Skip to main content Accessibility help
×
  • Cited by 92
Publisher:
Cambridge University Press
Online publication date:
December 2012
Print publication year:
2012
Online ISBN:
9781139023436

Book description

Emin provides experimental and theoretical graduate students and researchers with a distinctive introduction to the principles governing polaron science. The fundamental physics is emphasized and mathematical formalism is avoided. The book gives a clear guide to how different types of polaron form and the measurements used to identify them. Analyses of four diverse physical problems illustrate polaron effects producing dramatic physical phenomena. The first part of the book describes the principles governing polaron and bipolaron formation in different classes of materials. The second part emphasizes distinguishing electronic-transport and optical phenomena through which polarons manifest themselves. The book concludes by extending polaron concepts to address critical aspects of four multifaceted electronic and atomic problems: large bipolarons' superconductivity, electronic switching of small-polaron semiconductors, electronically stimulated atomic desorption and diffusion of light interstitial atoms.

Reviews

'I would recommend the book as a qualitative introduction to the physics of small polarons.'

Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Abrikosov, A. A., Gorkov, L. P. and Dzyaloshinski, I. E. (1963). Methods of Quantum Field Theory in Statistical Physics, Engelwood Clifts, Prentice-Hall, Sec. 26.1.
Adamowskii, J. (1989). Formation of Fröhlich bipolarons. Phys. Rev. B 39, 3649–3652.
Adler, D. (1971). Amorphous semiconductors. In: CRC Critical Reviews in Solid State Sciences, Vol. 2, Issue 3, New York, CRC Press, pp. 317–465.
Adler, D., Henisch, H. K. and Mott, N. (1978). The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50, 209–220.
Ambegaokar, V., Halperin, B. I. and Langer, J. S. (1971). Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612–2620.
Anderson, P. W. (1950). Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356.
Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505.
Anderson, P. W. (1963). Concepts in Solids, New York, Addison-Wesley, pp. 77–95.
Anderson, P. W. (1972). Effect of Franck–Condon displacements on the mobility edge and the energy gap of disordered materials. Nature Phys. Sci. 235, 163–165.
Anderson, P. W. (1975). Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953–955.
Anderson, P. W. and Abrahams, E. (1987). Superconductivity theories narrow down. Nature 327, 363.
Anderson, P. W. and Hasegawa, H. (1955). Considerations on double exchange. Phys. Rev. 100, 675–681.
Aselage, T. L., Emin, D., McCready, S. S. and Duncan, R. V. (1998). Large enhancement of boron carbides’ Seebeck coefficients through vibrational softening. Phys. Rev. Lett. 81, 2316–2319.
Aselage, T. L., Emin, D. and McCready, S. S. (2001). Conductivities and Seebeck coefficients of boron carbides: “Softening bipolaron” hopping. Phys. Rev. B 64, 054302.
Aselage, T. L., Emin, D., McCready, S. S., Venturini, E. L., Rodriguez, M. A., Voigt, J. A. and Headley, T. J. (2003). Metal–semiconductor and magnetic transitions in compensated polycrystalline La1–xCaxMnO3–δ (x = 0.20, 0.25). Phys. Rev. B. 68, 134448.
Austin, I. G. and Mott, N. F. (1969). Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102.
Azevedo, L. J., Venturini, E. L., Emin, D. and Wood, C. (1985). Magnetic susceptibility study of boron carbides. Phys. Rev. B. 32, 7970–7972.
Baily, S. A. and Emin, D. (2006a). Transport properties of amorphous telluride. Phys. Rev. B 73, 165211.
Baily, S. A., Emin, D. and Li, H. (2006b). Hall mobility of amorphous Ge2Sb2Te5. Solid State Comm. 139, 161–164.
Bardeen, J., Cooper, L. N. and Schrieffer, J. R. (1957a). Microscopic theory of superconductivity. Phys. Rev. 106, 162–164.
Bardeen, J, Cooper, L. N. and Schrieffer, J. R. (1957b). Theory of superconductivity. Phys. Rev. 108, 1175–1204.
Bartram, R. H. and Stoneham, A. M. (1975). On the luminescence and absence of luminescence of F-centers. Solid State Commun. 17, 1593–1598.
Basani, F., Geddo, M., Iadonisi, G., and Ninno, D. (1991). Variational calculations of bipolaron binding energies. Phys. Rev. B 43, 5296–5306.
Batt, R. H., Braun, C. L. and Hornig, J. F. (1968). Electric-field and temperature dependence of photoconductivity. J. Chem. Phys. 49, 1967–1968.
Bennett, C. H. (1975). Exact defect calculations in model substances. In: Diffusion in Solids: Recent Developments, eds. A. S. Nowick and J. J. Burton, New York, Academic Press, pp. 73–113.
Bennett, C. H. and Alder, B. J. (1968). Persistence of vacancy motion. Solid State Commun. 6, 785–789.
Bennett, C. H. and Alder, B. J. (1971). Persistence of vacancy motion in hard sphere crystals. J. Phys. Chem Solids. 32, 2111–2122.
