[1] C. E., Shannon, “Communications in the presence of noise,” Proc. IRE, vol. 37, pp. 10-21, Jan. 1949.

[2] H., Nyquist, “Certain topics in telegraph transmission theory,” AIEE Trans., vol. 47, pp. 617-644, Jan. 1928.

[3] V. A., Kotelnikov, “On the transmission capacity of the ether and of cables in electrical communications,” in Proc. First All-Union Conference on the Technological Reconstruction of the Communications Sector and the Development of Low-current Engineering, Moscow, 1933.

[4] E. T., Whittaker, “On the functions which are represented by the expansions of the interpolation theory,” Proc. Roy. Soc. Edinburgh, vol. 35, pp. 181-194, Jul. 1915.

[5] J. M., Whittaker, Interpolatory Function Theory, Cambridge, UK: Cambridge University Press, 1935.

[6] A., Cauchy, “M'moire sur diverses formules danalyse,” C. R. Acad. Sci., vol. 12, pp. 283-298, 1841.

[7] J. R., Higgins, “Five short stories about the cardinal series,” Bull. Am. Math. Soc., vol. 12, no. 1, pp. 45-89, 1985.

[8] A. J., Jerri, “The Shannon sampling theorem - Its various extensions and applications: A tutorial review,” Proc. IEEE, vol. 65, pp. 1565-1596, Nov. 1977.

[9] P. L., Butzer, “A survey of the Whittaker-Shannon sampling theorem and some of its extensions,” J. Math. Res. Expo., vol. 1983, no. 1 pp. 185-212, Jan.

[10] M., Unser, “Sampling - 50 years after Shannon,” Proc. IEEE, vol. 88, pp. 569-587, Apr. 2000.

[11] Y. C., Eldar and T., Michaeli, “Beyond bandlimited sampling,” IEEE Signal Processing Mag., vol. 26, no. 3, pp. 48-68, May 2009.

[12] D. L., Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, no. 4 pp. 1289-1306, Apr.

[13] E., Candes, J., Romberg and T., Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inform. Theory, vol. 52, no. 2 pp. 489-509, Feb.

[14] Y. C., Eldar and G., Kutyniok, Compressed Sensing: Theory and Applications, Cambridge, UK: Cambridge University Press, 2012.

[15] R. O., Schmidt, “Multiple emitter location and signal parameter estimation,” Proc. RADC Spectral Estimation Workshop, pp. 243-258, Oct. 1979.

[16] R., RoyandT., Kailath, “ESPRIT-estimation of signal parameters viarotational in variance techniques,” IEEE Trans. Acoust. Speech Signal Processing, vol. 37, no. 7 pp. 984-995, Jul.

[17] P., Stoica and Y., Selen, “Model-orderselection: a review of information criterionrules,” IEEE Signal Processing Mag., vol. 21, no. 4 pp. 36-47, Jul.

[18] S., Baker, S. K., Nayar and H., Murase, “Parametric feature detection,” Int. J. Computer Vision, vol. 27, no. 1, pp. 27-50, 1998.

[19] J., Crols and M. S. J., Steyaert, “Low-IFtopologies for high-performance analog front ends of fully integrated receivers,” IEEE Trans. Inform. Theory, vol. 45, no. 3 pp. 269-282, Mar.

[20] N. L., Scott, R. C., Vaughan and D. R., White, “The theory of bandpass sampling,” IEEE Trans. Signal Processing, vol. 39, no. 9 pp. 1973-1984, Sep.

[21] M., Mishali, Y. C., Eldar and A. J., Elron, “Xampling: Signal acquisition and processing in unionofsubspaces,” IEEE Trans. Signal Processing, vol. 59, no. 10 pp. 4719-4734, Oct.

[22] M., Mishali and Y. C., Eldar, “Xampling: Compressed sensing of analog signals,” in Compressed Sensing: Theory and Applications,Cambridge, UK: Cambridge University Press, pp. 88-148, 2012.

[23] S. K., Berberian, Introduction to Hilbert Space, New York, NY: Oxford University Press, 1961.

[24] P. R., Halmos, Introduction to Hilbert Space, 2nd edn. New York, NY: Chelsea Publishing Company, 1957.

[25] R. M., Young, An Introduction to Nonharmonic Fourier Series, New York, NY: Academic Press, 1980.

[26] O., Christensen, An Introduction to Frames andRiesz Bases, Boston, MA: Birkhäuser, 2003.

[27] L., Debnath and P., Mikusiński, Hilbert Spaces with Applications, 3rd edn. New York, NY: Academic Press, 2005.

[28] R. A., Horn and C. R., Johnson, Matrix Analysis, Cambridge, UK: Cambridge University Press, 1985.

[29] Y. C., Eldar, “Least-squares innerproduct shaping,” Linear Alg. Appl., vol. 348, pp. 153-174, May 2002.

[30] Y. C., Eldar, “Least-squares orthogonalization using semidefinite programming,” Linear Algebra Appl., vol. 412, pp. 453-470, Jan. 2006.

[31] Y. C., EldarandG. D., Forney Jr., “Optimal tight frame sand quantum measurement,” IEEE Trans. Inform. Theory, vol. 48, pp. 599-610, Mar. 2002.

[32] A., Barvinok, “Measure concentration,” 2005, Math 710 lecture notes, www.math.lsa.umich.edu

[33] I., Daubechies, Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.

[34] K., Hoffman and R., Kunze, Linear Algebra, 2nd edn. New Jersey: Prentice-Hall, Inc., 1971.

[35] S., Kayalar and H. L., Weinert, “Oblique projections: Formulas, algorithms, and error bounds,” Math. Contr. Signals Syst., vol. 2, no. 1 pp. 33-45, Mar.

[36] A., Aldroubi, “Oblique projections in atomic spaces,” Proc. Am. Math. Soc., vol. 124, no. 7 pp. 2051-2060, Jul.

[37] R. T., Behrens and L. L., Scharf, “Signal processing applications of oblique projection operators,” IEEE Trans. Signal Processing, vol. 42, no. 6, pp. 1413-1424, June 1994.

[38] G. H., Golub and C. F., Van Loan, Matrix Computations, 3rd edn. Baltimore, MD: Johns Hopkins University Press, 1996.

[39] A., Ben-Israel and T. N. E., Greville, Generalized Inverses: Theory and Applications, New York, NY: Springer Verlag, 2003.

[40] R. J., Duffin and A. C., Schaeffer, “A class of nonharmonic Fourier series,” Trans. Am. Math. Soc., vol. 72, pp. 314-366, Mar. 1952.

[41] I., Daubechies, A., Grossmann and Y., Meyer, “Painless non orthogonal expansions,” J. Math. Phys., vol. 27, pp. 1271-1283, May 1986.

[42] I., Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inform. Theory, vol. 36, pp. 961-1005, Sep. 1990.

[43] A., Aldroubi, “Portraits offrames,” Proc. Am. Math. Soc., vol. 123, no. 6 pp. 1661-1668, Jun.

[44] C. E., Heil and D. F., Walnut, “Continuous and discrete wavelet transforms,” SIAM Rev., vol. 31, no. 4 pp. 628-666, Dec.

[45] O., Christensen and Y. C., Eldar, “Generalized shift-invariant systems and frames for subspaces,” J. Fourier Anal. Appl., vol. 11, pp. 299-313, Jun. 2005.

[46] O., Christensen and Y. C., Eldar, “Oblique dual frames and shift-invariant spaces,” Appl. Comp. Harm. Anal., vol. 17, no. 1 pp. 48-68, Jul.

[47] Y. C., Eldar and O., Christensen, “Characterization of oblique dual frame pairs,” J. Appl. Signal Processing, pp. 1-11, Apr. 2006.

[48] A., Aldroubi and K., Gröchenig, “Non-uniform sampling and reconstruction in shift- invariantspaces,” SIAM Rev., vol. 43, pp. 585-620, Dec. 2001.

[49] I. M., Gelfand and M. A., Naimark, “On the imbedding of normed rings into the ring of operators on a Hilbert space,” Math. Sbornik, vol. 12, no. 2, pp. 197-217, 1943.

[50] K., Grochenig, “Acceleration of the frame algorithm,” IEEE Trans. Signal Processing, vol. 41, no. 12 pp. 3331-3340, Dec.

[51] R. N., Bracewell, The Fourier Transform and its Applications, 3rd edn. New York, NY: McGraw Hill, Inc., 1999.

[52] A., Papoulis, The Fourier Integral and its Applications, New York, NY: McGraw Hill, Inc., 1962.

[53] A. V., Oppenheim, R. W., Schafer and J. R., Buck, Discrete-Time Signal Processing, Engle- wood Cliffs, NJ: Prentice-Hall, 1999.

[54] A. V., Oppenheim, A. S., Willsky and S., Hamid, Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall, 1997.

[55] I. W., Sandberg, “Notes on representation theorems for linear discrete-space systems,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 5, pp. 515-518, May 1999.

[56] I. W., Sandberg, “Linear maps and impulse responses,” IEEE Trans. Circuits Systems, vol. 35, no. 2 pp. 201-206, Feb.

[57] I. W., Sandberg, “Causality and the impulse response scandal,” IEEE Trans. Circuits Systems I: Fund. Theory Applicat., vol. 50, no. 6 pp. 810-813, Jun.

[58] R., Strichartz, A Guide to Distribution Theory and Fourier Transforms, Boca Raton, FL: CRC Press, 1994.

[59] S. G., Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, Inc., 1998.

[60] H. L., Royden, Real Analysis, New York, NY: Macmillan, 1968.

[61] S. G., Mallat, “A theory for multi resolution signal decomposition: The wave letre presentation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 11, pp. 674-693, Jul. 1989.

[62] J. J., Benedetto and G., Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Applicat., vol. 3, pp. 505-523, Sep. 1997.

[63] C., Shannon, “A mathematical theory of communication,” Bell Labs Tech. J., vol. 27, pp. 379-423, Jul. 1948; 623-656, Oct. 1948.

[64] N. C., Gallagher Jr. and G. L., Wise, “A representation for band-limited functions,” Proc. IEEE, vol. 63, no. 11 pp. 1624-1625, Nov.

[65] S., Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, New York, NY: Academic Press, 2008.

[66] M., Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal Processing Mag., pp. 22-38, Nov. 1999.

[67] I. J., Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing or graduation, a first class of analytic approximation formulas,” Quart. Appl. Math., pp. 45-99, 1946.

[68] I. J., Schoenberg, Cardinal Spline Interpolation, Philadelphia, PA: SIAM, 1973.

[69] L. L., Schumaker, Spline Functions: Basic Theory, New York, NY: Wiley, 1981.

[70] R. H., Bartels, J. C., Beatty and B. A., Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modelling, San Francisco, CA: Morgan Kaufmann, 1998.

[71] H., Prautzsch, W., Boehm and M., Paluszny, Bézier and B-spline Techniques, Berlin, Germany: Springer Verlag, 2002.

[72] M., Unser, A., Aldroubi and M., Eden, “Fast B-spline transforms for continuous image representation and interpolation,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 13, no. 3 pp. 277-285, Mar.

