Skip to main content Accessibility help
×
×
Home
Polynomials and the mod 2 Steenrod Algebra
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Polynomials and the mod 2 Steenrod Algebra
    • Online ISBN: 9781108304092
    • Book DOI: https://doi.org/10.1017/9781108304092
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

This is the first book to link the mod 2 Steenrod algebra, a classical object of study in algebraic topology, with modular representations of matrix groups over the field F of two elements. The link is provided through a detailed study of Peterson's `hit problem' concerning the action of the Steenrod algebra on polynomials, which remains unsolved except in special cases. The topics range from decompositions of integers as sums of 'powers of 2 minus 1', to Hopf algebras and the Steinberg representation of GL(n, F). Volume 1 develops the structure of the Steenrod algebra from an algebraic viewpoint and can be used as a graduate-level textbook. Volume 2 broadens the discussion to include modular representations of matrix groups.

Reviews

'In these volumes, the authors draw upon the work of many researchers in addition to their own work, in places presenting new proofs or improvements of results. Moreover, the material in Volume 2 using the cyclic splitting of P(n) is based in part upon the unpublished Ph.D. thesis of Helen Weaver … Much of the material covered has not hitherto appeared in book form, and these volumes should serve as a useful reference. … readers will find different aspects appealing.'

Geoffrey M. L. Powell Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] J. F., Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180–214.
[2] J. F., Adams, J., Gunawardena and H., Miller, The Segal conjecture for elementary abelian 2-groups, Topology 24 (1985), 435–460.
[3] J. F., Adams and H. R., Margolis, Sub-Hopf algebras of the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 76 (1974), 45–52.
[4] J., Adem, The iteration of Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720–726.
[5] J., Adem, The relations on Steenrod powers of cohomology classes, in Algebraic Geometry and Topology, a symposium in honour of S. Lefschetz, 191–238, Princeton Univ. Press, Princeton, NJ, 1957.
[6] J. L., Alperin and Rowen B., Bell, Groups and Representations, Graduate Texts in Mathematics 162, Springer-Verlag, New York, 1995.
[7] M. A., Alghamdi, M. C., Crabb and J. R., Hubbuck, Representations of the homology of BV and the Steenrod algebra I, Adams Memorial Symposium on Algebraic Topology vol. 2, London Math. Soc. Lecture Note Ser. 176, Cambridge Univ. Press 1992, 217–234.
[8] D. J., Anick and F. P., Peterson, A 2-annihilated elements in H (R P 2), Proc. Amer. Math. Soc. 117 (1993), 243–250.
[9] D., Arnon, Monomial bases in the Steenrod algebra, J. Pure App. Algebra 96 (1994), 215–223.
[10] D., Arnon, Generalized Dickson invariants, Israel J. Maths 118 (2000), 183–205.
[11] M. F., Atiyah and F., Hirzebruch, Cohomologie-Operationen und charakteristische Klassen, Math. Z. 77 (1961), 149–187.
[12] Shaun V., Ault, Relations among the kernels and images of Steenrod squares acting on right A -modules, J. Pure. Appl. Algebra 216, (2012), no. 6, 1428–1437.
[13] Shaun, Ault, Bott periodicity in the hit problem, Math. Proc. Camb. Phil. Soc. 156 (2014), no. 3, 545–554.
[14] Shaun V., Ault and William, Singer, On the homology of elementary Abelian groups as modules over the Steenrod algebra, J. Pure App. Algebra 215 (2011), 2847–2852.
[15] M. G., Barratt and H., Miller, On the anti-automorphism of the Steenrod algebra, Contemp. Math. 12 (1981), 47–52.
[16] David R., Bausum, An expression for χ(Sqm), Preprint, Minnesota University (1975).
[17] D. J., Benson, Representations and cohomology II: Cohomology of groups and modules, Cambridge Studies in Advanced Mathematics 31, Cambridge University Press (1991).
[18] D. J., Benson and V., Franjou, Séries de compositions de modules instables et injectivité de la cohomologie du groupe Z/2, Math. Zeit 208 (1991), 389–399.
[19] P. C. P., Bhatt, An interesting way to partition a number, Information Processing Letters 71 (1999), 141–148.
[20] Anders, Björner and Francesco, Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics 231, Springer-Verlag, 2005.
[21] J. M., Boardman, Modular representations on the homology of powers of real projective spaces, Algebraic Topology, Oaxtepec 1991, Contemp. Math. 146 (1993), 49–70.
[22] Kenneth S., Brown, Buildings, Springer-Verlag, New York, 1989.