Bergeron, E. G. and Emin, D. (1977). Phonon-assisted hopping due to interaction with both acoustical and optical phonons. Phys. Rev. B. 15, 3667–3681.
Bishop, S. G., Strom, U. and Taylor, P. C. (1977). Optically induced metastable paramagnetic states in amorphous semiconductors. Phys. Rev. B 15, 2278–2294.
Born, M. and Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln. Annalen der Physik 389, 457–484.
Bösch, M. A., Epworth, R. W. and Emin, D. (1980). Photoluminescence dynamics in chalcogenide glasses and crystals. J. Non-Crystalline Solids 40, 587–594.
Bösch, M. A. and Shah, J. (1979). Time-resolved photoluminescence spectroscopy in amorphous As2S3. Phys. Rev. Lett. 42, 118–121.
Bosman, A. J. and van Daal, H. J. (1970). Small-polaron versus band conduction in some transition-metal oxides. Adv. Phys. 19, 1–117.
Callen, H. B. (1960). Thermodynamics, New York, John Wiley, Chap. 17.
Chakraverty, B. H., Ranninger, J. and Feinberg, D. (1998). Experimental and theoretical constraints of bipolaronic superconductivity in high-Tc materials: An impossibility. Phys. Rev. Lett. 81, 433–436.
Chance, R. R. and Braun, C. L. (1976). Temperature dependence of intrinsic carrier generation in anthracene single crystals. J. Chem. Phys. 64, 3573–3581.
Chauvet, O., Emin, D., Forro, L., Zuppiroli, L. and Aselage, T. L. (1996). Spin susceptibility of boron carbides: Dissociation of singlet small-bipolarons. Phys. Rev. B 53, 14450–14457.
Clark, A. H. (1967). Electrical and optical properties of amorphous germanium. Phys. Rev. 154, 750–757.
Cohen, M. H., Economou, E. N. and Soukoulis, C. M. (1983). Polaron formation near a mobility edge. Phys. Rev. Lett. 51, 1202–1205.
Condon, E. (1926). A theory of intensity distribution in band systems. Phys. Rev. 28, 1182–1201.
Crevecoeur, C. and de Wit, H. J. (1970). Electrical conductivity of Li doped MnO. J. Phys. Chem. Solids 31, 783–791.
De Gennes, P. -G. (1960). Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154.
de Wit, H. J. (1968). Some numerical calculations on Holstein’s small-polaron theory. Philips Res. Rep. 23, 449–460.
Dexter, D. L., Klick, C. C. and Russell, G. A. (1955). Criterion for the occurrence of luminescence. Phys. Rev. 100, 603–605.
Emin, D. (1970). Correlated small-polaron hopping motion. Phys. Rev. Lett. 25, 1751–1755.
Emin, D. (1971a). Vibrational dispersion and small-polaron hopping: Enhanced diffusion. Phys. Rev. B 3, 1321–1337.
Emin, D. (1971b). Lattice relaxation and small-polaron hopping motion. Phys. Rev. B 4, 3639–3651.
Emin, D. (1971c). The Hall mobility of a small polaron in a square lattice. Ann. Phys. (N.Y.) 64, 336–395.
Emin, D. (1972). Energy spectrum of an electron in a periodic deformable lattice. Phys. Rev. Lett. 28, 604–607.
Emin, D. (1973a). On the existence of free and self-trapped carriers in insulators: An abrupt temperature-dependent conductivity transition. Adv. Phys. 22, 57–116.
Emin, D. (1973b). Aspects of the theory of small-polarons in disordered materials. In: Electronic and Structural Properties of Amorphous Semiconductor, eds. P. G. LeComber and J. Mort, London, Academic Press, pp. 261–328.
Emin, D. (1974). Phonon-assisted jump rate in noncrystalline solids. Phys. Rev. Lett. 33, 303–307.
Emin, D. (1975a). Phonon-assisted transition rates I: Optical-phonon-assisted hops. Adv. Phys. 24, 305–348.
Emin, D. (1975b). Thermoelectric power due to electronic hopping motion. Phys. Rev. Lett. 35, 882–885.
Emin, D. (1977a). The sign of the Hall effect in hopping conduction. Phil. Mag. 35, 1189–1198.
Emin, D. (1977b). Effect of temperature-dependent shifts on semiconductor transport properties. Solid State Comm. 22, 409–411.
Emin, D. (1980a). Electrical and optical properties of amorphous thin films. In: Amorphous Thin Films and Devices, ed. L. L. Kazmerski, New York, Academic Press, pp. 17–57.
Emin, D. (1980b). Interactions between small-polaronic particles in solids. In: The Physics of MOS Insulators, eds. G. Lucovsky, S. T. Pantelides, and F. L. Galeener, New York, Pergamon Press, pp. 39–43.
Emin, D. (1982). Small Polarons. Physics Today 35, 34–40.
Emin, D. (1984). Effect of temperature-dependent energy-level shifts on a semiconductor’s Peltier heat. Phys. Rev. B 30, 5766–5770.
Emin, D. (1985). Reply to ‘The effect of temperature-dependent energies on semiconductor thermopower formulae’. Phil Mag. B 51, L53–L56.
