[AF] D.J., Aldous and J., Fill. Reversible Markov Chains and Random Walks on Graphs. See http://www.stat.berkeley.edu/∼aldous/RWG/book.html

[Ah] L.V., Ahlfors. Conformal Invariants: Topics in Geometric Function Theory.
New York, NY: McGraw-Hill Book Co. (1973).

[Ar] D.G., Aronson. Bounds on the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc.
73 (1967) 890–896.

[Ba1] M.T., Barlow
Which values of the volume growth and escape time exponent are possible for a graph?
Rev. Mat. Iberoamer.
20 (2004), 1–31.

[Ba2] M.T., Barlow. Some remarks on the elliptic Harnack inequality. Bull. London Math. Soc.
37 (2005), no. 2, 200–208.

[BB1] M.T., Barlow and R.F., Bass. Random walks on graphical Sierpinski carpets. In: Random Walks and Discrete Potential Theory, eds. M., Piccardello and W., Woess. Symposia Mathematica XXXIX. Cambridge: Cambridge University Press (1999).

[BB2] M.T., Barlow and R.F., Bass. Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc.
356 (2003), no. 4, 1501–1533.

[BC] M.T., Barlow and X., Chen. Gaussian bounds and parabolic Harnack inequality on locally irregular graphs. Math. Annalen
366 (2016), no. 3, 1677–1720.

[BCK] M.T., Barlow, T., Coulhon, and T., Kumagai. Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Comm. Pure. Appl. Math.
LVIII (2005), 1642–1677.

[BH] M.T., Barlow and B.M., Hambly. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Prob.
14 (2009), no. 1, 1–27.

[BK] M.T., Barlow and T., Kumagai. Random walk on the incipient infinite cluster on trees. Illinois J. Math.
50 (Doob volume) (2006), 33–65.

[BJKS] M.T., Barlow, A.A., Járai, T., Kumagai and G., Slade. Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys.
278 (2008), no. 2, 385–431.

[BM] M.T., Barlow and R., Masson. Spectral dimension and random walks on the two dimensional uniform spanning tree. Commun. Math. Phys.
305 (2011), no. 1, 23–57.

[BMu] M.T., Barlow and M., Murugan. Stability of elliptic Harnack inequality. In prep.

[BT] Zs., Bartha and A., Telcs. Quenched invariance principle for the random walk on the Penrose tiling. Markov Proc. Related Fields
20 (2014), no. 4, 751–767.

[Bas] R.F., Bass. On Aronsen's upper bounds for heat kernels. Bull. London Math. Soc.
34 (2002), 415–419.

[BPP] I., Benjamini, R., Pemantle, and Y., Peres. Unpredictable paths and percolation. Ann. Prob.
26 (1998), 1198–1211.

[BD] A., Beurling and J., Deny. Espaces de Dirichlet. I. Le cas élémentaire. Acta Math.
99 (1958), 203–224.

[BL] K., Burdzy and G.F., Lawler. Rigorous exponent inequalities for random walks. J. Phys. A
23 (1990), L23–L28.

[Bov] A., Bovier. Metastability: a potential theoretic approach. Proc. ICM Madrid 2006. Zurich: European Mathematical Society.

[CKS] E.A., Carlen, S., Kusuoka, and D.W., Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Suppl. no. 2 (1987), 245– 287.

[Ca] T.K., Carne. A transmutation formula for Markov chains. Bull. Sci. Math.
109 (1985), 399–405.

[CRR] A.K., Chandra, P., Raghavan, W.L., Ruzzo, R., Smolensky, and P., Tiwari. The electrical resistance of a graph captures its commute and cover times. In: Proc. 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, ed. D.S., Johnson. New York, NY: ACM (1989).

[Ch] X., Chen. Pointwise upper estimates for transition probability of continuous time random walks on graphs. In prep.

[Co1] T., Coulhon. Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal.
136 (1996), no. 1, 81–113.

[Co2] T., Coulhon. Heat kernel and isoperimetry on non-compact Riemannian manifolds. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), eds. P. Auscher, T. Coulhon, and A. Grigor'yan. Contemporary Mathematics vol. 338. Providence, RI: AMS (2003), pp. 65–99.

[CG] T., Coulhon and A., Grigor'yan. Random walks on graphs with regular volume growth. GAFA
8 (1998), 656–701.

[CGZ] T., Coulhon, A., Grigoryan, and F., Zucca. The discrete integral maximum principle and its applications. Tohoku Math. J. (2)
57 (2005), no. 4, 559–587.

[CS] T., Coulhon and A., Sikora. Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. (3)
96 (2008), no. 2, 507–544.

[Da] E.B., Davies. Large deviations for heat kernels on graphs. J. London Math. Soc.(2)
47 (1993), 65–72.

[D1] T., Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoamer.
15 (1999), 181–232.

[D2] T., Delmotte. Graphs between the elliptic and parabolic Harnack inequalities. Potential Anal.
16 (2002), no. 2, 151–168.