[23] Robert R., Bruner, Lê M, , and Nguyen H. V., Hung, On the algebraic transfer, Trans. Amer. Math. Soc. 357 (2005), 473–487.
[24] S. R., Bullett and I. G., Macdonald, On the Adem relations, Topology 21 (1982), 329–332.
[25] H. E.A., Campbell and P. S., Selick, Polynomial algebras over the Steenrod algebra, Comment. Math. Helv. 65 (1990), 171–180.
[26] David P., Carlisle, The modular representation theory of GL(n,p) and applications to topology, Ph.D. dissertation, University of Manchester, 1985.
[27] D., Carlisle, P., Eccles, S., Hilditch, N., Ray, L., Schwartz, G., Walker and R., Wood, Modular representations of GL(n,p), splitting (C P ∞ × … × C P ∞), and the β-family as framed hypersurfaces, Math. Zeit. 189 (1985), 239–261.
[28] D. P., Carlisle and N. J., Kuhn, Subalgebras of the Steenrod algebra and the action of matrices on truncated polynomial algebras, Journal of Algebra 121 (1989), 370–387.
[29] D. P., Carlisle and N. J., Kuhn, Smash products of summands of B( Z/p)n +, Contemp. Math. 96 (1989), 87–102.
[30] David P., Carlisle and Grant, Walker, Poincaré series for the occurrence of certain modular representations of GL(n,p) in the symmetric algebra, Proc. Roy. Soc. Edinburgh 113A (1989), 27–41.
[31] D. P., Carlisle and R. M. W., Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, Adams Memorial Symposium on Algebraic Topology, Vol. 2, London Math. Soc. Lecture Note Ser. 176, Cambridge University Press, (1992), 203–216.
[32] D. P., Carlisle, G., Walker and R. M. W., Wood, The intersection of the admissible basis and the Milnor basis of the Steenrod algebra, J. Pure App. Algebra 128 (1998), 1–10.
[33] Séminaire Henri, Cartan, 2 Espaces fibrés et homotopie (1949–50), 7 Algèbre d'Eilenberg-MacLane et homotopie (1954–55), 11 Invariant de Hopf et opérations cohomologiques secondaires (1958–59), available online at http://www. numdam.org
[34] H., Cartan, Une théorie axiomatique des carrés de Steenrod, C. R. Acad. Sci. Paris 230 (1950), 425–427.
[35] H., Cartan, Sur l'itération des opérations de Steenrod, Comment. Math. Helv. 29 (1955), 40–58.
[36] R. W., Carter, Representation theory of the 0-Hecke algebra, J. of Algebra 104 (1986), 89–103.
[37] R. W., Carter and G., Lusztig, Modular representations of finite groups of Lie type, Proc. London Math. Soc. (3) 32 (1976), 347–384.
[38] Chen, Shengmin and Shen, Xinyao, On the action of Steenrod powers on polynomial algebras, Proceedings of the Barcelona Conference on Algebraic Topology, Lecture Notes in Mathematics 1509, Springer-Verlag (1991), 326–330.
[39] D. E., Cohen, On the Adem relations, Math. Proc. Camb. Phil. Soc. 57 (1961), 265–267.
[40] M. C., Crabb, M. D., Crossley and J. R., Hubbuck, K -theory and the anti-automorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 124 (1996), 2275–2281.
[41] M. C., Crabb and J. R., Hubbuck, Representations of the homology of BV and the Steenrod algebra II, Algebraic Topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994) 143–154, Progr. Math. 136, Birkhaüser, Basel, 1996.
[42] M. D., Crossley and J. R., Hubbuck, Not the Adem relations, Bol. Soc. Mat. Mexicana (2) 37 (1992), No. 1–2, 99–107.
[43] M. D., Crossley, A(p)-annihilated elements of H(C P ∞ × C P ∞), Math. Proc. Cambridge Philos. Soc. 120 (1996), 441–453.
[44] M. D., Crossley, H V is of bounded type over A(p), Group Representations: Cohomology, group actions, and topology (Seattle 1996), Proc. Sympos. Pure Math. 63, Amer. Math. Soc. (1998), 183–190.
[45] M. D., Crossley, A(p) generators for H V and Singer's homological transfer, Math. Zeit. 230 (1999), No. 3, 401–411.
[46] M. D., Crossley, Monomial bases for H(C P ∞ ×C P ∞) over A(p), Trans. Amer. Math. Soc. 351 (1999), No. 1, 171–192.
[47] M. D., Crossley and Sarah, Whitehouse, On conjugation invariants in the dual Steenrod algebra, Proc. Amer. Math. Soc. 128 (2000), 2809–2818.
[48] Charles W., Curtis and Irving, Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
[49] D. M., Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235–236.