Emin, D. (1986). Self-trapping in quasi-one-dimensional solids. Phys. Rev. B 33, 3973–3975.
Emin, D. (1987). Today’s small polaron. In: Condensed Matter Physics, ed. R. L. Orbach, New York, Springer-Verlag, pp. 16–34.
Emin, D. (1990). Theory of electric and thermal transport in boron carbides. In: The Physics and Chemistry of Carbides, Nitrides and Borides, ed. R. Freer, London, Kluwer Academic, pp. 691–704.
Emin, D. (1991a). Semiclassical small-polaron hopping in a generalized molecular-crystal model. Phys. Rev. B 43, 11720–11724.
Emin, D. (1991b). Additional short-wavelength vibratory modes of a large (bi)polaron. Phys. Rev. B 43, 8610–8612.
Emin, D. (1992). Low-temperature ac conductivity of adiabatic small-polaronic hopping in disordered systems. Phys. Rev. B. 46, 9419–9427.
Emin, D. (1993). Optical properties of large and small polarons and bipolarons. Phys. Rev. B 48, 13691–13702.
Emin, D. (1994a). Phonon-mediated attraction between large bipolarons: Condensation to a liquid. Phys. Rev. Lett. 72, 1052–1055.
Emin, D. (1994b). Phonon-mediated attraction between large bipolarons: Condensation to a liquid. Phys. Rev. B. 49, 9157–9167.
Emin, D. (1995a). Effect of electronic correlation on the shape of a large bipolaron: Four-lobed planar large bipolaron in an ionic medium. Phys. Rev. B 52, 13874–13882.
Emin, D. (1995b). Formation, phase separation and superconductivity of large bipolarons. In: Polarons and Bipolarons in High-Tc Superconductors and Related Materials, eds. E. S. H. Salje, A. S. Alexandrov and W. Y. Liang, Cambridge, Cambridge University Press, pp. 80–109.
Emin, D. (1996). Pair breaking in semiclassical singlet small-bipolaron hopping. Phys. Rev. B 53, 1260–1268.
Emin, D. (1999). Enhanced Seebeck effect from carrier-induced vibrational softening. Phys. Rev. B 59, 6205–6210.
Emin, D. (2000a). Formation and hopping motion of molecular polarons. Phys. Rev. B 61, 14543–14553.
Emin, D. (2000b). Singlet-bipolaron formation among degenerate electronic orbitals: Softening bipolarons. Phys. Rev. B. 61, 6069–6085.
Emin, D. (2002). Seebeck effect. In: Wiley Encyclopedia of Electrical and Electronics Engineering Online, ed. J. G. Webster, New York, John Wiley, pp. 1–44.
Emin, D. (2006a). Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791–2798.
Emin, D. (2006b). Current-driven threshold switching of a small polaron semiconductor in a metastable conductor. Phys. Rev. B 74, 035206.
Emin, D. (2007). Laser cooling via excitation of localized electrons. Phys. Rev. B 76, 024301.
Emin, D. (2008). Generalized adiabatic polaron hopping: Meyer–Neldel compensation and Poole–Frenkel behavior. Phys. Rev. Lett. 100, 166602.
Emin, D. (2013). Theory of Meyer–Neldel compensation for adiabatic charge transfer. Monatsh. Chem. 144, 3–10.
Emin, D. and Aselage, T. L. (2005). A proposed boron-carbide-based solid-state neutron detector. J. Appl. Phys. 97, 013529.
Emin, D., Baskes, M. I. and Wilson, W. D. (1979). Small polaronic diffusion of light interstitials in bcc metals. Phys. Rev. Lett. 42, 791–794.
Emin, D. and Bussac, M. -N. (1994). Disorder-induced small-polaron formation. Phys. Rev. B 49, 14290–14300.
Emin, D. and Hart, C. F. (1985). Negative differential conductivity in shallow impurity hopping. Phys. Rev. B 32, 6503–6509.
Emin, D. and Hart, C. F. (1987a). Existence of Wannier–Stark localization. Phys. Rev. B. 36, 7353–7359.
Emin, D. and Hart, C. F. (1987b). Phonon-assisted hopping of an electron on a Wannier–Stark ladder in a strong electric field. Phys. Rev. B. 36, 2530–2546.
Emin, D., Hillery, M. S. and Liu, N. -L. H. (1986). Thermally induced abrupt collapse of a shallow donor state in a ferromagnetic semiconductor. Phys. Rev. B 35, 2933–2936.
Emin, D., Hillery, M. S. and Liu, N. -L. H. (1987). Thermally induced abrupt shrinking of a donor state in a ferromagnetic semiconductor. Phys. Rev. B 35, 641–652.
Emin, D. and Hillery, M. S. (1988). Continuum studies of magnetic polarons and bipolarons in antiferromagnets. Phys. Rev. B 37, 4060–4070.
Emin, D. and Hillery, M. S. (1989). Formation of a large singlet bipolaron, application to high-temperature superconductivity. Phys. Rev. B 39, 6575–6593.