[73] M., Unser, A., Aldroubi and M., Eden, “B-spline signal processing: Part I - Theory,” IEEE Trans. Signal Processing, vol. 41, no. 2 pp. 821-833, Feb.

[74] M., Unser, A., Aldroubi and M., Eden, “B-spline signal processing: Part II - Efficient design and applications,” IEEE Trans. Signal Processing, vol. 41, no. 2 pp. 834-848, Feb.

[75] C., de Boor, R., DeVore and A., Ron, “The structure of finitely generated shift-invariant spaces in L2(ℝd),” J. Funct. Anal., vol. 119, no. 1 pp. 37-78, Jan.

[76] G., Strang and G. J., Fix, An Analysis ofthe Finite Element Method, Englewood Cliffs, NJ: Prentice-Hall, 1973.

[77] A., Papoulis, “Generalized sampling expansion,” Theor. Comput. Sci., vol. CAS-24, no. 11, pp. 652-654, Nov. 1977.

[78] Y. C., Eldar and A. V., Oppenheim, “Filter bank reconstruction of bandlimited signals from nonuniform and generalized samples,” IEEE Trans. Signal Processing, vol. 48, pp. 2864-2875, Oct. 2000.

[79] P., Nikaeen and B., Murmann, “Digital compensation of dynamic acquisition errors at the front-end of high-performance A/D converters,” IEEE J. Select. Top. Signal Processing vol. 3, no. 3 pp. 499-508, Jun.

[80] J., Goodman, B., Miller, M., Herman, G., Raz and J., Jackson, “Polyphase nonlinear equalization of time-inter leavedanalog-to-digital converters,” IEEE J. Select. Top. Signal Processing vol. 3, no. 3 pp. 362-373, Jun.

[81] J. S., Geronimo, D. P., Hardin and P. R., Massopust, “Fractal functions and wavelet expansions based on several scaling functions,” J. Approx. Theory, vol. 78, no. 3, pp. 373–401, Sep. 1994.

[82] G., Kaiser, A Friendly Guide to Wavelets, Boston, MA: Birkhauser, 1994.

[83] C. K., Chui, Wavelets: A Mathematical Tool for Signal Analysis, Philadelphia, SIAM Monographs on Mathematical Modeling and Computation, 1997.

[84] H. G., Feichtinger and T., Strohmer (Eds.), Gabor Analysis and Algorithms: Theory and Applications, Boston, MA: Birkhauser, 1998.

[85] H. G., Feichtinger and T., Strohmer (Eds.), Advances in Gabor Analysis, Boston, MA: Birkhauser, 2003.

[86] K., Grochenig, Foundations of Time-Frequency Analysis, Boston, MA: Birkhauser, 2001.

[87] D., Gabor, “Theory of communication,” J. IEE Radio Commun. Eng., vol. 93, no. 3 pp. 429-457, Nov.

[88] A. J. E. M., Janssen, “The Zak transform: A signal transform for sampled time-continuous signals,” Philips J. Res., vol. 43, no. 1, pp. 23-69, 1988.

[89] J., Wexler and S., Raz, “Discrete Gabor expansions,” Signal Processing, vol. 21, pp. 207-220, Nov. 1990.

[90] A., Ron and Z., Shen, “Weyl-Heisenberg frames and Riesz bases in L2 (ℝd)”, Duke Math. J., vol. 89, no. 2, pp. 237-282, 1997.

[91] V., Bargmann, P., Butera, L., Girardello and J. R., Klauder, “On the completeness ofthe coherent states,” Rep. Math. Phys., vol. 2, pp. 221-228, 1971.

[92] H., Bacry, A., Grossmann and J., Zak, “Proof of completeness of lattice states in the kq representation,” Phys. Rev. B, vol. 12, no. 4 pp. 1118-1120, Aug.

[93] J. J., Benedetto, C., Heil and D. F., Walnut, “Wavelab and reproducible research,” J. Fourier Anal. Applicat., vol. 1, no. 4, pp. 355-402, 1994.

[94] E., Matusiak, T., Michaeli and Y. C., Eldar, “Noninvertible Gabor transforms,” IEEE Trans. Signal Processing, vol. 58, pp. 2597-2612, May 2010.

[95] Y. C., Eldar, E., Matusiak and T., Werther, “A constructive inversion framework for twisted convolution,” Monatsh. Masth., vol. 150, pp. 297-308, Apr. 2007.

[96] T., Werther, E., Matusiak, Y. C., Eldar and N. K., Subbana, “A unified approach to dual Gabor windows,” IEEE Trans. Signal Processing, vol. 55, no. 5, pp. 1758-1768, May 2007.

[97] J., Morlet and A., Grossman, “Decomposition of Hardy functions into square integrable wavelets ofconstantshape,” SIAM J. Math. Anal., vol. 15, pp. 723-736, 1984.

[98] I., Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. Pure Appl. Math., vol. 41, no. 7 pp. 909-996, Oct.

[99] G., Strang and G., Fix, “A Fourier analysis of the finite element variational method,” in Constructive Aspects of Functional Analysis, Rome: Edizione Cremonese, pp. 796-830, 1971.

[100] H., Landau, “Necessary density conditions for sampling and interpolation of certain entire functions,” Acta Math., vol. 117, pp. 37-52, Jul. 1967.

[101] J., Mitola III, “Cognitive radio for flexible mobile multimedia communications,” Mobile Networks Applicat., vol. 6, no. 5 pp. 435-441, Sep.

[102] Y. M., Lu and M. N., Do, “A theory for sampling signals from a union of subspaces,” IEEE Trans. Signal Processing, vol. 56, no. 6 pp. 2334-2345, Jan.

[103] E. J., Candes, J. K., Romberg and T., Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inform. Theory, vol. 52, no. 2 pp. 489-509, Feb.

[104] M., Mishali, Y. C., Eldar, O., Dounaevsky and E., Shoshan, “Xampling: Analog to digital at sub-Nyquistrates,” IET Circuits Devices Syst., vol. 5, no. 1 pp. 8-20, Jan.

[105] M., Vetterli, P., Marziliano and T., Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Signal Processing, vol. 50, pp. 1417-1428, June 2002.

[106] Y. C., Eldar, “Compressedsensing of analog signals inshift-invariant spaces,” IEEE Trans. Signal Processing, vol. 57, no. 8 pp. 2986-2997, Aug.

[107] M., Unser and T., Blu, “Fractional splines and wavelets,” SIAM Rev., vol. 42, no. 1 pp. 43-67, Jan.

[108] A., Aldroubi and M., Unser, “Sampling procedures infunction spaces and a symptoticequivalence with Shannon's sampling theory,” Num. Funct. Anal. Optim., vol. 15, no. 1-2, pp. 1-21, Feb. 1994.

[109] S., Ries and R. L., Stens, “Approximation by generalized sampling series,” in Constructive Theory of Functions.B., Sendovet al., Eds. Sofia, Bulgaria: Bulgarian Academy of Sciences, pp. 17-37, 1984.

[110] M., Unser and A., Aldroubi, “A general sampling theory for nonideal acquisition devices,” IEEE Trans. Signal Processing, vol. 42, no. 11 pp. 2915-2925, Nov.

[111] P. P., Vaidyanathan, “Generalizations of the sampling theorem: Seven decades after Nyquist,” IEEETrans. Circuit Syst. I, vol. 48, no. 9 pp. 1094-1109, Sep.

[112] Y. C., Eldar, “Sampling and reconstruction in arbitrary spaces and oblique dual frame vectors,” J. Fourier Anal. Appl., vol. 1, no. 9 pp. 77-96, Jan.

[113] S., Ramani, D. VanDe, Ville and M., Unser, “Non-idealsampling and adapte dreconstruction using the stochastic Matern model,” in Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP'06), vol. 2, May 2006.

[114] C. A., Glasbey, “Optimal linear interpolation of images with known point spread function,” Scand. Conf. Image Anal. SCIA-2001, Bergen, pp. 161-168, 2001.

[115] Y. C., Eldar and T. G., Dvorkind, “Minimax sampling with arbitrary spaces,” 11th IEEE Int. Conf. Electronics, Circuits and Systems (ICECS-2004), pp. 559-562, Dec. 2004.

[116] Y. C., Eldar, “Sampling without input constraints: Consistent reconstruction in arbitrary spaces,” in Sampling, Wavelets and Tomography, A. I., Zayed and J. J., Benedetto, Eds. Boston, MA: Birkhauser, pp. 33-60, 2004.

[117] Y. C., Eldar and T., Werther, “General framework for consistent sampling in Hilbert spaces,” Int. J. Wavelets Multires. Inform. Proc., vol. 3, no. 3 pp. 347-359, Sep.

[118] R. G., Keys, “Cubic convolution interpolation for digital image processing,” IEEETrans. Acoust. Speech Signal Processing, vol. 29, no. 6 pp. 1153-1160, Dec.

[119] C. E., Duchon, “Lanczos filtering in one and two dimensions,” J. Appi. Meteorol., vol. 18, no. 8, pp. 1016-1022, Aug. 1979.

[120] C. L., Lawson and R. J., Hanson, Solving Least Squares Problems, Englewood Cliffs, NJ: Prentice-Hall, 1974.

[121] T., Kailath, Lectures on Linear Least-Squares Estimation, Wein, New York: Springer, 1976.

[122] A., Björck, Numerical Methods for Least-Squares Problems, Philadelphia, PA: SIAM, 1996.

[123] E. L., Lehmann and G., Casella, Theory ofPoint Estimation, 2nd edn. New York, NY: Springer, 1999.

[124] Y. C., Eldar, Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramer-Rao Bound, Foundation and Trends in Signal Processing, Hanover, MA: Now Publishers Inc., 2008.

[125] S., Kay and Y. C., Eldar, “Rethinking biased estimation,” IEEE Signal Processing Mag., vol. 25, pp. 133-136, May 2008.

[126] S., Boyd and L., Vandenberghe, Convex Optimization, Cambridge, UK: Cambridge University Press, 2004.

[127] S., Ramani, D. Van De, Ville, T., Blu and M., Unser, “Nonideal Sampling and Regular-ization Theory,” IEEE Trans. Signal Processing, vol. 56, no. 3 pp. 1055-1070, Mar.

[128] M., Unser, “Cardinal exponential splines: part II - think analog, act digital,” IEEE Trans. Signal Processing, vol. 53, no. 4 pp. 1439-1449, Apr.

[129] Y. C., Eldar, A., Ben-Tal and A., Nemirovski, “Robust mean-squared error estimation in the presence of model uncertainties,” IEEE Trans. Signal Processing, vol. 53, pp. 168-181, Jan. 2005.

[130] T. G., Dvorkind, H., Kirshner, Y. C., Eldar and M., Porat, “Minimax approximation of representation coefficients from generalized samples,” IEEE Trans. Signal Processing, vol. 55, pp. 4430-4443, Sep. 2007.

[131] Y. C., Eldar and M., Unser, “Nonideal sampling and interpolation from noisy observations in shift-invariant spaces,” IEEE Trans. Signal Processing, vol. 54, no. 7 pp. 2636-2651, Jul.