[De] Y., Derriennic. Lois ‘zero ou deux’ pour les processus de Markov. Ann. Inst. Henri Poincaré Sec. B
12 (1976), 111–129.

[DiS] P., Diaconis and D., Stroock. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Prob.
1 (1991), 36–61.

[DS] P., Doyle and J.L., Snell. Random Walks and Electrical Networks.
Washington D.C.: Mathematical Association of America (1984). Arxiv:.PR/0001057.

[Duf] R.J., Duffin. The extremal length of a network. J. Math. Anal. Appl.
5 (1962), 200–215.

[Dur] R., Durrett. Probability: Theory and Examples, 4th edn.
Cambridge: Cambridge University Press (2010).

[DK] B., Dyda and M., Kassmann. On weighted Poincaré inequalities. Ann. Acad. Sci. Fenn. Math.
38 (2013), 721–726.

[DM] E.B., Dynkin and M.B., Maljutov. Random walk on groups with a finite number of generators. (In Russian.)
Dokl. Akad. Nauk SSSR
137 (1961), 1042–1045.

[FS] E.B., Fabes and D.W., Stroock. A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Mech. Rat. Anal.
96 (1986), 327– 338.

[Fa] K., Falconer. Fractal Geometry.
Chichester: Wiley (1990).

[Fe] W., Feller. An Introduction to Probability Theory and its Applications. Vol. I, 3rd edn. New York, NY: Wiley (1968).

[Fo1] M., Folz. Gaussian upper bounds for heat kernels of continuous time simple random walks. Elec. J. Prob.
16 (2011), 1693–1722, paper 62.

[Fo2] M., Folz. Volume growth and stochastic completeness of graphs. Trans. Amer. Math. Soc.
366 (2014), 2089–2119.

[Fos] F.G., Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist.
24 (1953), 355–360.

[FOT] M., Fukushima, Y., Oshima, and M., Takeda, Dirichlet Forms and Symmetric Markov Processes. Berlin: de Gruyter (1994).

[Ga] R.J., Gardner. The Brunn-Minkowski inequality. Bull. AMS
39 (2002), 355– 405.

[Gg1] A.A., Grigor'yan. The heat equation on noncompact Riemannian manifolds. Math. USSR Sbornik
72 (1992), 47–77.

[Gg2] A.A., Grigor'yan. Heat kernel upper bounds on a complete non-compact manifold. Revista Math. Iberoamer.
10 (1994), 395–452.

[GT1] A., Grigor'yan and A., Telcs. Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J.
109 (2001), 452–510.

[GT2] A., Grigor'yan and A., Telcs. Harnack inequalities and sub-Gaussian estimates for random walks. Math. Annal.
324 (2002), no. 3, 521–556.

[GHM] A., Grigor'yan, X.-P., Huang, and J., Masamune. On stochastic completeness of jump processes. Math. Z.
271 (2012), no. 3, 1211–1239.

[Grom1] M., Gromov. Groups of polynomial growth and expanding maps. Publ. Math. IHES
53 (1981), 53–73.

[Grom2] M., Gromov. Hyperbolic groups. In: Essays in Group Theory, ed. S.M., Gersten. New York, NY: Springer (1987), pp. 75–263.

[HSC] W., Hebisch and L., Saloff-Coste. Gaussian estimates for Markov chains and random walks on groups. Ann. Prob.
21 (1993), 673–709.

[Je] D., Jerison. The weighted Poincaré inequality for vector fields satisfying Hörmander's condition. Duke Math. J.
53 (1986), 503–523.

[Kai] V.A., Kaimanovich. Measure-theoretic boundaries of 0-2 laws and entropy. In: Harmonic Analysis and Discrete Potential Theory (Frascati, 1991). New York, NY: Plenum (1992), pp. 145–180.

[Kan1] M., Kanai. Rough isometries and combinatorial approximations of geometries of non-compact riemannian manifolds. J. Math. Soc. Japan
37 (1985), 391–413.

[Kan2] M., Kanai. Analytic inequalities, and rough isometries between non-compact reimannian manifolds. In: Curvature and Topology of Riemannian Manifolds. Proc. 17th Intl. Taniguchi Symp., Katata, Japan, eds. K., Shiohama, T., Sakai, and T., Sunada. Lecture Notes in Mathematics 1201. New York, NY: Springer (1986), pp. 122–137.

[KSK] J.G., Kemeny, J.L., Snell, and A.W., Knapp. Denumerable Markov Chains.
New York, NY: Springer (1976).

[Ki] J., Kigami. Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal.
128 (1995), no. 1, 48–86.

[Kir1] G., Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchungen der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. Chem.
72 (1847), 497–508.

[Kir2] G., Kirchhoff. On the solution of the equations obtained from the investigation of the linear distribution of galvanic currents. (Translated by J.B. O'Toole.) IRE Trans. Circuit Theory
5 (1958), 4–7.