Emin, D. and Holstein, T. (1969). Studies of small-polaron motion IV: Adiabatic theory of the Hall effect. Ann. Phys. (N.Y.) 53, 439–520.
Emin, D. and Holstein, T. (1976). Adiabatic theory of an electron in a deformable continuum. Phys. Rev. Lett. 36, 323–326.
Emin, D. and Kriman, A. M. (1986). Transient small-polaron hopping motion. Phys. Rev. B 34, 7278–7289.
Emin, D. and Liu, N. -L. H. (1983). Small-polaron hopping in magnetic semiconductors. Phys. Rev. B 24, 4788–4798.
Emin, D., Seager, C. H. and Quinn, R. K. (1972). Small polaron hopping conduction in some chalcogenide glasses. Phys. Rev. Lett. 28, 813–816.
Emin, D., Ye, J., and Beckel, C. L. (1992). Electron correlation effects in one-dimensional large-bipolaron formation. Phys. Rev. B 46, 10710–10720.
Epstein, R. I., Buckwald, M. I., Edwards, B. C., Gosnell, T. R. and Mungan, C. E. (1995). Observation of laser-induced fluorescent cooling of a solid. Nature London 377, 500–502.
Feibelman, P. J. and Knotek, M. L. (1978). Reinterpretation of electron-stimulated desorption data from chemisorption systems. Phys. Rev. B, 18, 6531–6539.
Feynman, R. P. (1972). Statistical Mechanics: A Set of Lectures, New York, Addison-Wesley, Sec. 2.6; Chap. 11.
Fischer, R., Heim, U., Stern, F., and Weiser, K. (1971). Photoluminescence of amorphous 2As2Te3-As2Se3 films. Phys. Rev. Lett. 26, 1182–1185.
Flynn, C. P. and Stoneham, A. M. (1970). Quantum theory of diffusion with application to light interstitials in metals. Phys. Rev. B 1, 3966–3978.
Fork, R. L., Shank, C. V., Glass, A. M., Migus, A., Bösch, M. A. and Shah, J. (1979). Picosecond dynamics of optically induced absorption in the bandgap of As2S3. Phys. Rev. Lett. 43, 394–398.
Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H. and Levy, F. (1994). High mobility n-type charge carriers in large single crystals of anatase (TiO2). J. Appl. Phys. 75, 633–635.
Franck, J. (1926). Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542.
Frenkel, J. (1938). On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648.
Friedman, L. (1963). Hall effect in the polaron-band regime. Phys. Rev. 131, 2445–2456.
Friedman, L. (1964). Transport properties of organic semiconductors. Phys. Rev. 133, A1668–A1679.
Friedman, L. and Holstein, T. (1963). Studies of polaron motion Part III: The Hall mobility of a small polaron. Ann. Phys. (N.Y.) 21, 494–549.
Fritzsche, H. (2006). Why chalcogenides are ideal materials for Ovshinsky’s Ovonic threshold and memory devices. Phys. Chem. Glasses 47, 77–82.
Fröhlich, H. (1963). Introduction to the theory of the polaron. In: Polarons and Excitons, ed. C. G. Kuper and G. D. Whitfield, New York, Plenum Press, pp. 1–32.
Fröhlich, H. and Sewell, G. L. (1959). Electric conduction in semiconductors. Proc. Phys. Soc. (London) 74, 643–647.
Geballe, T., (1959). Group IV semiconductors. In: Semiconductors, ed. N. B. Hannay, New York, Reinhold, pp. 313–388.
Ghosh, P. K. and Spear, W. E. (1968). Electronic transport in liquid and solid sulphur. J. Phys. C 1, 1347–1358.
Gibbons, D. J. and Spear, W. E. (1966). Electron hopping transport and trapping phenomena in orthorhombic sulphur crystals. J. Phys. Chem. Solids, 27, 1917–1925.
Godart, C., Mauger, A., Desfours, J. P. and Achard, J. C. (1980). Physical properties of EuO versus electronic concentrations. J. de Physique 41, C5-205–C5-214.
Grant, A. J., Moustakas, T. D., Penny, T. and Weiser, K. (1974). Conduction in localized band-tail and in extended states. I. Experimental studies of transport in amorphous arsenic telluride. In: Amorphous and Liquid Semiconductors, eds. J. Stuke and W. Brenig, London, Taylor & Francis, pp. 325–333.
Heikes, R. R., Maradudin, A. A. and Miller, R. C. (1963). Une etude des proprietes de transport des semiconducteurs de valence mixte. Ann. Phys. (Paris) 8, 733–746.
Heikes, R. R. and Ure, R. W. (1961). Thermoelecticity: Science and Engineering, New York, Interscience.
Henry, C. H. and Lang, D. V. (1977). Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys Rev. B 15, 989–1016.
Herring, C. (1961). The current state of transport theory. In: Proceedings of the International Conference on Semiconductor Physics, Prague 1960, New York, Academic Press, pp. 60–67.
Hillery, M. S., Emin, D. and Liu, N. -L. H. (1988). Effect of an applied magnetic field on the abrupt donor collapse in a ferromagnetic semiconductor. Phys. Rev. B 38, 9771–9777.