[50] D. M., Davis, Some quotients of the Steenrod algebra, Proc. Amer. Math. Soc. 83 (1981), 616–618.
[51] J., Dieudonné, A history of algebraic and differential topology 1900–1960, Birkhäuser, Basel, 1989.
[52] A., Dold, Ü ber die Steenrodschen Kohomologieoperationen, Annals of Math. 73 (1961), 258–294.
[53] Stephen, Donkin, On tilting modules for algebraic groups, Math. Zeitschrift 212 (1993), 39–60.
[54] Stephen, Doty, Submodules of symmetric powers of the natural module for GLn, Invariant Theory (Denton, TX 1986) 185–191, Contemp. Math. 88, Amer. Math. Soc., Providence, RI, 1989.
[55] Stephen, Doty and Grant, Walker, The composition factors of Fp [x1, x2, x3] as a GL(3,Fp,-module, J. of Algebra 147 (1992), 411–441.
[56] Stephen, Doty and Grant, Walker, Modular symmetric functions and irreducible modular representations of general linear groups, J. Pure App. Algebra 82 (1992), 1–26.
[57] Stephen, Doty and Grant, Walker, Truncated symmetric powers and modular representations of GLn, Math. Proc. Cambridge Philos. Soc. 119 (1996), 231–242.
[58] Jeanne, Duflot, Lots of Hopf algebras, J. Algebra 204 (1998), No. 1, 69–94.
[59] V., Franjou and L., Schwartz, Reduced unstable A -modules and the modular representation theory of the symmetric groups, Ann. Scient. Ec. Norm. Sup. 23 (1990), 593–624.
[60] W., Fulton, Young, Tableaux, London Math. Soc. Stud. Texts 35, Cambridge Univ. Press, 1997.
[61] A. M., Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), 161–166.
[62] L., Geissinger, Hopf algebras of symmetric functions and class functions, Springer Lecture Notes in Mathematics 579 (1977), 168–181.
[63] V., Giambalvo, Nguyen H. V., Hung and F. P., Peterson, H(R P ∞ ×·· ·×R P ∞) as a module over the Steenrod algebra, Hilton Symposium 1993, Montreal, CRM Proc. Lecture Notes 6, Amer. Math. Soc. Providence RI (1994), 133–140.
[64] V., Giambalvo and H. R., Miller, More on the anti-automorphism of the Steenrod algebra, Algebr. Geom. Topol. 11 (2011), No. 5, 2579–2585.
[65] V., Giambalvo and F. P., Peterson, On the height of Sq2n, Contemp. Math. 181 (1995), 183–186.
[66] V., Giambalvo and F. P., Peterson, The annihilator ideal of the action of the Steenrod algebra on H(R P ∞), Topology Appl. 65 (1995), 105–122.
[67] V., Giambalvo and F. P., Peterson, A -generators for ideals in the Dickson algebra, J. Pure Appl. Algebra 158 (2001), 161–182.
[68] D. J., Glover, A study of certain modular representations, J. Algebra 51 (1978), No. 2, 425–475.
[69] M. Y., Goh, P., Hitczenko and Ali, Shokoufandeh, s-partitions, Information Processing Letters 82 (2002), 327–329.
[70] Brayton I., Gray, Homotopy Theory, Academic Press, New York, 1975.
[71] Lê Minh, , Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Proceedings of the school and conference on algebraic topology, Hanoi 2004, Geom. Topol. Publ. Coventry, 11 (2007), 81–105.
[72] Nguyen Dang Ho, Hai, Generators for the mod 2 cohomology of the Steinberg summand of Thom spectra over B( Z/2)n, J. Algebra 381 (2013), 164–175.
[73] G. H., Hardy and E. M., Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
[74] J. C., Harris and N. J., Kuhn, Stable decomposition of classifying spaces of finite abelian p-groups, Math. Proc. Cambridge Philos. Soc. 103 (1988), 427–449.
[75] J. C., Harris, T. J., Hunter and R. J., Shank, Steenrod algebra module maps from H(B(Z/p)n to H(B(Z/p)s, Proc. Amer. Math. Soc. 112 (1991), 245–257.
[76] T. J., Hewett, Modular invariant theory of parabolic subgroups of GLn(Fq) and the associated Steenrod modules, Duke Math. J. 82 (1996), 91–102.
[77] Florent, Hivert and Nicolas M., Thiéry, The Hecke group algebra of a Coxeter group and its representation theory, J. Algebra 321, No. 8 (2009), 2230–2258.
