousness and impaired episodic memory (including patients with schizophrenia) are described, both neuropsychologically and with respect to their neural metabolism, as measured by functional imaging techniques. Stress and trauma situations with which the individual is insufficiently able to cope, but also conditions of psychic or physical deprivation or alteration (sleep deprivation, drug abuse, hormonal changes) influence the neural system and may thereby weaken the episodic memory system and affect autonoetic consciousness. It is speculated that especially portions of the inferior prefrontal and the anterior temporal cortex (predominantly of the right hemisphere) control autonoetic consciousness.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, M., Ferri, S., & Scarone, S. (1997). The selective breakdown of frontal functions in patients with obsessive-compulsive disorder and in patients with schizophrenia: a double dissociation experimental finding. Neuropsychologia, 35, 907–12Google Scholar
Aleman, A., Hijman, R., Haan, E. H. F. & Kahn, R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. American Journal of Psychiatry, 156, 1358–66Google Scholar
Alexander, M. P. & Stuss, D. R. (1998). On: Capgras syndrome: a reduplicative phenomenon. Journal of Psychomatic Research, 44, 637–9Google Scholar
Andreasen, N. C. (2000). Is schizophrenia a disorder of memory or consciousness? In Memory, Consciousness, and the Brain, ed. E. Tulving, pp. 243–61. Philadelphia, PA: Psychology Press
Bisiach, E. (1988). The (haunted) brain and consciousness. In Consciousness in Contemporary Science, ed. A. J. Marcel & E. Bisiach, pp. 101–20. Oxford: Clarendon Press
Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18, 227–47Google Scholar
Bogen, J. E. (1997). Some neurophysiologic aspects of consciousness. Seminars in Neurology, 17, 95–104Google Scholar
Bolton, J. S. (1903). The functions of the frontal lobes. Brain, 26, 215–41Google Scholar
Brébion, G., Smith, M. J., Gorman, J. M. et al. (2000). Memory and schizophrenia: differential link of processing speed and selective attention with two levels of encoding. Journal of Psychiatric Research, 34, 121–7Google Scholar
Buchanan, R. W., Vladar, K., Barta, P. E. & Pearlson, G. D. (1998). Structural evaluation of the prefrontal cortex in schizophrenia. American Journal of Psychiatry, 155, 1049–55Google Scholar
Byne, W. & Davis, K.-L. (1999). The role of prefrontal cortex in the dopaminergic dysregulation of schizophrenia. Biological Psychiatry, 45, 657–9Google Scholar
Calabrese, P., Markowitsch, H. J. et al. (1996). Right temporofrontal cortex as critical locus for the ecphory of old episodic memories. Journal of Neurology, Neurosurgery, and Psychiatry, 61, 304–10Google Scholar
Carter, C. S., Mintun, M., Nichols, T. & Cohen, J. D. (1997). Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. American Journal of Psychiatry, 154, 1670–5Google Scholar
Cimino, C. R., Verfaellie, M., Bowers, D. & Heilman, K. M. (1991). Autobiographical memory: influence of right hemisphere damage on emotionality and specificity. Brain and Cognition, 15, 106–18Google Scholar
Collins, A. A., Remington, G. J., Coulter, K. & Birkett, K. (1997). Insight, neurocognitive function and symptom clusters in chronic schizophrenia. Schizophrenia Research, 27, 37–44Google Scholar
Conway, M. A. & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261–88Google Scholar
Courtney, S. M., Petit, L., Haxby, J. V. & Ungerleider, L. G. (1998). The role of prefrontal cortex in working memory: examining the contents of consciousness. Philosophical Transactions of the Royal Society of London B, 353, 1819–28Google Scholar
Craik, F. I. M., Morris, L. W., Morris, R. G. & Loewen, E. R. (1990). Relations between source amnesia and frontal lobe functioning in older adults. Psychology and Aging, 5, 148–51Google Scholar
Damasio, A. R. (1998). Investigating the biology of consciousness. Philosophical Transactions of the Royal Society of London B, 353, 1879–82Google Scholar
Danion, J. M., Rizzo, L. & Bruant, A. (1999). Functional mechanisms underlying impaired recognition memory and conscious awareness in patients with schizophrenia. Archives of General Psychiatry, 56, 639–44Google Scholar
Daprati, E., Franck, N., Georgieff, N. et al. (1997). Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition, 65, 71–86Google Scholar