Hiramoto, H. and Toyozawa, Y. (1985). Inter-polaron interaction and bipolaron formation I. J. Phys. Soc. Jap. 54, 245–259.
Holstein, T. (1959a). Studies of polaron motion Part 1: The molecular-crystal model. Ann. Phys. (N.Y.) 8, 325–342.
Holstein, T. (1959b). Studies of polaron motion Part II: The “small” polaron. Ann. Phys. (N.Y.) 8, 343–389.
Holstein, T. (1973). Sign of the Hall coefficient in hopping-type charge transport. Phil. Mag. 27, 225–233.
Holstein, T. (1981). Dynamics of self-localized charge carriers in quasi 1-D solids. Mol. Cryst. Liq. Cryst. 77, 235–252.
Holstein, T. and Friedman, L. (1968). Hall mobility of the small polaron. II. Phys. Rev. 165, 1019–1031.
Hughes, R. C. (1971a). Geminate recombination of x-ray excited electron–hole pairs in anthracene. J. Chem. Phys. 55, 5442–5447.
Hughes, R. C. (1971b). Geminate recombination of x-ray excited carriers in organic solids: Poly-n-vinylcarbazole. Chem. Phys. Lett. 8, 403–406.
Hundley, M. F. and Neumeier, J. J. (1997). Thermoelectric power of La1-xCaxMnO3+δ: Inadequacy of the nominal Mn3+/4+ valence approach. Phys. Rev. B 55, 11511–11515.
Ing, Jr, S. W., Neyhart, J. H. and Schmidlin, F. (1971). Charge transport and photoconductivity in amorphous arsenic trisulfide films. J. Appl. Phys. 42, 696–703.
Jahn, H. A. and Teller, E. (1937). Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. Roy. Soc. A, 161, 220–235.
Jaime, M., Hardner, H. T., Salamon, M. B., Rubinstein, M., Dorsey, P. and Emin, D. (1997). Hall effect sign anomaly and small-polaronic conduction in (La1–xGdx)0.67Ca0.33MnO3. Phys. Rev. Lett. 78, 951–954.
Jennison, D. R. and Emin, D. (1983a). Localization of surface excitations and stimulated desorption. J. Vac. Sci. Technol. A 1, 1154–1156.
Jennison, D. R. and Emin, D. (1983b). Strain-induced localization and electronically stimulated desorption and dissociation. Phys. Rev. Lett. 51, 1390–1393.
Joannopolous, J. D. and Cohen, M. H. (1973). Electronic properties of complex crystalline and amorphous phases of Ge and Si. I: Density of states and band structures. Phys. Rev. B 7, 2644–2657.
Kane, E. O. (1959). Zener tunneling in semiconductors. J. Phys. Chem. Solids, 12, 181–188.
Karplus, R. and Luttinger, J. M. (1954). Hall effect in ferromagnets. Phys. Rev. 95, 1154–1160.
Kastner, M., Adler, D. and Fritzsche, H. (1976). Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504–1507.
Kasuya, T., Yanase, A. and Takeda, T. (1970). Stability condition for the paramagnetic polaron in a magnetic semiconductor. Solid State Commun. 8, 1543–1546.
Kepler, R. G. and Coppage, F. N. (1966). Generation and recombination of holes and electrons in anthracene. Phys. Rev. 151, 610–614.
Kertesz, M., Riess, I., Tannhauser, D. S., Langpape, R. and Rohr, F. J. (1982). Structure and electrical conductivity of La0.84Sr0.16MnO3. J. Solid State Chem. 42, 125–129.
Klaffe, G. R. and Wood, C. (1976). The Hall effect in amorphous As2Se3. In: Physics of Semiconductors: Proceedings of the Thirteenth International Conference, ed. F. G. Fumi, London, North-Holland, pp. 545–548.
Klinger, M. I. (1963). Quantum theory of non-steady-state conductivity in low mobility solids. Phys. Lett. 7, 102–104.
Kolodiazhnyi, T. and Wimbush, S. C. (2006). Spin singlet small bipolarons in Nb-doped BaTiO3. Phys. Rev. Lett. 96, 246404.
Kramers, H. A. (1934). L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica 1, 182–192.
Kübler, J. and Vigren, D. T. (1975). Magnetically controlled electron localization in Eu-rich EuO. Phys. Rev. B 11, 4440–4449.
Lakkis, S., Schlenker, C., Chakraverty, B. K., Buder, R. and Marezio, R. (1976). Metal–insulator transitions in Ti4O7 single crystals: Crystal characterization, specific heat, and electron paramagnetic resonance. Phys. Rev. B. 14, 1429–1440.
Landau, L. (1933). On the motion of electrons in a crystal lattice. Phys. Z. Sowjetunion 3, 664–665.
Landau, L. (1946). On the thermodynamics of photoluminescence. J. Phys. (Moscow) 10, 503–506.
Landau, L. D. and Lifshitz, E. M. (1958). Statistical Physics, London, Pergamon Press, Secs. 67, 73.