[132] G. H., Hardy, “Notes of special systems of orthogonal functions - IV: The orthogonal functions of Whittakers series,” Proc. Camb. Phil. Soc., vol. 37, pp. 331-348, Oct. 1941.

[133] W. S., Tang, “Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert space,” Proc. Am. Math. Soc., vol. 128, no. 2 pp. 463-473, Feb.

[134] E. E., Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Boston, MA: Birkhauser, 1997.

[135] S., Boyd, Convex Optimization, Cambridge, UK: Cambridge University Press, 2004, http://www.stanford.edu/boyd/cvxbook.html.

[136] M., Unser and J., Zerubia, “Generalized sampling: Stability and performance analysis,” IEEE Trans. Signal Processing, vol. 45, no. 12 pp. 2941-2950, Dec.

[137] T., Blu and M., Unser, “Quantitative Fourier analysis of approximation techniques: Part I -Interpolators and projectors,” IEEE Trans. Signal Processing, vol. 47, no. 10 pp. 2783-2795, Oct.

[138] T., Blu and M., Unser, “Quantitative Fourier analysis of approximation techniques: Part II - Wavelets,” IEEE Trans. Signal Processing, vol. 47, no. 10 pp. 2796-2806, Oct.

[139] C., Lee, M., Eden and M., Unser, “High-quality image resizing using oblique projection operators,” IEEE Trans. Signal Processing, vol. 7, no. 5, pp. 679-692, May 1998.

[140] Y. C., Eldar, A., Ben-Tal and A., Nemirovski, “Linear minimax regret estimation of deterministic parameters with bounded data uncertainties,” IEEE Trans. Signal Processing, vol. 52, pp. 2177-2188, Aug. 2004.

[141] Y. C., Eldar and N., Merhav, “A competitive minimax approach to robust estimation of random parameters,” IEEE Trans. Signal Processing, vol. 52, pp. 1931-1946, Jul. 2004.

[142] Y. C., Eldar and T. G., Dvorkind, “A minimum squared-error framework for generalized sampling,” IEEE Trans. Signal Processing, vol. 54, no. 6 pp. 2155-2167, Jun.

[143] I., Djokovic and P. P., Vaidyanathan, “Generalized sampling theorems in multiresolution subspaces,” IEEETrans. Signal Processing, vol. 45, pp. 583-599, Mar. 1997.

[144] M., Unser and J., Zerubia, “A generalized sampling theory without band-limiting constraints,” IEEETrans. Circuits Syst. II, vol. 45, no. 8 pp. 959-969, Aug.

[145] D., Jagerman and L., Fogel, “Some general aspects of the sampling theorem,” IEEETrans. Inform. Theory, vol. 2, no. 4 pp. 139-146, Dec.

[146] D. A., Linden and N. M., Abramson, “A generalization of the sampling theorem,” Inform. Control, vol. 3, no. 1 pp. 26-31, Mar.

[147] J., Yen, “On nonuniform sampling of bandwidth-limited signals,” IRE Trans. Circuit Theory, vol. 3, no. 4 pp. 251-257, Dec.

[148] J., Brown Jr., “Multi-channel sampling of low-pass signals,” IEEE Trans. Circuits Syst., vol. 28, no. 2 pp. 101-106, Feb.

[149] P. P., Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice- Hall, 1993.

[150] E. H., Lieb and M., Loss, Analysis, 2nd edn. American Mathematical Society, 2001.

[151] http//www.soe.ucsc.edu/~milanfar/software/sr-datasets.html

[152] T., Michaeli and Y. C., Eldar, “High rate interpolation of random signals from nonideal samples,” IEEETrans. Signal Processing, vol. 57, pp. 977-992, Mar. 2009.

[153] A., Balakrishnan, “A note on the sampling principle for continuous signals,” IEEE Trans. Inform. Theory, vol. 3, no. 2 pp. 143-146, Jun.

[154] S. P., Lloyd, “A sampling theorem for stationary (wide sense) stochastic processes,” Trans. Am. Math. Soc., vol. 92, no. 1, pp. 1-12, 1959.

[155] I. W., Hunter, “Frog muscle fiber dynamic stiffness determined using nonlinear system identification techniques,” Biophys. J., pp. 49-81, 1985.

[156] M., Medard, ‘The effect upon channel capacity in wireless communications of perfect and imperfect knowledge ofthe channel,’ IEEE Trans. Inform. Theory, vol. 46, no. 3, pp. 933-946, May 2000.

[157] T., Michaeli and Y. C., Eldar, Convex Optimization in Signal Processing and Communications, Cambridge, UK: Cambridge University Press, 2009.

[158] Y. C., Eldar, “Robust deconvolution of deterministic and random signals,” IEEE Trans. Inform. Theory, vol. 51, pp. 2921-2929, Aug. 2005.

[159] S., Ramani, D., Van De Ville, T., Blu and M., Unser, “Nonideal sampling and regularization theory,” IEEE Trans. Signal Processing, vol. 56, no. 3 pp. 1055-1070, Mar.

[160] K., Kose, K., Endoh and T., Inouye, “Nonlinear amplitude compression in magnetic resonance imaging: Quantizationnoise reduction and data memory saving,” IEEEAES Mag., pp. 27-30, Jun. 1990.

[161] T. G., Dvorkind, Y. C., Eldar and E., Matusiak, “Nonlinear and nonideal sampling: theory and methods,” IEEE Trans. Signal Processing, vol. 56, no. 12 pp. 5874-5890, Dec.

[162] V., Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, New York, NY: Dover, 1959.

[163] E. W., Bai, “An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems,” Automatica, vol. 34, no. 3 pp. 333-338, Mar.

[164] E. W., Bai, “A blind approach to the Hammerstein-Wiener model identification,” Automatica, vol. 38, no. 6 pp. 967-979, Jun.

[165] P. A., Traverso, D., Mirri, G., Pasini and F., Filicori, “A nonlinear dynamic S/H-ADC device model based on a modified Volterra series: Identification procedure and commercial CAD tool implementation,” IEEE Trans. Instrum. Measurem., vol. 52, no. 4 pp. 1129-1135, Sep.

[166] F., Ding and T., Chen, “Identification of Hammerstein nonlinear ARMAX systems,” Automatica, vol. 41, no. 9, pp. 1479-1489, 2005.

[167] Y-M., Zhu, “Generalized sampling theorem,” IEEE Trans. Circuits Systems II: Analog Digital Signal Processing, vol. 39, no. 8 pp. 587-588, Aug.

[168] K., Yao and J. B., Thomas, “On some stability and interpolation properties of nonuniform sampling expansions,” IEEE Trans. Circuit Theory, vol. CT-14, no. 4, pp. 404-408, Dec. 1967.

[169] F. J., Beutler, “Error-free recovery of signals from irregularly spaced samples,” SIAM Review, vol. 8, no. 3 pp. 328-335, Jun.

[170] R. S., Prendergast, B. C., Levy and P. J., Hurst, “Reconstruction of band-limited periodic nonuniformly sampled signals through multirate filter banks,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 51, no. 8 pp. 1612-1622, Aug.

[171] F., Marvasti, M., Analoui and M., Gamshadzahi, “Recovery of signals from nonuniform samples using iterative methods,” IEEE Trans. Signal Processing, vol. 39, no. 4 pp. 872-878, Apr.

[172] H. G., Feichtinger, K., Grochenig and T., Strohmer, “Efficient numerical methods in non-uniform sampling theory,” Num. Math., vol. 69, no. 4, pp. 423-440, 1995.

[173] E., Margolis and Y. C., Eldar, “Nonuniform sampling of periodic band limited signals,” IEEE Trans. Signal Processing, vol. 56, pp. 2728-2745, Jul. 2008.

[174] N., Aronszajn, “Theory of reproducing kernels,” Trans. Am. Math. Soc., vol. 68, no. 3, pp. 337-404, May 1950.

[175] T., Ando, Reproducing Kernel Spaces and Quadratic Inequalities, Japan: Sapporo, 1987.

[176] N., Aronszajn, Theory of Reproducing Kernels, Cambridge, MA: Harvard University, 1951.

[177] M. Z., Nashed and G. G., Walter, “General sampling theorems for functions in reproducing kernel Hilbertspaces,” Math. Control Signals Syst., vol. 4, pp. 373-412, Dec. 1991.

[178] H. P., Kramer, “A generalized sampling theorem,” J. Math. Phys., vol. 38, pp. 68-72, 1959.

[179] H. J., Landau and W. L., Miranker, “The recovery of distorted band-limited signals,” J. Math. Anal. Applic., vol. 2, no. 1, pp. 97-104, 1961.

[180] T., Faktor, T., Michaeli and Y. C., Eldar, “Nonlinear and nonideal sampling revisited,” IEEE Signal Processing Lett., vol. 17, no. 2 pp. 205-208, Feb.

[181] K., Goebel and W. A., Kirk, “A fixed point theorem for asymptotically nonexpansive mappings,” Proc. Am. Math. Soc, vol. 35, pp. 171-174, 1972.

[182] J., Nocedal and S. J., Wright, Numerical Optimization, New York, NY: Springer, 1999.

[183] V., Vapnik, The Nature of Statistical Learning Theory, New York, NY: Springer, 1999.

[184] M., Unser, A., Aldroubi and M., Eden, “Enlargement or reduction of digital images with minimumloss ofinformation,” IEEE Trans. Image Processing, vol. 4, no. 3 pp. 247-258, Mar.

[185] Y. C., Eldar and M., Mishali, “Robust recovery of signals from a structured union of subspaces,” IEEE Trans. Inform. Theory, vol. 55, no. 11 pp. 5302-5316, Nov.

[186] Y.-P., Lin and P. P., Vaidyanathan, “Periodically nonuniform sampling of b and pass signals,” IEEE Trans. Circuits Syst. II, vol. 45, no. 3 pp. 340-351, Mar.

[187] C., Herley and P. W., Wong, “Minimum rate sampling and reconstruction of signals with arbitrary frequency support,” IEEE Trans. Inform. Theory, vol. 45, no. 5 pp. 1555-1564, Jul.

[188] R., Venkataramani and Y., Bresler, “Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals,” IEEE Trans. Inform. Theory, vol. 46, no. 6 pp. 2173-2183, Sep.

[189] A., Paulraj, R., Roy and T., Kailath, “ESPRIT - a subspace rotation approach to signal parameter estimation,” Proc. IEEE, vol. 74, no. 7 pp. 1044-1045, Jul.

[190] R., Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Selected Areas Comm., vol. 17, no. 4 pp. 539-550, Apr.

[191] D., Healy, “Analog-to-information: Baa #05-35,” 2005, Available online at http//www.darpa.mil/mto/solicitations/baa05-35/s/index.html.

[192] R., DeVore, “Nonlinear approximation,” Acta Num., vol. 7, pp. 51-150, 1998.

[193] A. M., Bruckstein, D. L., Donoho and M., Elad, “From sparse solutions of systems of equations to sparse modeling ofsignals andimages,” SIAM Rev., vol. 51, no. 1 pp. 34-81, Feb.