[78] Florent, Hivert and Nicolas M., Thiéry, Deformation of symmetric functions and the rational Steenrod algebra, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes 35, Amer. Math. Soc, Providence, RI, 2004, 91–125.
[79] J. E., Humphreys, Modular Representations of Finite Groups of Lie Type, London Math. Soc. Lecture Note Ser. 326, Cambridge Univ. Press, 2005.
[80] Nguyen H. V., Hung, The action of Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc. 113 (1991), 1097–1104.
[81] Nguyen H. V., Hung, The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math. 23 (1995), 39–56.
[82] Nguyen H. V., Hung, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), 3893–3910: Erratum, ibid. 355 (2003), 3841–3842.
[83] Nguyen H. V., Hung, The weak conjecture on spherical classes, Math. Z. 231 (1999), 727–743.
[84] Nguyen H. V., Hung, Spherical classes and the lambda algebra, Trans. Amer. Math. Soc. 353 (2001), 4447–4460.
[85] Nguyen H. V., Hung, On triviality of Dickson invariants in the homology of the Steenrod algebra, Math. Proc. Camb. Phil. Soc. 134 (2003), 103–113.
[86] Nguyen H. V., Hung, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005), 4065–4089.
[87] Nguyen H. V., Hung, On A2-generators for the cohomology of the symmetric and the alternating groups, Math Proc. Cambridge Philos. Soc. 139 (2005), 457–467.
[88] Nguyen H. V., Hung and Tran Dinh, Luong, The smallest subgroup whose invariants are hit by the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 142 (2007), 63–71.
[89] Nguyen H. V., Hung and Pham Anh, Minh, The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math. 23 (1995), 39–56.
[90] Nguyen H. V., Hung and Tran Ngoc, Nam, The hit problem for modular invariants of linear groups, J. Algebra 246 (2001), 367–384.
[91] Nguyen H. V., Hung and Tran Ngoc, Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), 5029–5040.
[92] Nguyen H. V., Hung and F. P., Peterson, A2-generators for the Dickson algebra, Trans. Amer. Math. Soc. 347 (1995), 4687–4728.
[93] Nguyen H. V., Hung and F. P., Peterson, Spherical classes and the Dickson algebra, Math. Proc. Cambridge Philos. Soc. 124 (1998), 253–264.
[94] Nguyen H. V., Hung and Vo T. N., Quynh, The image of Singer's fourth transfer, C. R. Acad. Sci. Paris, Ser I 347 (2009), 1415–1418.
[95] B., Huppert and N., Blackburn, Finite Groups II, Chapter VII, Springer-Verlag, Berlin, Heidelberg, 1982.
[96] Masateru, Inoue, A2-generators of the cohomology of the Steinberg summand M(n), Contemp. Math. 293 (2002), 125–139.
[97] Masateru, Inoue, Generators of the cohomology of M(n) as a module over the odd primary Steenrod algebra, J. Lond. Math. Soc. 75, No. 2 (2007), 317–329.
[98] G. D., James and A., Kerber, The representation theory of the symmetric group, Encyclopaedia of Mathematics, vol. 16, Addison-Wesley, Reading, Mass., 1981.
[99] A. S., Janfada, The hit problem for symmetric polynomials over the Steenrod algebra, Ph.D. thesis, University of Manchester, 2000.
[100] A. S., Janfada, A criterion for a monomial in P(3) to be hit, Math. Proc. Cambridge Philos. Soc. 145 (2008), 587–599.
[101] A. S., Janfada, A note on the unstability conditions of the Steenrod squares on the polynomial algebra, J. Korean Math. Soc 46 (2009), No. 5, 907–918.
[102] A. S., Janfada, On a conjecture on the symmetric hit problem, Rend. Circ. Mat. Palermo, 60, 2011, 403–408.
[103] A. S., Janfada, Criteria for a symmetrized monomial in B( 3) to be non-hit, Commun. Korean Math. Soc. 29 (2014), No. 3, 463–478.
[104] A. S., Janfada and R. M. W, Wood., The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), 295–303.
[105] A. S., Janfada and R. M. W, Wood., Generating H(BO(3),F2) as a module over the Steenrod algebra, Math. Proc. Camb. Phil. Soc. 134 (2003), 239–258.
[106] M., Kameko, Products of projective spaces as Steenrod modules, Ph.D. thesis, Johns Hopkins Univ., 1990.
[107] M., Kameko, Generators of the cohomology of BV 3, J. Math. Kyoto Univ. 38 (1998), 587–593.
[108] M., Kameko, Generators of the cohomology of BV 4, preprint, Toyama Univ., 2003.
[109] M., Kaneda, M., Shimada, M., Tezuka and N., Yagita, Representations of the Steenrod algebra, J. of Algebra 155 (1993), 435–454.