LeComber, P. G., Jones, D. and Spear, W. E. (1977). Hall effect and impurity conduction in substitutionally doped amorphous silicon. Phil. Mag. 35, 1173–1187.
Leroux-Hugon, P. (1972). Dielectric constant of an exchange-polarized electron gas and the metal–insulator transition in EuO. Phys. Rev. Lett. 29, 939–943.
Lewis, A. J. (1976a). Conductivity and thermoelectric power of amorphous germanium and amorphous silicon. Phys. Rev. B 13, 2565–2575.
Lewis, A. J. (1976b). Use of hydrogenation in the study of the transport properties of amorphous germanium. Phys. Rev. B 14, 658–668.
Lifshitz, E. M. and Pitaevskii, L. P. (1980). Statistical Physics Part 2: Theory of the Condensed State, Oxford, Pergamon Press, Secs. 34, 44.
Liu, N. -L. H. and Emin, D. (1979). Double exchange and small-polaron hopping in magnetic semiconductors. Phys. Rev. Lett. 42, 71–74.
Liu, N. -L. H. and Emin, D. (1984). Thermoelectric power of small polarons in magnetic semiconductors. Phys. Rev. B. 30, 3250–3256.
Low, G. G. (1963). Application of spin wave theory to three magnetic salts. Proc. Phys. Soc (London) 82, 992–1001, Fig. 1.
Madden, H. H., Jennison, D. R., Traum, M. M., Margaritondo, G. and Stoffel, N. G. (1982). Correlation of H+-desorption threshold with localized state observed in Auger line shape Si(001):H. Phys. Rev. B 26, 896–902.
Mauger, A. (1983). Magnetic polaron: Theory and Experiment. Phys. Rev. B 27, 2308–2324.
Marcus, R. A. (1960). Exchange reactions and electron transfer reactions including isotopic exchange. Discuss. Faraday Soc. 29, 21–31.
Mauger, A. and Mills, D. L. (1985). Role of conduction-electron-local moment exchange in antiferromagnetic semiconductors: Ferrons and bound magnetic polarons. Phys. Rev. B 31, 8024–8033.
Melz, P. (1972). Photogeneration of trinitrofluorenone-poly(N-vinylcarbazole). J. Chem. Phys. 57, 1694–1699.
Mendez, E. E., Agulló-Rueda, F. and Hong, J. M. (1988). Stark localization in GaAs-GaAlAs superlattices under an electric field. Phys. Rev. Lett. 60, 2426–2429.
Methfessel, S. and Mattis, D. C. (1968). Magnetic semiconductors. Handbuch der Physik 18/1, 389–562.
Meyer, Von W. and Neldel, H. (1937). Über die beziehungen zwischen der energiekonstanten E und der mengenkonstanten a in der leitwerts-temperaturformel bei oxydischen halbleitern. Z. Tech. Phys. 18 No. 12, 588–593.
Miller, A. and Abrahams, E. (1960). Impurity conduction at low concentrations. Phys. Rev. 120, 745–755.
Miller, R. C., Heikes, R. R., and Mazelsky, R. (1961). Model for the electronic transport properties of mixed valency semiconductors. J. Appl. Phys. 32, 2202–2206.
Moizhes, B. Ya. and Suprun, S. G. (1984). Bipolarons in n-type barium titanate(?). Sov. Phys. Solid State 26, 544–545.
Mott, N. F. (1974). Metal–Insulator Transitions, London, Taylor & Francis.
Mott, N. F. and Davis, E. A. (1979). Electronic Processes in Non-Crystalline Materials, second edition. Oxford, Clarendon Press.
Mott, N. F. and Stoneham, A. M. (1977). The lifetime of electrons, holes and excitons before self-trapping. J. Phys. C: Solid State Phys. 10, 3391–3398.
Moustakas, T. D. and Paul, W. (1977). Transport and recombination in sputtered hydrogenated amorphous germanium. Phys. Rev. B 16, 1564–1576.
Mytilineou, E. and Davis, E. A. (1977). Thermopower, conductivity and Hall effect in amorphous arsenic. In: Amorphous and Liquid Semiconductors, ed. W. E. Spear, Edinburgh, University of Edinburgh Press, pp. 632–636.
Nagaev, E. L. (1967). Ground state and anomalous magnetic moment of conduction electrons in an antiferromagnetic semiconductor. Sov. Phys. JETP Lett. 6, 18–20.
Nagaev, E. L. (1976). Ferromagnetic and antiferromagnetic semiconductors. Sov. Phys. Usp. 18, 863–892.
Nagels, P. (1980). Experimental Hall effect data for a small-polaron semiconductor. In: The Hall Effect and its Applications, eds. C. L. Chien and C. R. Westgate, New York, Plenum Press, pp. 253–280.
Nagels, P., Callaerts, R. and Denayer, M. (1974). Conduction in extended and localized states in the amorphous system As-Te-Si. In: Amorphous and Liquid Semiconductors, eds. J. Stuke and W. Brenig, London, Taylor & Francis, pp. 867–876.