[194] E. J., Candes and T., Tao, “TNear optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inform. Theory, vol. 52, no. 12 pp. 5406-5425, Dec.

[195] E., Candes, J., Romberg and I., Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, no. 8 pp. 1207-1223, Aug.

[196] R., Prony, “Essai experimental et analytique sur les lois de la Dilatabilité des fluides élastiques et sur celles de la Force expansive de la vapeur de l'eau et de la vapeur de l'alkool, a différentes temperatures,” J. l'Ecole Polytechnique, Floreal et Prairial III, vol. 1, no. 2, pp. 24-76, 1795; R. Prony is Gaspard Riche, Baron de Prony.

[197] C., Caratheodory, “Über den Variabilitatsbereich der Fourierschen Konstanten von positiv enharmonischen Funktionen,” Rend. Circ. Mat. Palermo, vol. 32, pp. 193-217, 1911.

[198] I., Gorodnitsky, B., Rao and J., George, “Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm,” in Proc. Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, Oct. 1992.

[199] B., Rao, “Signal processing with the sparseness constraint,” in Proc. IEEE Int. Conf. Acoustics Speech, and Signal Processing (ICASSP), Seattle, WA, May 1998.

[200] I. F., Gorodnitsky, J. S., George, and B. D., Rao, “Neuromagnetic source imaging with FOCUSS: Arecursive weighted minimum normal gorithm,” J. Electroencephalog. Clinical Neurophysiol., vol. 95, no. 4 pp. 231-251, Oct.

[201] I. F., Gorodnitsky and B. D., Rao, “Sparse signal reconstruction from limited data using FOCUSS: Are-weighted minimumnorm algorithm,” IEEE Trans. SignalProcessing, vol. 45, no. 3 pp. 600-616, Mar.

[202] A., Beurling, “Sur les integrales de Fourier absolument convergentes et leur application a unetransformationfonctionelle,” in Proc. Scand enatical Mathematical Congress, Helsinki, Finland, 1938.

[203] W. B., Pennebaker and J. L., Mitchell, JPEG: Still Image Data Compression Standard, NewYork, NY: Van Nostr and Reinhold, 1993.

[204] D., Taubman and M., Marcellin, JPEG 2000: Image Compression Fundamentals, Standards and Practice, Dordrecht: Kluwer, 2001.

[205] D., Donoho, “Denoising by soft-thresholding,” IEEE Trans. Inform. Theory, vol. 41, no. 3, pp. 613-627, May 1995.

[206] T., Hastie, R., Tibshirani and J., Friedman, The Elements of Statistical Learning, New York, NY: Springer, 2001.

[207] S., Mallat, A Wavelet Tour of Signal Processing, San Diego, CA: Academic Press, 1999.

[208] Y. C., Eldar, M., Davenport, M., Duarte and G., Kutyniok, “Introduction to compressed sensing,” in Compressed Sensing: Theory and Applications, Cambridge, UK: Cambridge UniversityPress, 2011.

[209] N., Ahmed, T., Natarajan and K. R., Rao, “Discrete cosine transform,” IEEE Trans. Comput., vol. 23, no. 1 pp. 90-93, Jan.

[210] L., He and L., Carin, “Exploiting structure in wavelet-based bayesian compressivesensing,” IEEE Trans. Signal Processing, vol. 57, no. 9 pp. 3488-3497, Sep.

[211] M. F., DuarteR. G., Baraniuk, V., Cevher and C., Hegde, “Model-based compressive sensing,” IEEETrans. Inform. Theory, vol. 56, no. 4 pp. 1982-2001, Apr.

[212] Y. C., Eldar, P., Kuppinger and H., Bolcskei, “Block-sparse signals: Uncertainty relations and efficient recovery,” IEEE Trans. Signal Processing, vol. 58, pp. 3042-3054, Jun. 2010.

[213] P., Schniter, L. C., Potter and J., Ziniel, “Fast Bayesian matching pursuit,” in Proc. Workshop on Information Theory and Applications (ITA), La Jolla, CA, Jan. 2008.

[214] T., Peleg, Y. C., Eldar and M., Elad, “Exploiting statistical dependencies in sparse representations for signal recovery,” IEEE Trans. Signal Processing, vol. 60, no. 5, pp. 2286-2303, May 2012.

[215] P. J., Wolfe, S. J., Godsill and W. J., Ng, “Bayesian variable selection and regularization for time-frequency surface estimation,” J. R. Statist. Soc. B, vol. 66, no. 3 pp. 575-589, Jun.

[216] P. J., Garrigues and B. A., Olshausen, “Learning horizontalconnections inasparse coding model of natural images,” in Advances in Neural Information Processing Systems 20, J. C., Platt, D., Koller, Y., Singer and S., Roweis, Eds. Cambridge, MA: pp. 505-512. 2008.

[217] J., Partington, An Introduction to Hankel Operators, Cambridge, UK: Cambridge University Press, 1988.

[218] A., So and Y., Ye, “Theory of semi definite programming for sensor network localization,” Math. Programm. Series A and B, vol. 109, no. 2 pp. 367-384, Mar.

[219] D., Goldberg, D., Nichols, B., Oki and D., Terry, “Using collaborative filtering to weave an information tapestry,” Comm. ACM, vol. 35, no. 12 pp. 61-70, Dec.

[220] E., Candes and B., Recht, “Exact matrix completion via convex optimization,” Found. Comput. Math., vol. 9, no. 6 pp. 717-772, Dec.

[221] B., Recht, M., Fazel and P., Parrilo, “Guaranteed minimum rank solutions of matrix equations vianuclearnorm minimization,” SIAM Rev., vol. 52, no. 3 pp. 471-501, Aug.

[222] Z-q., Luo, W-k., Ma, A-C., So, Y., Ye and S., Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Mag., vol. 27, no. 3, pp. 20-34, May 2010.

[223] Y., Shechtman, Y. C., Eldar, A., Szameit and M., Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express, vol. 19, no. 16 pp. 14807-14822, Aug.

[224] H., Ohlsson, A. Y., Yang, R., Dong and S. S., Sastry, “Compressive phase retrieval from squared output measurements via semi definite programming,” arXiv: 1111.6323v3, 2012.

[225] E. J., Candes, Y. C., Eldar, T., Strohmer and V., Voroninski, “Phase retrieval via matrix completion,” SIAM J. Imaging Sci., vol. 6, no. 1 pp. 199-225, Feb.

[226] D. L., Donoho and M., Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1minimization,” Proc. Natl Acad. Sci., vol. 100, no. 5, pp. 2197-2202, Mar. 2003.

[227] X., Feng and Z., Zhang, “The rank of a random matrix,” IEEE Trans. Inform. Theory, vol. 185, pp. 689-694, Feb. 2007.

[228] R. A., Horn and C. R., Johnson, Topics in Matrix Analysis, New York, NY: Cambridge University Press, 1991.

[229] A., Cohen, W., Dahmen and R., DeVore, “Compressed sensing and bestん-term approximation,” J. Am. Math. Soc., vol. 22, no. 1 pp. 211-231, Jan.

[230] E. J., Candes and T., Tao, “Decoding by linear programming,” IEEE Trans. Inform. Theory, vol. 51, no. 12, pp. 42034215, Dec. 2005.

[231] D. L., Donoho, “Scanning the technology,” Proc. IEEE, vol. 98, no. 6 pp. 910-912, Jun.

[232] E. J., Candes, “The restricted isometry property and its implications for compressed sensing,” C. R. Acad. Sci. Paris Ser. I Math., vol. 346, pp. 589-592, May 2008.

[233] J., Tropp and A., Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inform. Theory, vol. 53, no. 12 pp. 4655-4666, Dec.

[234] M., Rosenfeld, “In praise of the Gram matrix,” in The Mathematics of Paul Erdõs II, R. L., Graham and J., Nešetnl, Eds. Berlin: Springer, pp. 318-323, 1996.

[235] T., Strohmer and R.W., Heath, “Grassmannian frames with applications to coding and communication,” Appl. Comput. Harmonic Anal., vol. 14, pp. 257-275, May 2003.

[236] J. J., Seidel, P., Delsarte and J. M., Goethals, “Bounds for systems of lines and Jacobipoynomials,” Philips Res. Rep., vol. 30, no. 3, pp. 91-105, 1975.

[237] J. A., Tropp, I. S., Dhillon Jr., R. W., Heath and T., Strohmer, “Designing structured tight frames via an alternating projection method,” IEEE Trans. Inform. Theory, vol. 51, no. 1 pp. 188-209, Jan.

[238] S., Geršgorin, “Über die Abgrenzung der Eigenwerte einer Matrix,” Izv. Akad. Nauk SSSR Ser. Fiz.-Mat., vol. 6, pp. 749-754, 1931.

[239] D. L., Donoho and X., Huo, “Uncertainty principles and ideal atomic decompositions,” IEEE Trans. Inform. Theory, vol. 47, no. 7 pp. 2845-2862, Nov.

[240] M., Elad and A. M., Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Trans. Inform. Theory, vol. 48, no. 9 pp. 2558-2567, Sep.

[241] D. L., Donoho and P. B., Stark, “Uncertainty principles and signal recovery,” SIAM J. Appl. Math., vol. 49, no. 3 pp. 906-931, Jun.

[242] J., Shore, “On the application of Haar functions,” IEEE Trans. Commun., vol. 21, no. 3 pp. 209-216, Mar.

[243] F. A., Berezin, The Method of Second Quantization, New York, NY: Academic Press, 1966.

[244] P., Kuppinger, G., Durisi and H., Bolcskei, “Uncertainty relations and sparse signal recovery for pairs of general signal sets,” IEEE Trans. Inform. Theory, vol. 58, no. 1 pp. 263-277, Jan.

[245] Y. C., Eldar, “Uncertainty relations for shift-invariant analog signals,” IEEE Trans. Inf. Theory, vol. 55, no. 12 pp. 5742-5757, Dec.

[246] R., Vershynin, “Introduction to the non-asymptotic analysis of random matrices”, in Compressed Sensing: Theory and Applications, Cambridge, UK: Cambridge University Press, 2011.

[247] A., Garnaev and E., Gluskin, “The widths of Euclidean balls,” Dokl. An. SSSR, vol. 277, pp.1048—1052, 1984.

[248] W., Johnson and J., Lindenstrauss, “Extensions of Lipschitzmappings into a Hilbert space,” in Proc. Conf. Modern Anal. Prob., New Haven, CT, June 1982.

[249] T., Jayram and D., Woodruff, “Optimal bounds for Johnson-Lindenstrauss transforms and streaming problems with sub-constant error,” in Proc. ACM-SIAMSymp. Discrete Algorithms (SODA), SanFrancisco, CA, Jan. 2011.

[250] R., Baraniuk, M., Davenport, R., DeVore and M., Wakin, “A simple proof of the restricted isometry property for random matrices,” Construct. Approx., vol. 28, no. 3 pp. 253-263, Dec.