[110] Ismet, Karaca, On the action of Steenrod operations on polynomial algebras, Turkish J. Math. 22 (1998), No. 2, 163–170.
[111] Ismet, Karaca, Nilpotence relations in the mod p Steenrod algebra, J. Pure App. Algebra 171 (2002), No. 2–3, 257–264.
[112] C., Kassel, Quantum Groups, Graduate Texts in Mathematics 155, Springer- Verlag, 1995.
[113] N., Kechagias, The Steenrod algebra action on generators of subgroups of GL(n,Z/pZ), Proc. Amer. Math. Soc. 118 (1993), 943–952.
[114] D., Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363–365.
[115] L., Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand. 16 (1965), 97–115.
[116] Nicholas J., Kuhn, The modular Hecke algebra and Steinberg representation of finite Chevalley groups, J. Algebra 91 (1984), 125–141.
[117] N. J., Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra: I, Amer. J.Math. 116 (1994), 327–360; II, K -Theory 8 (1994), 395–428; III, K -theory 9 (1995), 273–303.
[118] N. J., Kuhn and S. A., Mitchell, The multiplicity of the Steinberg representation of GLnFq in the symmetric algebra, Proc. Amer. Math. Soc. 96 (1986), 1–6.
[119] J., Lannes and L., Schwartz, Sur la structure des A -modules instables injectifs, Topology 28 (1989), 153–169.
[120] J., Lannes and S., Zarati, Sur les U -injectifs, Ann. Scient. Ec. Norm. Sup. 19 (1986), 593–603.
[121] M., Latapy, Partitions of an integer into powers, in Discrete Mathematics and Theoretical Computer Science Proceedings, Paris, 2001, 215–228.
[122] Cristian, Lenart, The combinatorics of Steenrod operations on the cohomology of Grassmannians, Adv. Math. 136 (1998), 251–283.
[123] Li, Zaiqing, Product formulas for Steenrod operations, Proc. Edinburgh Math. Soc. 38 (1995), 207–232.
[124] Arunas, Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. No. 42 (1962).
[125] Arunas, Liulevicius, On characteristic classes, Lectures at the Nordic Summer School in Mathematics, Aarhus University, 1968.
[126] L., Lomonaco, A basis of admissible monomials for the universal Steenrod algebra, Ricer. Mat. 40 (1991), 137–147.
[127] L., Lomonaco, The iterated total squaring operation, Proc. Amer. Math. Soc. 115 (1992), 1149–1155.
[128] I. G., Macdonald, Symmetric Functions and Hall Polynomials (second edition), Oxford mathematical monographs, Clarendon Press, Oxford, 1995.
[129] Harvey, Margolis, Spectra and the Steenrod algebra, North Holland Math Library, vol. 29, Elsevier, Amsterdam (1983).
[130] J. P., May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications, Lecture Notes in Mathematics 168, Springer-Verlag (1970), 153–231.
[131] Dagmar M., Meyer, Stripping and conjugation in the Steenrod algebra and its dual, Homology, Homotopy and Applications 2 (2000), 1–16.
[132] Dagmar M., Meyer, Hit polynomials and excess in the mod p Steenrod algebra, Proc. Edinburgh Math. Soc. (2) 44 (2001), 323–350.
[133] Dagmar M., Meyer and Judith H., Silverman, Corrigendum to ‘Hit polynomials and conjugation in the dual Steenrod algebra’, Math. Proc. Cambridge Philos. Soc. 129 (2000), 277–289.
[134] John, Milnor, The Steenrod algebra and its dual, Annals of Math. 67 (1958), 150–171.
[135] J., Milnor and J. C., Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965), 211–264.
[136] J. W., Milnor and J. D., Stasheff, Characteristic Classes, Princeton University Press, 1974.
[137] Pham Anh, Minh and Ton That, Tri, The first occurrence for the irreducible modules of the general linear groups in the polynomial algebra, Proc. Amer. Math. Soc. 128 (2000), 401–405.
[138] Pham Anh, Minh and Grant, Walker, Linking first occurrence polynomials over Fp by Steenrod operations, Algebr. Geom. Topol. 2 (2002), 563–590.
[139] S. A., Mitchell, Finite complexes with A(n)-free cohomology, Topology 24 (1985), 227–248.
[140] S. A., Mitchell, Splitting B( Z/p)n and BTn via modular representation theory, Math. Zeit. 189 (1985), 285–298.
[141] S. A., Mitchell and S. B., Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285–298.
[142] K., Mizuno and Y., Saito, Note on the relations on Steenrod squares, Proc. Jap. Acad. 35 (1959), 557–564.