Oliver, M. R., Kafalas, J. A., Dimmock, J. O. and Reed, T. B. (1970). Pressure dependence of the electrical resistivity of EuO. Phys, Rev. Lett. 24, 1067–1067.
Oliver, M. R., Dimmock, J. O., McWhorter, A. L. and Reed, T. B. (1972). Conductivity studies of europium oxide. Phys. Rev. B 5, 1078–1098.
Onsager, L. (1934). Deviations of Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615.
Onsager, L. (1938). Initial recombination of ions. Phys. Rev. 54, 554–557.
Öpik, U. and Pryce, M. H. L. (1957). Studies of the Jahn–Teller effect I: A survey of the static problem. Proc. Roy. Soc. London A 238, 425–447.
Pai, D. M. and Enck, R. C. (1975). Onsager mechanism of photogeneration in amorphous selenium. Phys. Rev. B 11, 5163–5174.
Palstra, T. T. M., Raminez, A. P., Cheong, S. -W., Zegarski, B. R., Schiffer, P. and Zaanen, J. (1997). Transport mechanisms in doped LaMnO3: Evidence for polaron formation. Phys. Rev. B 56, 5104–5107.
Paul, W. and Connell, G. A. N. (1976). Structural modelling of disordered semiconductors. In: Physics of Structurally Disordered Solids, ed. S. S. Mitra, New York, Plenum, pp. 45–91.
Pekar, S. I. (1963). Investigations of the Electronic Theory of Crystals, Washington: U.S. Government Printing Office, US AEC Report-tr-5575 [Russian original: Gostekhizdat, Moscow, 1951).
Penny, T., Shafer, M. W. and Torrance, J. B. (1972). Insulator–metal transition and long-range magnetic order in EuO. Phys. Rev. B 5, 3669–3674.
Penrose, O. and Onsager, L. (1956). Bose–Einstein condensation and liquid helium. Phys. Rev. 104, 576–584.
Petrich, G., von Molnar, S. and Penney, T. (1971). Exchange-induced autoionization in Eu-rich EuO. Phys. Rev. Lett. 26, 885–888.
Pincus, P. (1972). Polaron effects in the nearly atomic limit of the Hubbard model. Solid State Commun. 11, 51–54.
Pitaevskii, L. P. (1959). Properties of the spectrum of elementary excitations near the disintegration threshold of the excitations. Sov. Phys. JETP 9, 830–837.
Pollak, M. and Geballe, T. H. (1961). Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742–1753.
Pollak, M. and Pike, G. E. (1972). AC conductivity of glasses. Phys. Rev. Lett. 28, 1449–1451.
Pooley, D. (1966a). F-center production in alkali halides by electron–hole recombination and a subsequent [110] replacement sequence: A discussion of the electron–hole recombination. Proc. Phys. Soc. 87, 245–256.
Pooley, D. (1966b). [110] anion replacement sequences in alkali halides and their relation to F-centre production by electron–hole recombination. Proc. Phys. Soc. 87, 257–262.
Pringsheim, P. (1929). Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung. Z. Phys. 57, 739–746. Two remarks on the difference of luminescence and thermal radiation.
Rashba, E. E. (1957). Theory of strong interactions of electron excitations with lattice vibrations in molecular crystals. Opt. Spektrosk. 2, 75–87.
Reik, H. G. and Heese, D. (1967). Frequency dependence of the electrical conductivity of small polarons for high and low temperatures. J. Phys. Chem. Solids 28, 581–596.
Robertson, J. (1975). Valence s bands in chalcogens and amorphous arsenic. J. Phys. C. 8, 3131–3136.
Samara, G. A., Tardy, H. L., Venturini, E. L., Aselage, T. L. and Emin, D. (1993). AC hopping conductivities, dielectric constants and reflectivities of boron carbides. Phys. Rev. B 48, 1468–1477.
Schafroth, M. R. (1955). Superconductivity of a charged ideal Bose gas. Phys. Rev. 100, 463–475.
Schein, L. B. and Borsenberger, P. M. (1993). Hole mobilities in hydrazone-doped polycarbonate and poly(styrene). Chem. Phys. 177, 773–781.
Schirmer, O. F., Imlau, M., Merschjann, C. and Schoke, B. (2009). Electron small polarons and bipolarons in LiNbO3. J. Phys. Condens. Matter 21, 12301.
Schirmer, O. F. and Salje, E. (1980). Conduction bipolarons in low-temperature crystalline WO3-x. J. Phys. C: Solid State Phys. 13, L1067–L1072.
Schirmer, O. F. and von der Linde, D. (1978). Two-photon- and X-ray-induced Nb4+ and O small polarons in LiNbO3. Appl. Phys. Lett. 33, 35–38.
Schultz, T. D. (1963). Feynman’s path-integral method applied to the equilibrium properties of polarons and related problems. In: Polarons and Excitons, eds. C. G. Kuper and G. D. Whitfield, New York, Plenum, pp. 71–121; p. 110.
Schüttler, H. -B. and Holstein, T. (1986). Dynamics and transport of a large acoustic polaron in one dimension. Ann. Phys. (N.Y.) 166, 93–163.