[KN] G., Kozma and A., Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math.
178 (2009), no. 3, 635–654.

[Kum] T., Kumagai. Random Walks on Disordered Media and their Scaling Limits. École d'Été de Probabilités de Saint-Flour XL – 2010. Lecture Notes in Mathematics 2101. Chan: Springer International (2014).

[LL] G.F., Lawler and V., Limic. Random Walk: A Modern Introduction.
Cambridge: Cambridge University Press (2010).

[LP] R., Lyons and Y., Peres. Probability on Trees and Networks.
Cambridge: Cambridge University Press, 2016.

[Ly1] T., Lyons. A simple criterion for transience of a reversible Markov chain. Ann. Prob.
11 (1983), 393–402.

[Ly2] T., Lyons. Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Diff. Geom.
26 (1987), 33–66.

[Mer] J.-F., Mertens, E., Samuel-Cahn, and S., Zamir. Necessary and sufficient conditions for recurrence and transience of Markov chains in terms of inequalities. J. Appl. Prob.
15 (1978), 848–851.

[Mo1] J., Moser. On Harnack's inequality for elliptic differential equations. Commun. Pure Appl. Math.
14 (1961), 577–591.

[Mo2] J., Moser. On Harnack's inequality for parabolic differential equations. Commun. Pure Appl. Math.
17 (1964), 101–134.

[Mo3] J., Moser. On a pointwise estimate for parabolic differential equations. Commun. Pure Appl. Math.
24 (1971), 727–740.

[N] J., Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math.
80 (1958), 931–954.

[Nor] J., Norris. Markov Chains.
Cambridge: Cambridge University Press (1998).

[NW] C., St
J.A., Nash-Williams. Random walks and electric currents in networks. Proc. Camb. Phil. Soc.
55 (1959), 181–194.

[Os] H., Osada. Isoperimetric dimension and estimates of heat kernels of pre- Sierpinski carpets. Prob. Theor Related Fields
86 (1990), 469–490.

[Pol] G., Polya. Über eine Ausgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Math. Ann.
84 (1921), 149–160.

[Rev] D., Revelle. Heat kernel asymptotics on the lamplighter group. Elec. Commun. Prob.
8 (2003), 142–154.

[RW] L.C.G., Rogers and D.W., Williams. Diffusions, Markov Processes, and Martingales. Vol. 1. Foundations. 2nd edn. Chichester: Wiley (1994).

[Ro] O.S., Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal.
64 (1985), 296–313.

[SC1] L., Saloff-Coste. A note on Poincaré, Sobolev, and Harnack inequalities. Inter. Math. Res. Not
2 (1992), 27–38.

[SC2] L., Saloff-Coste. Aspects of Sobolev-type Inequalities. LMS Lecture Notes 289. Cambridge: Cambridge University Press (2002).

[SJ] A., Sinclair and M., Jerrum. Approximate counting, uniform generation and rapidly mixing Markov chains. Inform. Comput.
82 (1989), 93–133.

[So1] P.M., Soardi. Rough isometries and Dirichlet finite harmonic functions on graphs. Proc. AMS
119 (1993), 1239–1248.

[So2] P.M., Soardi. Potential Theory on Infinite Networks.
Berlin: Springer (1994).

[Spi] F., Spitzer. Principles of Random Walk.
New York, NY: Springer (1976).

[SZ] D.W., Stroock and W., Zheng. Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Prob. Stat.
33 (1997), 619–649.

[T1] A., Telcs. Random walks on graphs, electric networks and fractals. Prob. Theor. Related Fields
82 (1989), 435–451.

[T2] A., Telcs. Local sub-Gaussian estimates on graphs: the strongly recurrent case. Electron. J. Prob.
6 (2001), no. 22, 1–33.

[T3] A., Telcs. Diffusive limits on the Penrose tiling. J. Stat. Phys.
141 (2010), 661–668.

[Tet] P., Tetali.
Random walks and the effective resistance of networks. J. Theor. Prob.
4 (1991), 101–109.

[Tru] K., Truemper. On the delta-wye reduction for planar graphs. J. Graph Theory
13 (1989), 141–148.

[V1] N.Th., Varopoulos. Isoperimetric inequalities and Markov chains. J. Funct. Anal.
63 (1985), 215–239.

[V2] N.Th., Varopoulos. Long range estimates forMarkov chains. Bull. Sci. Math., 2e serie
109 (1985), 225–252225–252.

[W] D., Williams. Probability with Martingales.
Cambridge: Cambridge University Press (1991).

[Wo] W., Woess. Random Walks on Infinite Graphs and Groups.
Cambridge: Cambridge University Press (2000).

[Z] A.H., Zemanian. Infinite Electrical Metworks.
Cambridge: Cambridge University Press (1991).

[Zie] W.P., Ziemer. Weakly Differentiable Functions.
New York, NY: Springer (1989).