[143] K. G., Monks, Nilpotence in the Steenrod algebra, Bol. Soc.Mat.Mex. 37 (1992), 401–416.
[144] K. G., Monks, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. 122 (1994), 625–634.
[145] K. G., Monks, The nilpotence height of Pst, Proc. Amer. Math. Soc. 124 (1996), 1296–1303.
[146] K. G., Monks, Change of basis, monomial relations, and the Pst bases for the Steenrod algebra, J. Pure App. Algebra 125 (1998), 235–260.
[147] R. E., Mosher and M. C., Tangora, Cohomology operations and applications in homotopy theory, Harper and Row, New York, 1968.
[148] M. F., Mothebe, Generators of the polynomial algebra F2 [x1, …, xn] as a module over the Steenrod algebra, Communications in Algebra 30 (2002), 2213–2228.
[149] M. F., Mothebe, Dimensions of subspaces of the polynomial algebra F2 [x1, …, xn] generated by spikes, Far East J. Math. Sci. 28 (2008), 417–430.
[150] M. F., Mothebe, Admissible monomials and generating sets for the polynomial algebra as a module over the Steenrod algebra, Afr. Diaspora J.Math. 16 (2013), 18–27.
[151] M. F., Mothebe, Dimension result for the polynomial algebra F2 [x1, …, xn] as a module over the Steenrod algebra, Int. J. Math. Math. Sci. (2013) Art. ID 150704, 6pp., MR3144989.
[152] Huynh, Mui, Dickson invariants and Milnor basis of the Steenrod algebra, Topology, theory and application, Coll. Math. Soc. Janos Bolyai 41, North Holland (1985), 345–355.
[153] Huynh, Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sec. 1A 22 (1975), 319–369.
[154] Tran Ngoc, Nam, A2-générateurs génériques pour l'algèbre polynomiale, Adv. Math. 186 (2004), 334–362.
[155] Tran Ngoc, Nam, Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble) 58 (2008), 1785–1837.
[156] P. N., Norton, 0-Hecke, algebras, J. Austral. Math. Soc. (Ser. A) 27 (1979), 337–357.
[157] John H., Palmieri and James J., Zhang, Commutators in the Steenrod algebra, New York J. Math. 19 (2013), 23–37.
[158] S., Papastavridis, A formula for the obstruction to transversality, Topology 11 (1972), 415–416.
[159] David J., Pengelley, Franklin P., Peterson and Frank, Williams, A global structure theorem for the mod 2 Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras, Math. Proc. Cambridge Philos. Soc. 129 (2000), 263–275.
[160] D. J., Pengelley and F., Williams, Sheared algebra maps and operation bialgebras for mod 2 homology and cohomology, Trans. Amer. Math. Soc. 352 (2000), No. 4, 1453–1492.
[161] D. J., Pengelley and F., Williams, Global Structure of the mod 2 symmetric algebra H(BO,F2) over the Steenrod algebra, Algebr. Geom. Topol. 3 (2003), 1119–1138.
[162] D. J., Pengelley and F., Williams, The global structure of odd-primary Dickson algebras as algebras over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 136 (2004), No. 1, 67–73.
[163] D. J., Pengelley and F., Williams, Beyond the hit problem: minimal presentations of odd-primary Steenrod modules, with application to C P ∞ and BU, Homology, Homotopy and Applications, 9, No. 2 (2007), 363–395.
[164] D. J., Pengelley and F., Williams, A new action of the Kudo-Araki-May algebra on the dual of the symmetric algebras, with applications to the hit problem, Algebraic and Geometric Topology 11 (2011), 1767–1780.
[165] D. J., Pengelley and F., Williams, The hit problem for H(BU(2);Fp), Algebraic and Geometric Topology 13 (2013), 2061–2085.
[166] D. J., Pengelley and F., Williams, Sparseness for the symmetric hit problem at all primes, Math. Proc. Cambridge Philos. Soc. 158 (2015), No. 2, 269–274.
[167] F. P., Peterson, Some formulas in the Steenrod algebra, Proc. Amer. Math. Soc. 45 (1974), 291–294.
[168] F. P., Peterson, Generators of H(RP∞ ∧ RP ∞) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. (1987), 833-55-89.
[169] F. P., Peterson, A -generators for certain polynomial algebras, Math. Proc. Camb. Phil. Soc. 105 (1989), 311–312.
[170] Dang Vo, Phuc and Nguyen, Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Acad. Sci. Paris, Ser. 1 353 (2015), 1035–1040.
[171] Dang Vo, Phuc and Nguyen, Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017), 149–162.