Seager, C. H. (1971). Electronic Hall mobility in the alkaline-earth fluorides. Phys. Rev. B 3, 3479–3484.
Seager, C. H. and Emin, D. (1970). High-temperature measurements of the electron Hall mobility in the alkali halides. Phys. Rev. B 2, 3421–3431.
Seager, C. H., Emin, D. and Quinn, R. K. (1973). Electrical transport and structural properties of bulk As-Te-I, As-Te-Ge and As-Te chalcogenide glasses. Phys. Rev. B 8, 4746–4760.
Seager, C. H., Knotek, M. L. and Clark, A. H. (1974). DC transport properties of evaporated a-Ge films as a function of annealing. In: Amorphous and Liquid Semiconductors, eds. J. Stuke and W. Brenig, London, Taylor & Francis, pp. 1133–1138.
Seager, C. H. and Quinn, R. K. (1975). DC electronic transport in binary arsenic chalcogenide glasses. J. Non-Cryst. Solids 17, 386–400.
Shah, J. and Bösch, M. A. (1979). Band-to-band luminescence in amorphous solids: Implications for the nature of electronic band states. Phys. Rev. Lett. 42, 1420–1423.
Shao, Y., Hughes, R. A., Dabkowski, A., Radtke, G., Gong, W. H., Preston, J. S. and Botton, G. A. (2008). Structural and transport properties of epitaxial niobium-doped BaTiO3 films. Appl. Phys. Lett. 93, 192114.
Sil, A., Giri, A. K. and Chatterjee, A. (1991). Stability of the Fröhlich bipolaron in two and three dimensions. Phys. Rev. B 43, 12642–12645.
Street, R. A. and Mott, N. F. (1975). States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293–1296.
Suprun, S. G. and Moizhes, B. Ya. (1982). Role of electron correlation in the creation of a Pekar bipolaron. Sov. Phys. Solid State 24, 903–905.
Tanaka, J., Umehara, M., Tamura, S., Tsukioka, M., and Ehara, S. (1982). Study on electric resistivity and thermoelectric power in (La0.8Ca0.2)MnO3–y. J. Phys. Soc. Jpn. 51, 1236–1242.
Tanaka, J., Nozaki, H., Horiuchi, S. and Tsukioka, M. (1983a). Etude expérimentale du comportement magnétique du (La0.8Ca0.2)MnO3 préparé par la méthode de co-précipitation. J. Physique-Lett. 44, L129–L134.
Tanaka, J., Takahashi, K., Yukino, K. and Horiuchi, S. (1983b). Electrical conduction of (La0.8Ca0.2)MnO3 with homogeneous ionic distribution. Phys. Stat. Solidi 80, 621–630.
Thorpe, M. F., Weaire, D., and Alben, R. (1973). Electronic properties of an amorphous solid. III. The cohesive energy and the density of states. Phys. Rev. B 7, 3777–3788.
Torrence, J. B., Shafer, M. W. and McGuire, T. R. (1972). Bound magnetic polarons and the insulator–metal transition in EuO. Phys. Rev. Lett. 29, 1168–1171.
Toyozawa, Y. (1961). Self-trapping of an electron by the acoustical mode of lattice vibration. I. Prog. Theor. Phys. 26, 29–44.
Umehara, M. (1981). Effect of the electron–phonon interaction on the self-trapped magnetic polaron. J. Phys. Soc. Jpn. 50, 1082–1090.
Umehara, M. and Kasuya, T. (1972). A theory for a self-trapped antiferromagnetic polaron at T = 0 K. J. Phys. Soc. Jpn. 33, 602–615.
Verbist, G., Peters, F. M. and Devreese, J. T. (1991). Large bipolarons in two and three dimensions. Phys. Rev. B 43, 2712–2720.
Vinetskii, V. L. (1961). Bipolar states of current carriers in ionic crystals. Sov. Phys. JETP 13, 1023–1028.
Vinetskii, V. L. and Giterman, M. Sh. (1958). On the theory of the interaction of “excess” charges in ionic crystals. Sov. Phys. JETP 6, 560–564.
Vitins, J. and Wachter, P. (1975). Doped EuTe: A mixed magnetic system. Phys. Rev. B 12, 3829–3839.
Volger, J. (1954). Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure. Physica XX, 49–66.
von Mühlenen, A., Errien, N., Schaer, M., Bussac, M. -N. and Zuppiroli, L. (2007). Thermopower measurements on pentacene transistors. Phys. Rev. B 75, 115338.
Wannier, G. H. (1959). Elements of Solid State Theory, London, Cambridge University Press, pp. 190–193.
Wood, C. (1986). Transport properties of boron carbides. In: Boron-Rich Solids, eds. D. Emin, T. L. Aselage, C. L. Beckel, I. A. Howard and C. Wood, New York, American Institute of Physics, pp. 206–215.
Yamashita, J. and Kurosawa, T. (1958). On electronic current in NiO. J. Phys. Chem. Solids 5, 34–43.
Zener, C. (1932). Non-adiabatic crossing of energy levels. Proc. Roy. Soc. A137, 696–702.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.