[251] F., Krahmer and R., Ward, “New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property,” Preprint at arXiv: 1009.0744, Sept. 2010.

[252] M., Herman and T., Strohmer, “High-resolution radarvia compressed sensing,” IEEETrans. Signal Processing, vol. 57, no. 6 pp. 2275-2284, Jun.

[253] T., Strohmer and R., Heath, “Grassmanian frames with applications to coding and communication,” Appl. Comput. Harmon. Anal., vol. 14, no. 3 pp. 257-275, Nov.

[254] P., Indyk, “Explicit constructions for compressedsensing of sparse signals,” in Proc. ACM-SIAMSymp. Discrete Algorithms (SODA), San Francisco, CA, Jan. 2008, pp. 30-33.

[255] R., DeVore, “Deterministic constructions of compressed sensing matrices,” J. Complex., vol. 23, no. 4 pp. 918-925, Aug.

[256] E., Candes and Y., Plan, “Matrix completion with noise,” Proc. IEEE, vol. 98, no. 6 pp. 925-936, Jun.

[257] T., Cai and T., Jiang, “Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices,” Preprint at arXiv: 1102.2925, 2010.

[258] E., Candes and Y., Plan, “Near-ideal model selection by minimization,” Ann. Stat., vol. 37, no. 5A, pp. 2145-2177, Oct. 2009.

[259] H., Rauhut, “Compressive sensing and structured random matrices,” Theor. Found. Num. Methods Sparse Recovery, vol. 9, pp. 1-92, 2010.

[260] H., Rauhut, G. E., Pfander and J., Tanner, “Identification of matrices having a sparse representation,” IEEE Trans. Signal Processing, vol. 56, no. 11 pp. 5376-5388, Nov.

[261] Y., Chi, L., Scharf, A., Pezeshki and R., Calderbank, “Sensitivity to basis mismatch in compressedsensing,” IEEETrans. Signal Processing, vol. 59, no. 5, pp. 2182-2195, 2011.

[262] J., Tropp and S., Wright, “Computational methods for sparse solution of linear inverse problems,” Proc. IEEE, vol. 98, no. 6 pp. 948-958, Jun.

[263] E., Candes, Y. C., Eldar, D., Needell and P., Randall, “Compressed sensing with coherent and redundantdictionaries,” Appl. Comput. Harmon. Anal., vol. 31, pp. 59-73, 2011.

[264] S., Muthukrishnan, Data Streams: Algorithms and Applications, vol. 1 of Found. Trends in Theoretical Comput. Science, Boston, MA: Now Publishers, 2005.

[265] S., Chen, D. Donoho and M., Saunders, “Atomic decomposition by basis pursuit,” SIAMJ. Sci. Comp., vol. 20, no. 1, pp. 33-61, 1998.

[266] L. I., Rudin, S., Osher and E., Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: NonlinearPhenom., vol. 60, no. 1 pp. 259-268, Nov.

[267] D. L., Donoho, I., Drori, V., Stodden, Y., Tsaig and M., Shahram, “SparseLab: Seeking sparse solutions to linear systems of equations,” http://sparselab.stanford.edu/, Oct. 2007.

[268] E., Hale, W., Yin and Y., Zhang, “A fixed-point continuation method for -regularized minimization with applications to compressed sensing,” Rice Univ., CAAM Dept., Tech. Rep. TR07-07, 2007.

[269] M. A. T., Figueiredo, R., Nowak and S., Wright, “Gradient projections for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEEJ. Select. Top. Signal Processing, vol. 1, no. 4 pp. 586-597, Dec.

[270] E., van den Berg and M. P., Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAMJ. Sci. Comput., vol. 31, no. 2 pp. 890-912, Nov.

[271] A., Beck and M., Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1 pp. 183-202, Mar.

[272] J., Friedman, T., Hastie and R., Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software, vol. 33, no. 1 pp. 1-22, Jan.

[273] S., Osher, Y., Mao, B., Dong and W., Yin, “Fastlinearized Bregmaniterations forcompressive sensing and sparse denoising,” Commun. Math. Sci., vol. 8, no. 1 pp. 93-111, Feb.

[274] Z., Wen, W., Yin, D., Goldfarb and Y., Zhang, “A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation,” SIAM J. Sci. Comput., vol. 32, no. 4 pp. 1832-1857, Jun.

[275] S., Wright, R., Nowak and M., Figueiredo, “Sparse reconstruction by separable approximation,” IEEETrans. Signal Processing, vol. 57, no. 7 pp. 2479-2493, Jul.

[276] W., Yin, S., Osher, D., Goldfarb and J., Darbon, “Bregman iterative algorithms for -minimization with applications to compressed sensing,” SIAM J. Imag. Sci., vol. 1, no. 1, pp. 143-168, 2008.

[277] M., Grant and S., Boyd, “CVX: Matlab software for disciplined convex programming (web page and software),” March 2008, http//stanford.edu/∼boyd/cvx.

[278] Y. C., Eldar, “Generalized SURE for exponential families: Applications to regularization,” IEEE Trans. Signal Processing, vol. 57, no. 2 pp. 471-481, Feb.

[279] S., Ji, Y., Xue and L., Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Processing, vol. 56, no. 6 pp. 2346-2356, Jun.

[280] B., Logan, Properties of High-Pass Signals, Ph.D. thesis, Columbia University, 1965.

[281] D., Donoho and B., Logan, “Signal recovery and the large sieve,” SIAM J. Appl. Math., vol. 52, no. 6 pp. 577-591, Apr.

[282] H., Taylor, S., Banks and J., McCoy, “Deconvolution with the norm,” Geophysics, vol. 44, no. 1 pp. 39-52, Jan.

[283] S., Levy and P., Fullagar, “Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution,” Geophysics, vol. 46, no. 9 pp. 1235-1243, Sep.

[284] C., Walker and T., Ulrych, “Autoregressive recovery of the acoustic impedance,” Geophysics, vol. 48, no. 10 pp. 1338-1350, Oct.

[285] M., Talagrand, “New concent rationin equalities inproduct spaces,” Invent. Math., vol. 126, no. 3 pp. 505-563, Nov.

[286] S. G., Mallat and Z., Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Processing, vol. 41, no. 12 pp. 3397-3415, Dec.

[287] W., Dai and O., Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inform. Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.

[288] I., Daubechies, M., Defrise and C. De, Mol, “An iterative thre sholding algorithm for linear inverse problems with a sparsity constraint,” Comm. Pure Appl. Math., vol. 57, no. 11 pp. 1413-1457, Nov.

[289] D., Donoho, I., Drori, Y., Tsaig and J-L., Stark, “Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,” IEEETrans. Inform. Theory, vol. 58, no. 2, pp. 1094-1121, 2012.

[290] T., Blumensath and M., Davies, “Iterative hard thresholding forcompressive sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3 pp. 265-274, Nov.

[291] A., Cohen, W., Dahmen and R., DeVore, “Instance optimal decoding by thresholding in compressed sensing,” in Int. Conf. Harmonic Analysis and Partial Differential Equations, Madrid, Spain, June 2008.

[292] D., Needell and J. A., Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301-321, May 2009.

[293] D., Needell and R., Vershynin, “Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit,” IEEE J. Select. Top. Signal Processing, vol. 4, no. 2 pp. 310-316, Apr.

[294] J. A., Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Trans. Inform. Theory, vol. 50, no. 10 pp. 2231-2242, Oct.

[295] M., Davenport and M., Wakin, “Analysis of orthogonal matching pursuitusing therestricted isometry property,” IEEE Trans. Inform. Theory, vol. 56, no. 9 pp. 4395-4401, Sep.

[296] J. A., Tropp, A. C., Gilbert and M. J., Strauss, “Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit,” Signal Processing, vol. 86, pp. 572-588, Apr. 2006.

[297] Y., Pati, R., Rezaifar and P., Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition,” in Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, Nov. 1993.

[298] D., Needell and J. A., Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301-321, May 2008.

[299] T., Blumensath and M., Davies, “Gradient pursuits,” IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2370-2382, Jun. 2008.

[300] A., Miller, Subset Selection in Regression, 2nd edn. New York, NY: Chapman & Hall, 2002.

[301] R. A., DeVore and V. N., Temlyakov, “Some remarks on greedy algorithms,” Adv. Comp. Math., vol. 5, pp. 173-187, Dec. 1996.

[302] J., Hogbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astrophys. J. Suppl. Series, vol. 15, pp. 417-426, Jun. 1974.

[303] J. H., Friedman and J. W., Tukey, “A projection pursuit algorithm for exploratory data analysis,” IEEETrans. Comput., vol. 23, no. 9 pp. 881-890, Sep.

[304] A., Beck and Y. C., Eldar, “Sparsity constrained nonlinear optimization: Optimality conditions andalgorithms,” SIAM J. Optimization, vol. 23, no. 3, pp. 1480-1509, 2012.

[305] D. L., Donoho, A. Maleki and A., Montanari, “Message-passing algorithms for compressed sensing,” Proc. Natl Acad. Sci., vol. 106, no. 45 pp. 18914-18919, Nov.

[306] D., Du and F., Hwang, Combinat orial Group Testing and its Applications, Singapore: World Scientific, 2000.

[307] A., Gilbert and P., Indyk, “Sparse recovery using sparse matrices,” Proc. IEEE, vol. 98, no. 6 pp. 937-947, Jun.

[308] G., Cormode and S., Muthukrishnan, “Improved data stream summaries: The countmin sketch and its applications,” J. Algorithms, vol. 55, no. 1 pp. 58-75, Apr.

[309] A., Gilbert, Y., Li, E., Porat and M., Strauss, “Approximate sparse recovery: Optimizing time and measurements,” in Proc. ACM Symp. Theory Comput., Cambridge, MA, June 2010.

[310] A., Gilbert, M., Strauss, J., Tropp and R., Vershynin, “Onesketch for all: Fastalgorithms for compressedsensing,” in Proc. ACM Symp. Theory Comput., San Diego, CA, June 2007.

[311] S., Nam, M. E., Davies, M., Elad and R., Gribonval, “The cosparse analysis model and algorithms,” Appl. Comput. Harm. Anal., vol. 34, no. 1 pp. 30-56, Jan.

[312] S., Li and J., Lin, “Compressed sensing with coherent tight frames via -minimization for 0 < q ≥ 1,” Preprint at arXiv:1105.3299, 2011.

[313] J., Treichler, M., Davenport and R., Baraniuk, “Application of compressive sensing to the design of wideband signal acquisition receivers,” in Proc. US/Australia Joint Workshop Defense Appl. Signal Processing (DASP), Lihue, Hawaii, Sept. 2009.

[314] Z., Ben-Haim, T., Michaeli and Y. C., Eldar, “Performance bounds and design criteria for estimating finite rate of innovation signals,” IEEE. Trans. Inform. Theory, vol. 58, no. 8, pp. 4993-5015, 2012.

[315] E., Arias-Castro and Y. C., Eldar, “Noise folding in compressed sensing,” IEEESignal Processing Lett., vol. 18, no. 8 pp. 478-481, Aug.

