Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-11T10:13:27.837Z Has data issue: false hasContentIssue false

14 - Reliable MAC layer and packet scheduling

from Part II - Selected topics for improved reliability

Published online by Cambridge University Press:  01 June 2011

Ulas C. Kozat
Affiliation:
DOCOMO Communications Laboratories USA, Inc., California, USA
Ismail Guvenc
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Sinan Gezici
Affiliation:
Bilkent University, Ankara
Zafer Sahinoglu
Affiliation:
Mitsubishi Electric Research Laboratories, Cambridge, Massachusetts
Ulas C. Kozat
Affiliation:
DoCoMo Communications Laboratories USA, Inc.
Get access

Summary

Medium access control (MAC) is of paramount importance in wireless systems: it orchestrates how the spectrum is shared across users and flows directly impacting the system throughput, reliability, quality of service (QoS), and fairness. Numerous works in the literature have challenged the classical layered view of protocol stacks in order to improve the poor utilization of the scarce spectrum resources [1]. Both in the context of random access and contention-free access, substantial gains have been demonstrated by making the MAC layer more aware of channel conditions and applications. Another classical view that has been challenged over the years is the tendency to emulate a point-to-point link view over inherently point-to-multipoint wireless medium. In the classical approach, packets received by unintended users are simply discarded. Originally, in the multihop routing domain, and more recently in the single-hop case, the notion of unintended user has become stale, especially in the contexts of cooperative communication, network coding, and opportunistic routing [2–5, 22].

In this chapter we focus primarily on a specific network scenario, where there is only one wireless transmitter serving many receivers. We assume a contention-free MAC: a centralized scheduler dynamically allocates channels (e.g., spreading codes and frequency subbands) to multiple users over time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×