Dercum, F. X. (1925). The thalamus in the physiology and pathology of the mind. A. M. A. Archives of Neurology and Psychiatry, 14, 289–302Google Scholar
Donath, J. (1923). Die Bedeutung des Stirnhirns für die höheren seelischen Leistungen [The importance of the frontal lobe for higher psychic processes]. Deutsche Zeitschrift für Nervenheilkunde, 23, 282–306Google Scholar
Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H.-J. & Tulving, E. (1997). Event-related brain potential correlates of two states of conscious awareness in memory. Proceedings of the National Academy of Sciences of the USA, 94, 5973–8Google Scholar
Eslinger, P. J. (1998). Neurological and neuropsychological bases of empathy. European Neurology, 39, 193–9Google Scholar
Farde, L. (1997). Brain imaging of schizophrenia - the dopamine hypothesis. Schizophrenia Research, 28, 157–62Google Scholar
Feinstein, A., Goldberg, T. E., Nowlin, B. & Weinberger, D. R. (1998). Types and characteristics of remote memory impairment in schizophrenia. Schizophrenia Research, 30, 155–63Google Scholar
Fink, G. R., Markowitsch, H. J., Reinkemeier, M. et al. (1996). Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience, 16, 4275–82Google Scholar
Giacino, J. T. (1997). Disorders of consciousness: differential diagnosis and neuropathologic features. Seminars in Neurology, 17, 105–12Google Scholar
Goldberg, T. E. & Weinberger, D. R. (1995). A case against subtyping in schizophrenia. Schizophrenia Research, 17, 147–52Google Scholar
Hameroff, S. R. (1998). ‘Funda-mentality’: is the conscious mind subtly linked to a basic level of the universe? Trends in Cognitive Sciences, 2, 119–27Google Scholar
Hasselmo, M. E. (1999). Neuromodulation: acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3, 351–9Google Scholar
Henkel, L. A., Johnson, M. K. & Leonardis, D. M. (1998). Aging and source monitoring: cognitive processes and neuropsychological correlates. Journal of Experimental Psychology: General, 127, 251–68Google Scholar
Henson, R. N. A., Shallice, T. & Dolan, R. J. (1999). Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain, 122, 1367–81Google Scholar
Hering, E. (1895). Memory as a General Function of Organized Matter. Chicago: Open Court
Janowsky, J., Shimamura, A. P. & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 7, 1043–56Google Scholar
Jetter, J., Poser, U., Freeman, R. B. Jr & Markowitsch, H. J. (1986). A verbal long term memory deficit in frontal lobe damaged patients. Cortex, 22, 229–42Google Scholar
Kapur, N., Ellison, D., Smith, M. P., McLellan, D. L. & Burrows, E. H. (1992). Focal retrograde amnesia following bilateral temporal lobe pathology. Brain, 115, 73–85Google Scholar
Keenan, J. P., Wheeler, M., Gallup, G. G. Jr & Pascual-Leone, A. (2000). Self-recognition and the right prefrontal cortex. Trends in Cognitive Sciences, 4, 338–44Google Scholar
Koch, C. & Crick, F. (1999). Consciousness, neurobiology of. In The MIT Encyclopedia of the Cognitive Sciences, ed. R. Wilson & F. Keil, pp. 193–5. Cambridge, MA: MIT Press
Kroll, N., Markowitsch, H. J., Knight, R. & Cramon, D. Y. (1997). Retrieval of old memories - the temporo-frontal hypothesis. Brain, 120, 1377–99Google Scholar
Levine, B. (2000). Self-regulation and autonoetic consciousness. In Memory, Consciousness, and the Brain, ed. E. Tulving, pp. 200–14. Philadelphia, PA: Psychology Press
Levine, B., Black, S. E., Cabeza, R. et al. (1998). Episodic memory and the self in a case of isolated retrograde amnesia. Brain, 121, 1951–73Google Scholar
Lysaker, P. H., Bell, M. D., Bryson, G. & Kaplan, E. (1998). Neurocognitive function and insight in schizophrenia: support for an association with impairments in executive function but not with impairments in global function. Acta Psychiatrica Scandinavica, 97, 297–301Google Scholar
MacLeod, A. K., Buckner, R. L., Miezin, F. M., Petersen, S. E. & Raichle, M. E. (1998). Right anterior prefrontal cortex activation during semantic monitoring and working memory. Neuroimage, 7, 41–8Google Scholar
Markowitsch, H. J. (1992). Intellectual Functions and the Brain. An Historical Perspective. Toronto: Hogrefe and Huber
Markowitsch, H. J. (1995). Cerebral bases of consciousness: a historical view. Neuropsychologia, 33, 1181–92Google Scholar
Markowitsch, H. J. (1996). Organic and psychogenic retrograde amnesia: two sides of the same coin? Neurocase, 2, 357–71Google Scholar