[316] D., Donoho, M., Elad and V., Temlyahov, “Stable recovery of sparseover completer epresentations in the presence of noise,” IEEE Trans. Inform. Theory, vol. 52, no. 1 pp. 6-18, Jan.

[317] Z., Ben-Haim, Y. C., Eldar, and M., Elad, “Coherence-based performance guarantees for estimating a sparse vector under random noise,” IEEE Trans. Signal Processing, vol. 58, no. 10 pp. 5030-5043, Oct.

[318] P. J., Bickel, Y., RitovandA. B., Tsybakov, “Simultaneous analysis of Lasso and Dantzig selector,” Ann. Stat., vol. 37, no. 4, pp. 1705-1732, 2009.

[319] Z., Ben-Haim and Y. C., Eldar, “The Cramer Rao bound forestimating asparse parameter vector,” IEEETrans. Signal Processing, vol. 58, pp. 3384-3389, June 2010.

[320] C., Stein, “Inadmissibility of the usual estimator for the mean of a multivariate normal distribution,” in Proc. Third Berkeley Symp. Math. Statist. Prob., vol. 1, Berkeley, CA: University of California Press, 1956, pp. 197-206.

[321] W., James and C., Stein, “Estimation of quadratic loss,” in Proc. Fourth Berkeley Symp. Math. Statist. Prob., vol. 1, Berkeley, CA: University of California Press, pp. 361-379.

[322] Y. C., Eldar, Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramer-Rao Bound, Foundation and Trends in Signal Processing, Hanover, MA: Now Publishers, 2008.

[323] R., Ward, “Compressive sensing with cross validation,” IEEE Trans. Inform. Theory, vol. 55, no. 12 pp. 5773-5782, Dec.

[324] P., Wojtaszczyk, “Stability and instance optimality for Gaussian measurements in compressedsensing,” Found. Comput. Math., vol. 10, no. 1 pp. 1-13, Feb.

[325] D., Donoho and J., Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers dimension,” J. Am. Math. Soc., vol. 22, no. 1 pp. 1-53, Jan.

[326] D., Donoho and J., Tanner, “Precise undersampling theorems,” Proc. IEEE, vol. 98, no. 6 pp. 913-924, Jun.

[327] M. E., Davies, T., Blumensath and G., Rilling, “Greedy algorithms for compressed sensing,” in Compressed Sensing: Theory and Applications, Cambridge, UK: Cambridge University Press, 2011.

[328] E., Livshitz, “On efficiency of orthogonal matching pursuit,” Preprint at arXiv: 1004.3946, Apr. 2010.

[329] T., Zhang, “Sparse recovery with orthogonal matching pursuit under RIP,” IEEE Trans. Inform. Theory, vol. 57, no. 9, pp. 6215-6221, 2011.

[330] H., Rauhut, “On the impossibility of uniform sparsere construction using greedy methods,” Sampl. Theory Signal Image Processing, vol. 7, no. 2, pp. 197-215, May 2008.

[331] S., Cotter, B., Rao, K., Engan and K., Kreutz-Delgado, “Sparse solutions to linear inverse problems with multiple measurement vectors,” IEEE Trans. Signal Processing, vol. 53, no. 7 pp. 2477-2488, Jul.

[332] J., Chen and X., Huo, “Theoretical results on sparse representations of multiple-measurement vectors,” IEEE Trans. Signal Processing, vol. 54, no. 12 pp. 4634-4643, Dec.

[333] J. A., Tropp, “Algorithms for simultaneous sparse approximation. Part II: Convex relaxation,” Signal Processing, vol. 86, pp. 589-602, Apr. 2006.

[334] M., Mishali and Y. C., Eldar, “Reduce and boost: Recovering arbitrary sets of jointly sparse vectors,” IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 4692–4702, Oct. 2008.

[335] D., Malioutov, M., Cetin and A. S., Willsky, “A sparse signal reconstruction perspective forsource localization with sensorarrays,” IEEE Trans. Signal Processing, vol. 53, no. 8 pp. 3010-3022, Aug.

[336] S. F., Cotter and B. D., Rao, “Sparse channel estimation via matching pursuit with application to equalization,” vol. 50, no. 3, pp. 374-377, Mar. 2002.

[337] I. J., Fevrier, S. B., Gelfand and M. P., Fitz, “Reduced complexity decision feedback equalization for multipath channels with large delay spreads,” IEEE Trans. Commun., vol. 47, no. 6 pp. 927-937, Jun.

[338] Z., Yu, S., Hoyos and B. M., Sadler, “Mixed-signal parallel compressed sensing and reception for cognitive radio,” in IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV, Apr. 2008, pp. 3861-3864.

[339] J. A., Bazerque and G. B., Giannakis, “Distributed spectrum sensing for cognitive radio networks byexploiting sparsity,” IEEE Trans. Signal Processing, vol. 58, no. 3 pp. 1847-1862, Mar.

[340] M., Mishali and Y. C., Eldar, “Blind multiband signal reconstruction: Compressed sensing for analogsignals,” IEEE Trans. Signal Processing, vol. 57, pp. 993-1009, Mar. 2009.

[341] M., Mishali and Y. C., Eldar, “From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals,” IEEE J. Select. Top. Signal Processing, vol. 4, no. 2 pp. 375-391, Apr.

[342] M. E., Davies and Y. C., Eldar, “Rank awareness in joint sparse recovery,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1135-1146, 2013.

[343] M., Fornasier and H., Rauhut, “Recovery algorithms for vector valued data with joint sparsityconstraints,” SIAMJ. Num. Anal., vol. 46, no. 2 pp. 577-613, Feb.

[344] S. F., Cotter, B. D., Rao, K. Engan and K. Kreutz-Delgado, “Sparse solutions to linear inverse problems with multiple measurement vectors,” IEEE Trans. Signal Processing, vol. 53, no. 7 pp. 2477-2488, Jul.

[345] Y. C., Eldar and H., Rauhut, “Average case analysis of multichannel sparse recovery using convexrelaxation,” IEEETrans. Inform. Theory, vol. 6, no. 1 pp. 505-519, Jan.

[346] R., Gribonval, H., Rauhut, K. Schnass and P., Vandergheynst, “Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms,” J. Fourier Anal. Appl., vol. 14, no. 5 pp. 655-687, Dec.

[347] K., Schnass and P., Vandergheynst, “Average performance analysis for thresholding,” IEEE Signal Processing Lett., vol. 14, no. 11 pp. 828-831, Nov.

[348] J., Bien and R., Tibshirani, “Sparse estimation of a covariance matrix,” Biometrika, vol. 98, pp. 807-820, 2011.

[349] P. P., Vaidyanathan and P., Pal, “Sparse sensing with co-prime samplers and arrays,” IEEE Trans. Signal Processing, vol. 59, no. 2 pp. 573-586, Feb.

[350] D., Ariananda, D., Dony and G., Leus, “Compressive wideband power spectrum estimation,” IEEE Trans. Signal Processing, vol. 60, no. 9 pp. 4775-4789, Sep.

[351] C. P., Yen, Y., Tsai and X., Wang, “Wideband spectrum sensing based on sub-Nyquist sampling,” IEEETrans. Image Processing, vol. 61, pp. 3028-3040, Jun. 2013.

[352] D., Cohen and Y. C., Eldar, “Sub-Nyquist sampling for power spectrum sensing in cognitive radios: A unified approach,” Comput. Res. Repository (CoRR), abs/1308.5149, 2013.

[353] H. M., Quiney, “Coherent diffractive imaging using short wavelength light sources: A tutorialreview,” J. Mod. Opt., vol. 57, pp. 1109-1149, Jul. 2010.

[354] N. E., Hurt, Phase Retrieval and Zero Crossings: Mathematical Methods in Image Reconstruction, vol. 52. New York, NY: Springer, 2001.

[355] R. W., Harrison, “Phase problem in crystallography,” J. Opt. Soc. Am. A, vol. 10, pp. 1045-1055, May 1993.

[356] A., Walther, “The question of phase retrievalinoptics”, Opt. Acta., vol. 10, pp. 41-49, 1963.

[357] R. W., Gerchberg and W. O., Saxton, “Phase retrieval by iterated projections,” Optik, vol. 35, pp. 237-246, Aug. 1972.

[358] J. R., Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt., vol. 21, no. 15 pp. 2758-2769, Aug.

[359] M. L., Moravec, J. K., Romberg and R. G., Baraniuk, “Compressive phase retrieval,” Proc. SPIE, vol. 6701, Wavelets XII, p. 670120, 2007.

[360] K., Jaganathan, S., Oymak and B., Hassibi, “Recovery of sparse 1-D signals from the magnitudes of their Fourier transform,” in IEEEInt. Symp. Inform. TheoryProc. (ISIT), Cambridge, MA, 2012, pp. 1473-1477.

[361] Y., Shechtman, A., Beck and Y. C., Eldar, “GESPAR: Efficient phase retrieval of sparse signals.” IEEETrans. Signal Processing, vol. 62, no. 4, pp. 928-938, 2014.

[362] X., Li and V., Voroninski, “Sparse signal recovery from quadratic measurements via convex programming,” SIAM J. Math. Anal., vol. 45, no. 5, pp. 3019-3033, 2013.

[363] Y. C., Eldar and S., Mendelson, “Phase retrieval: Stability and recovery guarantees.” Appl. Comput. Harmon. Anal., vol. 36, no. 3 pp. 473–494, 2014.

[364] M., Stojnic, F., Parvaresh and B., Hassibi, “On the reconstruction of block-sparse signals with an optimal number of measurements,” IEEETrans. Signal Processing, vol. 57, no. 8, pp. 3075-3085, 2009.

[365] Z., Ben-Haim and Y. C., Eldar, “Near-oracle performance of greedy block-sparse estimation techniques from noisy measurements,” IEEE J. Select. Top. Signal Processing,vol. 5, no. 5, pp. 1032-1047, Sep. 2011.

[366] S., Erickson and C., Sabatti, “Empirical Bayesestimation of a sparsevector of gene expression changes,” Stati. Applic. Genet. Mol. Biol., vol. 4, no. 1, p. 22, Sep. 2005.

[367] F., Parvaresh, H., Vikalo, S., Misra and B., Hassibi, “Recovering sparse signals using sparse measurement matrices incompressed DNA microarrays,” IEEEJ. Select. Top. SignalPro-cessing, vol. 2, no. 3 pp. 275-285, Jun.

[368] P., Sprechmann, I., Ramirez, G. Sapiro and Y. C., Eldar, “C-HiLasso: A collaborative hierarchical sparse modeling framework,” IEEE Trans. Signal Processing, vol. 59, no. 9, pp. 4183-4198, 2011.

[369] F. R., Bach, “ConsistencyofthegroupLassoandmultiplekernellearning,” J. Mach. Learn. Res., vol. 9, pp. 1179-1225, Jun. 2008.

[370] Y., Nardi and A., Rinaldo, “On the asymptotic properties of the group lasso estimator for linear models,” Electron. J. Stat., vol. 2, pp. 605-633, 2008.

