Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T04:49:28.363Z Has data issue: false hasContentIssue false

25 - Thermal Infrared Remote Sensing of Mars from Rovers Using the Miniature Thermal Emission Spectrometer

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

A Miniature Thermal Emission Spectrometer (Mini-TES), based on a Michelson interferometer and Cassegrain telescope, was carried by the Spirit rover in Gusev crater and Opportunity rover at Meridiani Planum to determine the bulk mineralogy of surface materials. Spectra from the plains of Gusev demonstrate the ubiquity of olivine-rich basaltic rocks, with additional examples lofted into the adjacent Columbia Hills by meteoroid impacts. Hundreds of rocks observed with mini-TES in the Columbia Hills display spectral characteristics of variable alteration intensity, but likely with very little water involved. Rare exceptions include a tephra deposit cemented by Mg–Fe carbonates and nodular opaline silica rocks, likely indicative of a hot spring/geyser environment. Opportunity’s mini-TES confirmed orbital identification of crystalline hematite at Meridiani Planum and spectral characteristics indicative of a transition from a precursor goethite phase. The sedimentary bedrock that hosts the hematite has spectral features consistent with Al-rich opaline silica, Mg-, Ca-, and Fe-bearing sulfates, plagioclase feldspar, and nontronite. Rare rocks at both sites are recognizable as iron meteorites from their infrared reflective properties.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 499 - 512
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R.E., Ruff, S.W., Morris, R.V., et al. (2008) Spirit Mars rover mission to the Columbia Hills, Gusev crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003183.CrossRefGoogle Scholar
Arvidson, R.E., Bell, J.F. III, Bellutta, P., et al. (2010) Spirit Mars rover mission: Overview and selected results from the northern Home Plate winter haven to the side of Scamander crater. Journal of Geophysical Research, 115, DOI:10.1029/2008JE003183.CrossRefGoogle Scholar
Ashley, J.W., Golombek, M.P., Christensen, P.R., et al. (2011) Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars: Process insights for Meridiani Planum. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003672.CrossRefGoogle Scholar
Bandfield, J.L., Christensen, P.R., & Smith, M.D. (2000) Spectral data set factor analysis and end-member recovery: Application to analysis of martian atmospheric particulates. Journal of Geophysical Research, 105, 95739587.CrossRefGoogle Scholar
Bell, J.F. III, Joseph, J., Sohl-Dickstein, J.N., et al. (2006) In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002444.Google Scholar
Christensen, P.R., Bandfield, J.L., Clark, R.N., et al. (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. Journal of Geophysical Research, 105, 96239642.CrossRefGoogle Scholar
Christensen, P.R., Mehall, G.L., Silverman, S.H., et al. (2003) Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002117.CrossRefGoogle Scholar
Christensen, P.R., Wyatt, M.B., Glotch, T.D., et al. (2004a) Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover. Science, 306, 17331739.CrossRefGoogle ScholarPubMed
Christensen, P.R., Ruff, S.W., Fergason, R.L., et al. (2004b) Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover. Science, 305, 837842.CrossRefGoogle ScholarPubMed
Connolly, H.C.J., Zipfel, J., Grossman, J.N., et al. (2006) The Meteoritical Bulletin No. 90. Meteoritics and Planetary Science, 41, 13831418.Google Scholar
Fergason, R.L., Christensen, P.R., Bell, J.F. III, Golombek, M.P., Herkenhoff, K.E., & Kieffer, H.H. (2006) Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES–derived thermal inertia. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002583.Google Scholar
Glotch, T.D. & Bandfield, J.L. (2006) Determination and interpretation of surface and atmospheric Mini-TES spectral end-members at the Meridiani Planum landing site. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002671.CrossRefGoogle Scholar
Glotch, T.D., Morris, R.V., Christensen, P.R., & Sharp, T.G. (2004) Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to martian hematite mineralization. Journal of Geophysical Research, 109, DOI:10.1029/2003JE002224.CrossRefGoogle Scholar
Glotch, T.D., Bandfield, J.L., Christensen, P.R., et al. (2006) Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. Journal of Geophysical Research, 111, DOI:10.1029/2005JE002672.CrossRefGoogle Scholar
Grant, J.A., Wilson, S.A., Ruff, S.W., Golombek, M.P., & Koestler, D.L. (2006) Distribution of rocks on the Gusev Plains and on Husband Hill, Mars. Geophysical Research Letters, 33, DOI:10.1029/2006GL026964.CrossRefGoogle Scholar
Grotzinger, J.P., Arvidson, R.E., Bell, J.F. III, et al. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 1172.CrossRefGoogle Scholar