Markowitsch, H. J. (1999a). Koma und Hirntod: Funktionelle Anatomie von Bewußtsein und Bewußtseinsstörungen [Coma and brain death: functional anatomy of consciousness and its disturbances]. In Neurologie in Praxis und Klinik, vol. 1, ed. H. C. Hopf, G. Deuschl, H. C. Diener & H. Reichmann, pp. 60–6. Stuttgart: Thieme
Markowitsch, H. J. (1999b). Functional neuroimaging correlates of functional amnesia. Memory, 7, 561–83Google Scholar
Markowitsch, H. J. (1999c). Neuroimaging and mechanisms of brain function in psychiatric disorders. Current Opinion in Psychiatry, 12, 331–7Google Scholar
Markowitsch, H. J. (2000). Memory and amnesia. In Principles of Cognitive and Behavioral Neurology, ed. M.-M. Mesulam, pp. 257–93. New York: Oxford University Press
Markowitsch, H. J., Calabrese, P., Haupts, M. et al. (1993a). Searching for the anatomical basis of retrograde amnesia. Journal of Clinicaland Experimental Neuropsychology, 15, 947–67Google Scholar
Markowitsch, H. J., Cramon, D. Y. & Schuri, U. (1993b). Mnestic performance profile of a bilateral diencephalic infarct patient with preserved intelligence and severe amnesic disturbances. Journal of Clinical and Experimental Neuropsychology, 15, 627–52Google Scholar
Markowitsch, H. J., Calabrese, P., Fink, G. R. et al. (1997a). Impaired episodic memory retrieval in a case of probable psychogenic amnesia. Psychiatry Research: Neuroimaging Section, 74, 119–26Google Scholar
Markowitsch, H. J., Fink, G. R., Thöne, A. I. M., Kessler, J. & Heiss, W.-D. (1997b). Persistent psychogenic amnesia with a PET-proven organic basis. Cognitive Neuropsychiatry, 2, 135–58Google Scholar
Markowitsch, H. J., Thiel, A., Kessler, J., Stockhausen, H.-M. & Heiss, W.-D. (1997c). Ecphorizing semi-conscious episodic information via the right temporopolar cortex - a PET study. Neurocase, 3, 445–9Google Scholar
Markowitsch, H. J., Kessler, J., Ven, C., Weber-Luxenburger, G. & Heiss, W.-D. (1998). Psychic trauma causing grossly reduced brain metabolism and cognitive deterioration. Neuropsychologia, 36, 77–82Google Scholar
Markowitsch, H. J., Kessler, J., Russ, M. O. et al. (1999). Mnestic block syndrome. Cortex, 35, 219–30Google Scholar
Markowitsch, H. J., Kessler, J., Schramm, U. & Frölich, L. (2000a). Severe degenerative cortical and cerebellar atrophy and progressive dementia in a young adult. Neurocase, 6, 357–64Google Scholar
Markowitsch, H. J., Kessler, J., Weber-Luxenburger, G., Ven, C. & Heiss, W.-D. (2000b). Neuroimaging and behavioral correlates of recovery from ‘mnestic block syndrome’ and other cognitive deteriorations. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13, 60–6Google Scholar
Markowitsch, H. J., Thiel, A., Reinkemeier, M. et al. (2000c). Right amygdalar and temporofrontal activation during autobiographic, but not during fictitious memory retrieval. Behavioural Neurology, 12, 181–90Google Scholar
McGuire, P. K., Silbersweig, D. A., Wright, I. et al. (1996). The neural correlates of inner speech and auditory verbal imagery in schizophrenia: relationship to auditory verbal hallucinations. British Journal of Psychiatry, 169, 148–59Google Scholar
Mesulam, M.-M. (2000). Behavioral neuroanatomy: large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In Principles of Behavioral and Cognitive Neurology, 2nd edn, ed. M.-M. Mesulam, pp. 1–120. New York: Oxford University Press
Moscovitch, M. (2000). Theories of memory and consciousness. In The Oxford Handbook of Memory, ed. E. Tulving & F. I. M. Craik, pp. 609–26. New York: Oxford University Press
Perner, J. & Ruffman, T. (1995). Episodic memory and autonoetic consciousness: developmental evidence and a theory of childhood amnesia. Journal of Experimental Child Psychology, 59, 516–48Google Scholar
Perry, E., Walker, M., Grace, J. & Perry, R. (1999). Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends in Neurosciences, 22, 273–80Google Scholar
Raichle, M. E. (2000). The neural correlates of consciousness: an analysis of cognitive skill learning. In The New Cognitive Neurosciences, 2nd edn, ed. M. S. Gazzaniga, pp. 1305–18. Cambridge, MA: MIT Press
Romijn, H. (1997). About the origin of consciousness. A new, multidisciplinary perspective on the relationship between brain and mind. Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen, 100, 181–267Google Scholar
Rossi, A., Arduini, L., Prosperini, P. et al. (2000). Awareness of illness and outcome in schizophrenia. European Archives of Psychiatry and Clinical Neurosciences, 250, 73–5Google Scholar