[371] L., Meier, S. van de, Geer and P., Bühlmann, “The group lasso for logistic regression,” J. R. Stat. Soc. B, vol. 70, no. 1 pp. 53-77, Feb.

[372] M., Yuan and Y., Lin, “Model selection and estimation in regression with grouped variables,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 68, no. 1 pp. 49-67, Feb.

[373] M. S., Lobo, L., Vandenberghe, S., Boyd and H., Lebret, “Applications of second-ordercone programming,” Linear Algeb. Applic., vol. 284, no. 1-3, pp. 193-228, Nov. 1998.

[374] R., Baraniuk, V., Cevher, M. Duarte and C., Hegde, “Model-based compressive sensing,” IEEETrans. Inform. Theory, vol. 56, pp. 1982-2001, 2010.

[375] E., Elhamifar and R., Vidal “Structured sparse recovery via convex optimization,” IEEE Trans. Signal Processing, arXiv: 1104.0654, 2011.

[376] J. J., Hull, “A database for handwritten text recognition research,” IEEETrans. Patt. Anal. Mach. Intell., vol. 16, no. 5, pp. 550-554, May 1994.

[377] R., Gribonval and P., Vandergheynst, “On the exponential convergence of matching pursuits inquasi-incoherentdictionaries,” IEEETrans. Inform. Theory, vol. 52, no. 1, pp. 255-261, Jan. 2006.

[378] B. A., Olshausen and D. J., Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, vol. 381, no. 6583 pp. 607-609, Jun.

[379] B. A., Olshausen and D. J., Field, “Sparse coding with an overcomplete basis set: A strategy employed by VI?” Vision Res., vol. 37, no. 23 pp. 3311-3325, Dec.

[380] B. A., Olshausen and D. J., Field, “Sparse coding of sensory inputs,” Curr. Opinion Neuro- biol., vol. 14, no. 4 pp. 481-487, Aug.

[381] K., Kreutz-Delgado, J. F., Murray, B. D., Raoet al., “Dictionary learning algorithms for sparse representation,” NeuralComput., vol. 15, no. 2 pp. 349-396, Feb.

[382] M. S., Lewicki and T. J., Senowski, “Learning overcomplete representations,” Neural Comput., vol. 12, no. 2 pp. 337-365, Feb.

[383] K., Engan, S. O., Aase and J. H., Husoy, “Frame based signal compression using method of optimal directions (MOD),” IEEE Intern. Symp. Circuits Syst., vol. 4, pp. 1-4, Jul. 1999.

[384] M., Aharon, M., Elad, A., Bruckstein and Y., Kats, “K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Processing, vol. 54, no. 11 pp. 4311-4322, Nov.

[385] M., Aharon, M., Elad and M., Bruckstein, “On the uniqueness of overcomplete dictionaries, andapractical way to retrieve them,” Linear Algeb. Appl., vol. 416, no. 1 pp. 48-67, Jul.

[386] K., Rosenblum, L., Zelnik-Manor and Y. C., Eldar, “Dictionary optimization for block sparse representations,” IEEETrans. Signal Processing, vol. 60, pp. 2386-2395, 2012.

[387] R., Basri and D. W., Jacobs, “Lambertian reflectance and linear subspaces,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 25, no. 2 pp. 218-233, Feb.

[388] J., Wright, A.Y., Yang, A., Ganesh, S. S., Sastry and Y., Ma, “Robust face recognition via sparse representation,” IEEETrans. Patt. Anal. Mach. Intell., vol. 31, no. 2 pp. 210-227, Apr.

[389] R., Vidal and Y., Ma, “A unified algebraic approach to 2-D and 3-D motion segmentation and estimation,” J. Math. Imaging Vision, vol. 25, no. 3 pp. 403-421, Oct.

[390] R., Vidal, Y., Ma and S., Sastry, “Generalized principal component analysis (GPCA),” IEEE Trans. Patt. Anal. Mach. Intell., vol. 27, no. 12 pp. 1945-1959, Dec.

[391] E., Elhamifar and R., Vidal, “Sparse subspace clustering,” in IEEE Conf. Computer Vision and Pattern Recognition, 2009.IEEE, Jun. 2009, pp. 2790-2797.

[392] J., Mairal, F., Bach, J., Ponce, G., Sapiro and A., Zisserman, “Discriminative learned dictionaries for local image analysis,” inIEEEConf. Computer Vision and Pattern Recognition, 2008. IEEE, Jun. 2008, pp. 1-8.

[393] S. C., Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3 pp. 241-254, Sep.

[394] S., Gleichman and Y. C., Eldar, “Blind compressed sensing,” IEEE Trans. Inform. Theory, vol. 57, no. 10 pp. 6958-6975, Oct.

[395] J., Silva, M., Chen, Y. C., Eldar, G. Sapiro and L., Carin, “Blind compressed sensing over a structured union of subspaces,” PreprintatarXiv:1103.2469, 2011.

[396] R., Rubinstein, M., Zibulevsky and M., Elad, “Double sparsity: Learning sparse dictionaries forsparse signalapproximation,” IEEE Trans. Signal Processing, vol. 58, no. 3 pp. 1553-1564, Mar.

[397] K., Rosenblum, L., Zelnik-ManorandY. C., Eldar, “Dictionary optimization for block-sparse representations,” IEEETrans. Signal Processing, vol. 60, no. 5, pp. 2386-2395, 2012.

[398] T., Blu and M., Unser, “Approximation error for quasi-interpolators and (multi-)wavelet expansions,” Appl. Comput. Harm. Anal., vol. 6, pp. 219-251, Mar. 1999.

[399] J. G., Proakis, DigitalCommunications, 3rdedn. McGraw-Hill, Inc., 1995.

[400] Y., Xie, Y. C., Eldar and A., Goldsmith, “Reduced-dimension multiuser detection,” IEEE Trans. Inform. Theory, vol. 59, no. 6 pp. 3858-3874, Sep.

[401] S., Verdu, Multiuser Detection, Cambridge, UK: Cambridge University Press, 1998.

[402] A., Duel-Hallen, “Decorrelating decision-feedback multiuser detector for synchronous code-division multiple-access channel,” IEEE Trans. Commun., vol. 41, no. 2 pp. 285-290, Feb.

[403] W., Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Am. Stat. Assoc., vol. 58, no. 301 pp. 13-30, Mar.

[404] I., Budiarjo, H., Nikookar and L. P., Ligthart, “Cognitive radio modulation techniques,” IEEE Signal Processing Mag., vol. 25, no. 6, pp. 24-34, Nov. 2008.

[405] D., Cabric, “Addressing feasibility of cognitive radios,” IEEE Signal Processing Mag., vol. 25, no. 6 pp. 85-93, Nov.

[406] K., Grochenig and H., Razafinjatovo, “On Landau's necessary density conditions for sampling and interpolation of band-limited functions,” J. London Math. Soc., vol. 54, no. 3 pp. 557-565, Dec.

[407] W. C., Black and D. A., Hodges, “Time interleaved converter arrays,” IEEE J. Solid-State Circuits, vol. 15, no. 6 pp. 1022-1029, Dec.

[408] C., Vogel and H., Johansson, “Time-interleaved analog-to-digital converters: Status and future directions,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), no. 4, Kos, Greece, May 2006, pp. 3386-3389.

[409] D. M., Akos, M., Stockmaster, J. B. Y., Tsui and J., Caschera, “Direct bandpass sampling of multiple distin ctrf signals,” IEEETrans. Commun., vol. 47, no. 7, pp. 938-988, 1999.

[410] A., Kohlenberg, “Exact inter polation of band-limited functions,” J. Appl. Phys., vol. 24, no. 12 pp. 1432-1435, Dec.

[411] T. I., Laakso, V., Valimaki, M. Karjalainen and U. K., Laine, “Splitting the unit delay [fir/all pass filters design],” IEEE Signal Processing Mag., vol. 13, no. 1, pp. 30-60, Jan. 1996.

[412] M. E., Dominguez-Jimenez, N., Gonzalez-Prelcic, G., Vazquez-Vilar and R., Lopez-Valcarce, “Design of universal multicoset sampling patterns for compressed sensing of multiband sparse signals,” in Proc. IEEE ICASSP-2012, Kyoto, Japan, Mar. 2012.

[413] T., Tao, “An uncertainty principle for cyclic groups of prime order,” Math. Res. Lett., vol. 12, no. 1, pp. 121-127, 2005.

[414] R. J., Evans and I. M., Isaacs, “Generalized Vander monde determinants and roots of unity of prime order,” Proc. Am. Math. Soc., vol. 58, pp. 51-54, Jul. 1976.

[415] M., Mishali and Y. C., Eldar, “Sub-Nyquist sampling,” IEEE Signal Processing Mag., vol. 28, no. 6 pp. 98-124, Nov.

[416] R., Khoini-Poorfard, L. B., Lim and D. A., Johns, “Time-interleaved oversampling A/D converters: Theory and practice,” IEEE Trans. Circuits Syst. II, vol. 44, no. 8 pp. 634-645, Aug.

[417] A. J., Viterbi, CDMA Principles ofSpread Spectrum Communication, Reading, MA: Addison-Wesley Wireless Communications Series, 1995.

[418] R., Pickholtz, D., Schilling and L., Milstein, “Theory of spread-spectrum communications - Atutorial,” IEEE Trans. Commun., vol. 30, no. 2, pp. 855-884, May 1982.

[419] C., Kienmayer, M., Tiebout, W., Simburger, and A. L., Scholtz, “Alow-powerlow-voltage nmos bulk-mixer with 20 GHz band width in 90 nm CMOS,” ISCAS '04. Proc. 2004 Inti Symp. Circuits and Systems, 2004. vol. 8, Vancouver, 2004, pp. 385-388.

[420] B., Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1 pp. 17-22, Jan.

[421] E., Laskin and S. P., Voinigescu, “A 60 mW per lane, 4 × 23-Gb/s 27 —1 PRBS generator,” IEEEJ. Solid-StateCircuits, vol. 41, no. 10, 2198-2208, Oct. 2006.

[422] T. O., Dickson, E., Laskin, I., Khalidet al., “An 80-Gb/s 231 – 1 pseudorandom binary sequence generator in SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no. 12 pp. 2735-2745, Dec.

[423] K., Gentile, “Introduction to zero-delay clock timing techniques,” Application notes AN-#0983, Analog Devices Corp. http://www.analog.com/static/imported-files/application.notes/AN-0983.pdf.

[424] Y., Chen, M., Mishali, Y. C., EldarandA. O., HeroIII, “Modulatedwidebandconverterwith non-ideal lowpass filters,” in Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP), Dallas, TX, 2010, pp. 3630-3633.

[425] M., Mishali and Y. C., Eldar, “Expected-RIP: Conditioning of the modulated wideband converter,” in IEEEInformation Theory Workshop ITW 2009, Oct. 2009, pp. 343-347.

[426] L., Gan and H., Wang, “Deterministic binarysequences formodulatedwidebandconverter,” in SAMPTA 2013, Bremen, 2013, pp. 264-267.

[427] J. M., Jensen, H., Elbrønd Jensen and T., Hoholdt, “The merit factor of binary sequences related to difference sets,” IEEE Trans. Inform. Theory, vol. 37, no. 3, pp. 617-626, May 1991.

[428] F., Gardner, “Properties offrequency difference detectors,” IEEETrans. Commun., vol. 33, no. 2 pp. 131-138, Feb.

[429] R., Tur, Y. C., Eldar and Z., Friedman, “Low rate sampling of pulse streams with application to ultrasound imaging,” IEEE Trans. Signal Processing, vol. 59, no. 4 pp. 1827-1842, Apr.

[430] N., Wagner, Y. C., Eldar and Z., Friedman, “Compressed beam forming in ultrasound imaging,” IEEETrans. Signal Processing, vol. 60, no. 9, pp. 4643-4657, 2012.

[431] O., Bar-Ilan and Y. C., Eldar, “Sub-Nyquistradarvia Doppler focusing,” submitted to IEEE Trans. SignalProcessing, vol. 62, no. 7, pp. 1796-1811, 2014.

[432] E., Baransky, G., Itzhak, I., Shmuelet al., “A sub-Nyquist radar prototype: Hardware and algorithms,” arXiv: 1208.2515v2[cs.IT] 2013.

[433] A., Bruckstein, T. J., Shan and T., Kailath, “The resolution of overlapping echos,” IEEE Trans. Acoust. Speech Signal Processing, vol. 33, no. 6, pp. 1357-1367, 1985.

[434] K., Gedalyahu and Y. C., Eldar, “Time delay estimation from low rate samples: A union of subspaces approach,” IEEE Trans. Signal Processing, vol. 58, no. 6 pp. 3017-3031, Jun.

[435] W. U., Bajwa, K., Gedalyahu and Y. C., Eldar, “Identification of parametric underspread linear systems and super-resolution radar,” IEEE Trans. Signal Processing, vol. 59, no. 6 pp. 2548-2561, Jun.

[436] H., Meyr, M., Moeneclaey and S. A., Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing, New York, NY: Wiley-Interscience, 1997.

[437] A., Quazi, “An overview on the time delay estimate in active and passive systems for target localization,” IEEETrans. Acoust. Speech SignalProcessing, vol. 29, no. 3 pp. 527-533, Jun.

[438] P., Stoica and R., Moses, Introduction to Spectral Analysis, Upper Saddle River, NJ: Prentice-Hall, 1997.

[439] O., Toeplitz, “Zur theorie der quadratischen und bilinearen formen von unendlichvielen veränderlichen,” Math. Ann., vol. 70, no. 3, pp. 351-376, 1911.

[440] G. H., Golub and C. F., Van Loan, “An analysis of the total least-squares problem,” SIAM J. Num. Anal., vol. 17, no. 6 pp. 883-893, Dec.

[441] M. S., Mackisack, M. R., Osborne, M., Kahn and G. K., Smyth, “On the consistency of Prony's method and related algorithms,” J. Comput. Graph. Stat., vol. 1, pp. 329-349, 1992.

[442] D. W., Tufts and R., Kumaresan, “Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood,” Proc. IEEE, vol. 70, no. 9 pp. 975-989, Sep.

[443] M. D., Rahman and K. B., Yu, “Total least squares approach for frequency estimation using linear prediction,” IEEE Trans. Acoust. Speech Signal Processing, vol. 35, no. 10 pp. 1440-1454, Oct.

[444] J. A., Cadzow, “Signal enhancement - a composite property mapping algorithm,” IEEE Trans. Acoust. Speech Signal Processing, vol. 36, no. 1 pp. 49-62, Jan.

[445] Y., Hua and T. K., Sarkar, “Matrix pencil method forestimating parameters ofexponentially damped/undamped sinusoids in noise,” IEEE Trans. Acoust. Speech Signal Processing, vol. 38, no. 5, pp. 814-824, May 1990.

[446] T. K., Sarkar and O., Pereira, “Using the matrix pencil method to estimate the parameters of a sum ofcomplex exponentials,” IEEE Antennas Propag. Mag., vol. 37, no. 1 pp. 48-55, Feb.

[447] V. F., Pisarenko, “There trieval of harmonics from a covariance function,” Geo phys. J. Roy. Astron. Soc., vol. 33, no. 3 pp. 347-366, Sep.

[448] A., Barabell, “Improving the resolution performance of eigenstructure-based direction-finding algorithms,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 83), vol. 8, Apr. 1983, pp. 336-339.

[449] T-J., Shan, M., Wax and T., Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Trans. Acoust. Speech Signal Processing, vol. 33, no. 4 pp. 806-811, Aug.

[450] G., Tang, B. Narayan, Bhaskar, P., Shah and B., Recht, “Compressed sensing off the grid,” Pre print at arXiv:1207.6053, 2012.

[451] B. Narayan, Bhaskar, G., Tang and B., Recht, “Atomic norm denoising with applications to line spectral estimation,” Preprint at arXiv: 1204.0562, Apr. 2012.

[452] P., Stoica and P., Babu, “Sparse estimation of spectral lines: Grid selection problems and theirsolutions,” IEEE Trans. SignalProcessing, vol. 60, no. 2 pp. 962-967, Feb.

[453] T., Chernyakova and Y. C., Eldar, “Fourier domain beam forming: The path to compressed ultrasound imaging” Pre print at arXiv: 1307.6345.

[454] P. L., Dragotti, M., Vetterli and T., Blu, “Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix,” IEEE Trans. Signal Processing, vol. 55, no. 5, pp. 1741-1757, May 2007.

[455] J. A., Uriguen, T., Blu and P. L., Dragotti, “FRI sampling with arbitrary kernels,” IEEE Trans. Signal Processing, vol. 61, no. 12 pp. 5310-5323, Nov.

[456] H. Akhondi, Asl, P. L., Dragotti and L., Baboulaz, “Multichannel sampling of signals with finite rate of innovation,” IEEE Signal Processing Lett., vol. 17, no. 8, pp. 762-765, Aug. 2010.

[457] R., Tur, K., Gedalyahu and Y. C., Eldar, “Multichannel sampling of pulse streams at the rate of innovation,” IEEE Trans. Signal Processing, vol. 59, no. 4 pp. 1491-1504, Apr.

[458] G., Golub and C. Van, Loan, Matrix Computations, 2nd edn. Baltimore, MD: Johns Hopkins University Press, 1989.

[459] M. Z., Win and R. A., Scholtz, “Characterization of ultra-wide band width wireless indoor channels: A communication-theoretic view,” vol. 20, no. 9, pp. 1613-1627, Dec. 2002.

[460] M. Kay, Steven, Fundamentals of Statistical Signal Processing, Englewood Cliffs, NJ: PTR Prentice-Hall, 1993.

[461] J. A., Urigiien, Y. C., Eldar, P. L., Dragotti and Z., Ben-Haim, “Sampling at the rate of innovation: theory and applications,” in Compressed Sensing: Theory and Applications, Cambridge, UK: Cambridge University Press, pp. 148-209, 2012.

[462] T., Michaeli and Y. C., Eldar, “Xampling at the rate of innovation,” IEEE Trans. Signal Processing, vol. 60, no. 3 pp. 1121-1133, Mar.

[463] T. G., Dvorkind, Y. C., Eldar and E., Matusiak, “Nonlinear and non-ideal sampling: Theory andmethods,” IEEE Trans. Signal Processing, vol. 56, no. 12 pp. 471-481, Feb.

[464] T., Blumensath, “Sampling and reconstructing signals from a union of linear subspaces,” IEEE Trans. Inform. Theory, vol. 57, no. 7 pp. 4660-4671, Jul.

[465] Q., Sun, “Frames in spaces with finite rate of innovation,” Adv. Comput. Math., vol. 28, no. 4, pp. 301-329, 2008.

[466] L., Baboulaz and P. L., Dragotti, “Exact feature extraction using finite rate of innovation principles with an application to image super-resolution,” IEEETrans. Image Processing, vol. 18, no. 2 pp. 281-298, Feb.

[467] V., Chaisinthop and P. L., Dragotti, “Centralized and distributed semi-parametric compression of piecewise smooth functions,” IEEE Trans. Signal Processing, vol. 59, pp. 3071-3085, 2011.

[468] K. M., Cohen, C., Attias, B., Farbman, I., Tselniker and Y. C., Eldar, “Channel estimation in UWB channels using compressed sensing,” in Proc. IEEEICASSP-14, Florence, Italy, May 2014.

[469] J., Onativia, S., Schultz and P. L., Dragotti, “A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging,” J. Neural Eng., vol. 10, no. 4, Jul. 2013.

[470] I., Maravic and M., Vetterli, “Exact sampling results for some classes of parametric non-bandlimited2-D signals,” IEEE Trans. Signal Processing, vol. 52, no. 1 pp. 175-189, Jan.

[471] P., Shukla and P. L., Dragotti, “Sampling schemes for multi dimensional signals with finite rate of innovation,” IEEE Trans. Signal Processing, vol. 55, pp. 3670-3686, Jul. 2007.

[472] M. I., Skolnik, Introduction to Radar Systems, New York, NY: McGraw-Hill, 1980.

[473] C. E., Cook and M., Bernfeld, Radar Signals -An Introduction to Theory and Applications, Norwood, MA: Artech House, 1993.

[474] E., Matusiak and Y. C., Eldar, “Sub-Nyquist sampling of short pulses,” IEEE Trans. Signal Processing, vol. 60, no. 3 pp. 1134-1148, Mar.

[475] T., Kailath, “Measurements on time-variant communication channels,” IRE Trans. Inform. Theory, vol. 8, no. 5 pp. 229-236, Sep.

[476] P., Bello, “Measurement of random time-variant linear channels,” IEEE Trans. Inform. Theory, vol. 15, no. 4 pp. 469-475, Jul.

[477] W., Kozek and G. E., Pfander, “Identification of operators with bandlimited symbols,” SIAM J. Math. Anal., vol. 37, no. 3, pp. 867-888, 2005.

[478] G. E., Pfander and D. F., Walnut, “Measurement of time-variant linear channels,” IEEE Trans. Inform. Theory, vol. 52, no. 11 pp. 4808-4820, Nov.

[479] D., Slepian, “On bandwidth,” Proc. IEEE, vol. 64, no. 3 pp. 292-300, Mar.

[480] J. Arendt, Jensen, “Linear description of ultrasound imaging systems,” Notes for the International Summer School on Advanced Ultrasound Imaging, Technical University of Denmark, 1999.

[481] T. L., Szabo, Diagnostics Ultrasound Imaging: Inside Out, J., Bronzino, Ed., Ch. 7, 10. Oxford, UK: Elsevier Academic Press, 2004.

[482] A., Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. New York, NY: McGraw Hill, Inc., 1991.

[483] W., Feller, An Introduction to Probability Theory and its Applications, 2nd edn., vol. 2. NewYork, NY: Wiley, 1971.

[484] B., Porat, Digital Processing ofRandom Signals: Theory and Methods, Englewood Cliffs, NJ: Prentice-Hall, 1994.