[172] Powell, Geoffrey M. L., Embedding the flag representation in divided powers, J. of Homotopy and Related Structures 4(1) (2009), 317–330.
[173] J., Repka and P., Selick, On the subalgebra of H((R P ∞ )n;F2) annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998), 273–288.
[174] J., Riordan, Combinatorial Identities, John Wiley & Sons, New York, 1968.
[175] B. E., Sagan, The Symmetric Group, Graduate Texts in Mathematics 203, Springer (2001).
[176] Robert, Sandling, The lattice of column 2-regular partitions in the Steenrod algebra, MIMS EPrint 2011.101, University of Manchester 2011, http:// www.manchester.ac.uk/mims/eprints
[177] L., Schwartz, Unstable modules over the Steenrod algebra and Sullivan's fixed point set conjecture, Chicago Lectures in Mathematics, University of Chicago Press, 1994.
[178] J., Segal, Notes on invariant rings of divided powers, CRM Proceedings and Lecture Notes 35, Invariant Theory in All Characteristics, ed. H. E. A., Campbell and D. L., Wehlau, Amer. Math. Soc. 2004, 229–239.
[179] J.-P., Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232.
[180] Judith H., Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), 657–661.
[181] Judith H., Silverman, Multiplication and combinatorics in the Steenrod algebra, J. Pure Appl. Algebra 111 (1996), 303–323.
[182] Judith H., Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 123 (1995), 627–637.
[183] Judith H., Silverman, Stripping and conjugation in the Steenrod algebra, J. Pure Appl. Algebra 121 (1997), 95–106.
[184] Judith H., Silverman, Hit polynomials and conjugation in the dual Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 123 (1998), 531–547.
[185] Judith H., Silverman and William M., Singer, On the action of Steenrod squares on polynomial algebras II, J. Pure App. Algebra 98 (1995), 95–103.
[186] William M., Singer, The transfer in homological algebra, Math. Z. 202 (1989), 493–523.
[187] William M., Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), 577–583.
[188] William M., Singer, Rings of symmetric functions as modules over the Steenrod algebra, Algebr. Geom. Topol. 8 (2008), 541–562.
[189] Larry, Smith and R. M., Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), 303–313.
[190] Larry, Smith, Polynomial Invariants of Finite Groups, A. K., Peters, Wellesley, Mass., 1995.
[191] Larry, Smith, An algebraic introduction to the Steenrod algebra, in: Proceedings of the School and Conference in Algebraic Topology, Hanoi, 2004, Geometry and Topology Monographs 11 (2007), 327–348.
[192] R. P., Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics 62, Cambridge University Press (1999).
[193] N. E., Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947), 290–320.
[194] N. E., Steenrod, Reduced powers of cohomology classes, Ann. of Math. 56 (1952), 47–67.
[195] N. E., Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 213–217.
[196] N. E., Steenrod and D. B. A, Epstein., Cohomology Operations, Annals of Math. Studies 50, Princeton University Press (1962).
[197] R., Steinberg, Prime power representations of finite general linear groups II, Can. J. Math. 9 (1957), 347–351.
[198] R., Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56.
[199] R., Steinberg, On Dickson's theorem on invariants, J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 34 (1987), No. 3, 699–707.
[200] P. D., Straffin, Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253–255.
[201] Nguyen, Sum, On the action of the Steenrod-Milnor operations on the modular invariants of linear groups, Japan J. Math. 18 (1992), 115–137.
[202] Nguyen, Sum, On the action of the Steenrod algebra on the modular invariants of special linear group, Acta Math. Vietnam 18 (1993), 203–213.
[203] Nguyen, Sum, Steenrod operations on the modular invariants, Kodai Math. J. 17 (1994), 585–595.
[204] Nguyen, Sum, The hit problem for the polynomial algebra of four variables, Quy Nhon University, Vietnam, Preprint 2007, 240pp. Available online at http://arxiv.org/abs/1412.1709.
[205] Nguyen, Sum, The negative answer to Kameko's conjecture on the hit problem, C. R. Acad. Sci. Paris, Ser I 348 (2010), 669–672.
[206] Nguyen, Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), 2365–2390.
[207] Nguyen, Sum, On the hit problem for the polynomial algebra, C. R. Acad. Sci. Paris, Ser I 351 (2013), 565–568.
[208] Nguyen, Sum, On the Peterson hit problem of five variables and its application to the fifth Singer transfer, East-West J. Math. 16 (2014), 47–62.
[209] Nguyen, Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432–489.
[210] René, Thom, Une théorie intrinsèque des puissances de Steenrod, Colloque de Topologie de Strasbourg, Publication of the Math. Inst. University of Strasbourg (1951).