Hamilton, V.E. & Ruff, S.W. (2012) Distribution and characteristics of Adirondack-class basalt as observed by Mini-TES in Gusev crater, Mars and its possible volcanic source. Icarus, 218, 917949.Google Scholar
Hurowitz, J.A. & Fischer, W.W. (2014) Contrasting styles of water–rock interaction at the Mars Exploration Rover landing sites. Geochimica et Cosmochimica Acta, 127, 2538.CrossRefGoogle Scholar
Hurowitz, J.A., McLennan, S.M., McSween, H.Y. Jr., DeSouza, P.A. Jr., & Klingelhӧfer, G. (2006) Mixing relationships and the effects of secondary alteration in the Wishstone and Watchtower Classes of Husband Hill, Gusev crater, Mars. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002795.CrossRefGoogle Scholar
McLennan, S.M., Bell, J.F. III, Calvin, W.M., et al. (2005) Provenance and diagenesis of the evaporate-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 95121.CrossRefGoogle Scholar
McSween, H.Y., Jr., Arvidson, R.E., Bell, J.F. III, et al. (2004) Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science, 305, 842845.CrossRefGoogle ScholarPubMed
Morris, R.V., Klingelhofer, G., Schroder, C., et al. (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. Journal of Geophysical Research, 113, DOI:10.1029/2008JE003201.CrossRefGoogle Scholar
Morris, R.V., Ruff, S.W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science, 329, 421424.CrossRefGoogle ScholarPubMed
Ramsey, M.S. & Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, 577596.CrossRefGoogle Scholar
Rivera-Hernandez, F., Bandfield, J.L., Ruff, S.W., & Wolff, M.J. (2015) Characterizing the thermal infrared spectral effects of optically thin surface dust: Implications for remote-sensing and in situ measurements of the martian surface. Icarus, 262, 173186.CrossRefGoogle Scholar
Rogers, A.D. & Aharonson, O. (2008) Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements. Journal of Geophysical Research, 113, DOI:10.1029/2007JE002995.CrossRefGoogle Scholar
Ruff, S.W. & Farmer, J.D. (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7, 13554.Google Scholar
Ruff, S.W. & Hamilton, V.E. (2017) Wishstone to Watchtower: Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars. American Mineralogist, 102, 235251.Google Scholar
Ruff, S.W., Christensen, P.R., Barbera, P.W., & Anderson, D.L. (1997) Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration. Journal of Geophysical Research, 102, 14,89914,913.Google Scholar
Ruff, S.W., Christensen, P.R., Blaney, D.L., et al. (2006) The rocks of Gusev crater as viewed by the Mini-TES instrument. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002747.CrossRefGoogle Scholar
Ruff, S.W., Christensen, P.R., Glotch, T.D., Blaney, D.L., Moersch, J.E., & Wyatt, M.B. (2008) The mineralogy of Gusev crater and Meridiani Planum derived from the Miniature Thermal Emission Spectrometers on the Spirit and Opportunity rovers. In: The martian surface: Composition, mineralogy, and physical properties (Bell, J., ed.). Cambridge University Press, Cambridge, 315338.CrossRefGoogle Scholar
Ruff, S.W., Farmer, J.D., Calvin, W.M., et al. (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater. Journal of Geophysical Research, 116, DOI:10.1029/2010JE003767.CrossRefGoogle Scholar
Ruff, S.W., Niles, P.B., Alfano, F., & Clarke, A.B. (2014) Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology, 42, 359362.CrossRefGoogle Scholar
Savransky, D. & Bell, J.F. III (2004) True color and chromaticity of the martian surface and sky from Mars Exploration Rover Pancam observations. Eos, Transactions American Geophysical Union, Abstract P21A-0197.Google Scholar
Schröder, C., Rodionov, D.S., McCoy, T.J., et al. (2008) Meteorites on Mars observed by the Mars Exploration Rovers. Journal of Geophysical Research, DOI:10.1029/2007JE002990.CrossRefGoogle Scholar
Smith, M.D., Wolff, M.J., Lemmon, M.T., et al. (2004) First atmospheric science results from the Mars Exploration Rovers Mini-TES. Science, 306, 17501753.CrossRefGoogle ScholarPubMed
Smith, M.D., Wolff, M.J., Spanovich, N., et al. (2006) One martian year of atmospheric observations using MER Mini-TES. Journal of Geophysical Research, 111, DOI:10.1029/2006JE002770.CrossRefGoogle Scholar
Squyres, S.W., Arvidson, R.E., Baumgartner, E.T., et al. (2003) Athena Mars rover science investigation. Journal of Geophysical Research, 108, DOI:10.1029/2003JE002121.CrossRefGoogle Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F. III, et al. (2004a) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science, 306, 16981703.Google Scholar
Squyres, S.W., Arvidson, R.E., Bell, J.F. III, et al. (2004b) The Spirit rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Squyres, S.W., Arvidson, R.E., Ruff, S.W., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.CrossRefGoogle ScholarPubMed
Yen, A.S., Gellert, R., Schroder, C., et al. (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature, 436, 4954.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×