Rueckert, L. & Grafman, J. (1996). Sustained attention deficits in patients with right frontal lesions. Neuropsychologia, 34, 953–63Google Scholar
Rugg, M. D., Fletcher, P. C., Chua, P. M.-L. & Dolan, R. J. (1999). The role of the prefrontal cortex in recognition memory and memory for source: an fMRI study. NeuroImage, 10, 520–9Google Scholar
Schacter, D. L. (1996). Illusory memories: a cognitive neuroscience analysis. Proceedings of the National Academy of Sciences of the USA, 93, 13527–33Google Scholar
Schacter, D. L., Curran, T., Galluccio, L., Milberg, W. P. & Bates, J. F. (1996). False recognition and the right frontal lobe: a case study. Neuropsychologia, 34, 793–808Google Scholar
Schacter, D. L., Koutstaal, W. & Norman, K. A. (1997). False memories and aging. Trends in Cognitive Sciences, 1, 229–36Google Scholar
Shammi, P. & Stuss, D. T. (1999). Humor appreciation: a role of the right frontal lobe. Brain, 122, 657–66Google Scholar
Sheldrake, R. (1988). The Presence of the Past. New York: Times Books
Silbersweig, D. A., Stern, E., Frith, E. et al. (1995). A funtional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176–9Google Scholar
Smythies, J. (1999). Consciousness: some basic issues - a neurophilosophical perspective. Consciousness and Cognition, 8, 164–72Google Scholar
Spittler, J. F. (1992). Der Bewutseinsbegriff aus neuropsychiatrischer und in interdisziplinärer Sicht [The term consciousness from neuropsychiatric and interdisciplinary views]. Fortschritte der Neurologie und Psychiatrie, 60, 54–65Google Scholar
Stuss, D. T. & Alexander, M. P. (2000). Affectively burnt in: a proposed role of the right frontal lobe. In Memory, Consciousness, and the Brain, ed. E. Tulving, pp. 215–27. Philadelphia, PA: Psychology Press
Tononi, G. & Edelman, G. M. (1998). Consciousness and complexity. Science, 282, 1846–51Google Scholar
Tulving, E. (1993). Self-knowledge of an amnesic individual is represented abstractly. In The Mental Representation of Trait and Autobiographical Knowledge about the Self. Advances in Social Cognition, vol. V, ed. T. K. Srull & R. S. Wyer Jr, pp. 147–56. Hillsdale, NJ: Lawrence Erlbaum
Tulving, E. & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8, 198–204Google Scholar
Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M. & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proceedings of the National Academy of Sciences of the USA, 91, 2016–20Google Scholar
Vargha-Khadem, F., Gadian, D. G., Watkins, K. E. et al. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–80Google Scholar
Wheeler, M. A. (2000). Episodic memory and autonoetic awareness. In The Oxford Handbook of Memory, ed. E. Tulving & F. I. M. Craik, pp. 597–608. New York: Oxford University Press
Wheeler, M. A., Stuss, D. T. & Tulving, E. (1997). Towards a theory of episodic memory. The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331–54Google Scholar
Wilkes, K. V. (1988). __, y‘ish‘i, duh, um, and consciousness. In Consciousness in Contemporary Science, ed. A. J. Marcel & E. Bisiach, pp. 16–41. New York: Oxford University Press
Woolf, N. J. (1997). A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Consciousness and Cognition, 6, 574–96Google Scholar
Woolf, N. J. (1999). Cholinergic correlates of consciousness: from mind to molecules. Trends in Neurosciences, 22, 540–1Google Scholar
Young, G. B. & Pigott, S. E. (1999). Neurobiological basis of consciousness. Archives of Neurology, 56, 153–7Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Autonoetic consciousness
  • Edited by Tilo Kircher, Eberhard-Karls-Universität Tübingen, Germany, Anthony David, Institute of Psychiatry, London
  • Book: The Self in Neuroscience and Psychiatry
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543708.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Autonoetic consciousness
  • Edited by Tilo Kircher, Eberhard-Karls-Universität Tübingen, Germany, Anthony David, Institute of Psychiatry, London
  • Book: The Self in Neuroscience and Psychiatry
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543708.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Autonoetic consciousness
  • Edited by Tilo Kircher, Eberhard-Karls-Universität Tübingen, Germany, Anthony David, Institute of Psychiatry, London
  • Book: The Self in Neuroscience and Psychiatry
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511543708.010
Available formats
×