[211] René, Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ec. Norm. Sup. 69 (1952), 109–182.
[212] René, Thom, Quelque propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86.
[213] Ton That, Tri, The irreducible modular representations of parabolic subgroups of general linear groups, Communications in Algebra 26 (1998), 41–47.
[214] Ton That, Tri, On a conjecture of Grant Walker for the first occurrence of irreducible modular representations of general linear groups, Comm. Algebra 27 (1999), No. 11, 5435–5438.
[215] Neset Deniz, Turgay, An alternative approach to the Adem relations in the mod p Steenrod algebra, Turkish J. Math. 38 (2014), No. 5, 924–934.
[216] G., Walker and R. M. W., Wood, The nilpotence height of Sq2n, Proc. Amer.Math. Soc. 124 (1996), 1291–1295.
[217] G., Walker and R. M. W., Wood., The nilpotence height of Ppn, Math. Proc. Cambridge Philos. Soc. 123 (1998), 85–93.
[218] G., Walker and R. M. W., Wood., Linking first occurrence polynomials over F2 by Steenrod operations, J. Algebra 246 (2001), 739–760.
[219] G., Walker and R. M. W., Wood., Young tableaux and the Steenrod algebra, Proceedings of the School and Conference in Algebraic Topology, Hanoi 2004, Geometry and Topology Monographs 11 (2007), 379–397.
[220] G., Walker and R. M. W., Wood., Weyl modules and the mod 2 Steenrod Algebra, J. Algebra 311 (2007), 840–858.
[221] G., Walker and R. M. W., Wood., Flag modules and the hit problem for the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 147 (2009), 143–171.
[222] C. T. C., Wall, Generators and relations for the Steenrod algebra, Annals of Math. 72 (1960), 429–444.
[223] William C., Waterhouse, Two generators for the general linear groups over finite fields, Linear and Multilinear Algebra 24, No. 4 (1989), 227–230.
[224] Helen, Weaver, Ph.D. thesis, University of Manchester, 2006.
[225] C., Wilkerson, A primer on the Dickson invariants, Proc. of the Northwestern Homotopy Theory Conference, Contemp. Math. 19 (1983), 421–434.
[226] W. J., Wong, Irreducible modular representations of finite Chevalley groups, J. Algebra 20 (1972), 355–367.
[227] R. M.W., Wood, Modular representations of GL(n,Fp) and homotopy theory, Algebraic Topology, Göttingen, 1984, Lecture Notes in Mathematics 1172, Springer-Verlag (1985), 188–203.
[228] R. M.W., Wood, Splitting (C P ∞ × … × C P ∞) and the action of Steenrod squares on the polynomial ring F2 [x1, …, xn], Algebraic Topology Barcelona 1986, Lecture Notes in Mathematics 1298, Springer-Verlag (1987), 237–255.
[229] R. M.W., Wood, Steenrod squares of Polynomials, Advances in homotopy theory, London Mathematical Society Lecture Notes 139, Cambridge University Press (1989), 173–177.
[230] R. M.W., Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), 307–309.
[231] R. M.W., Wood, A note on bases and relations in the Steenrod algebra, Bull. London Math. Soc. 27 (1995), 380–386.
[232] R. M.W., Wood, Differential operators and the Steenrod algebra, Proc. London Math. Soc. 75 (1997), 194–220.
[233] R. M.W., Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), 194–220.
[234] R. M.W., Wood, Hit problems and the Steenrod algebra, Proceedings of the Summer School ‘Interactions between Algebraic Topology and Invariant Theory’, Ioannina University, Greece (2000), 65–103.
[235] R. M.W., Wood, Invariants of linear groups as modules over the Steenrod algebra, Ingo 2003, Invariant Theory and its interactions with related fields, University of Göttingen (2003).
[236] R. M.W., Wood, The Peterson conjecture for algebras of invariants, Invariant Theory in all characteristics, CRM Proceedings and Lecture Notes 35, Amer. Math. Soc., Providence R.I. (2004), 275–280.
[237] Wu Wen, Tsün, Les i-carrés dans une variété grassmanniènne, C. R. Acad. Sci. Paris 230 (1950), 918–920.
[238] Wu Wen, Tsün, Sur les puissances de Steenrod, Colloque de Topologie de Strasbourg, Publication of the Math. Inst. University of Strasbourg (1952).
[239] Hadi, Zare, On the Bott periodicity, A -annihilated classes in H(QX), and the stable symmetric hit problem, submitted to Math. Proc. Cambridge Philos. Soc. 2015.25/10/2017

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed