Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2017
  • Online publication date: February 2017

6 - Silicate Melting and Volatile Loss During Differentiation in Planetesimals

from Part Two - Chemical and Mineralogical Diversity
Agee, C. B., Li, J., Shannon, M. C., et al. 1995. Pressure–temperature phase diagram for the Allende meteorite. Journal of Geophysical Research, 100, 1772517740.
Akai, J. 1992. T–T–T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120135.
Alexander, C. M. O., Barber, D. J., and Hutchison, R. 1989. The microstructure of Semarkona and Bishunpur. Geochimica et Cosmochimica Acta, 53, 30453057.
Asphaug, E., Jutzi, M., and Movshovitz, N. 2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.
Bai, Q. and Kohlstedt, D. L. 1993. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Physics and Chemistry of Minerals, 19, 460471.
Benedix, G., Leshin, L. A., Farquhar, J., et al. 2003. Carbonates in CM2 chondrites: Constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochimica et Cosmochimica Acta, 67, 15771588.
Bland, P. A., Travis, B. J., Dyl, K. A., et al. 2013. Giant convecting mudballs of the early solar system. Lunar and Planetary Science Conference, 45, 1447.
Bland, P. A., Jackson, M. D., Coker, R. F., et al. 2009. Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559568.
Bland, P. A. and Ciesla, F. J. 2010. The impact of nebular evolution on volatile depletion trends observed in differentiated objects. In Lunar and Planetary Science Conference, 41, 1817.
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagna, G. 2006. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter, Geochimica Cosmochimica Acta, 70, 18491863.
Brearley, A. J. and Krot, A. N. 2012. Metasomatism in the early solar system: The record from chondritic meteorites. In Metasomatism and the Chemical Transformation of Rock, ed. Harlov, D. E. and Austrheim, H.. Berlin: Springer-Verlag, 659789.
Brenker, F. E. and Krot, A. N. 2004. Late-stage, high-temperature processing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions. American Mineralologist, 89, 12801289.
Britt, D. and Consolmagno, G. J. 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science, 38, 11611180.
Canup, R. M. 2012. Forming the Moon with Earth-like composition via a giant impact. Science, 338, 10521055.
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 63866389.
Castillo-Rogez, J. C. 2011. Ceres: Neither a porous nor salty ball. Icarus, 215, 599602.
Castillo-Rogez, J. C. and Schmidt, B. E. 2010. Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.
Choi, B.-G., McKeegan, K. D., Leshin, L. A., et al. 1997. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine. Earth and Planetary Science Letters, 337–349.
Choi, B.-G., McKeegan, K. D., Krot, A. N., et al. 1998. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature, 392, 577579.
Ciesla, F. J. 2008. Radial transport in the solar nebula: Implications for moderately volatile element depletions in chondritic meteorites. Meteoritics & Planetary Science, 43, 639655.
Clauser, C. 1992. Permeability of crystalline rocks. Eos Transactions of the AGU, 73, 233238.
Clayton, R. N. and Mayeda, T. K. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters, 67, 151161.
Clayton, R. N. and Mayeda, T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.
Clayton, R. N., Onuma, N., and Grossman, L. et al. 1977. Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth and Planetary Science Letters, 34, 209224.
Corrigan, C. M. et al. 1997. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteoritics & Planetary Science, 32, 509515.
Cournede, C., Zolensky, M. E., Dahl, J., et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 6274.
Dykhius, M. J. and Greenberg, R. 2015. Collisional family structure within the Nyse–Polana complex. Icarus, 252, 199211.
Dyl, K. A., Bischoff, A., Ziegler, K., et al. 2012. Early solar system hydrothermal activity in chondritic asteroids on 1–10-year timescales. Proceedings of the National Academy of Sciences of the United States of America, 109, 1830618311.
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M.T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.
Formisano, M., Turrini, D., Federico, C., et al. 2013. The onset of differentiation and internal evolution: the case of 21 Lutetia. Astrophysical Journal, 770, 50.
Fu, R. R., Hager, B. H., Ermakov, A. I. et al. 2014. Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133145.
Fu, R. R. and Elkins-Tanton, L.T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.
Gaffey, M. J., Reed, K.L., and Kelley, M. S. 1992. Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids. Icarus, 100, 95109.
Ghosh, A. and McSween, H. Y. 1998. A thermal model for the differentiation of asteroid 4 Vesta based on radiogenic heating. Icarus, 134, 187206.
Gregory, R. T. and Criss, R. E. 1986. Isotopic exchange in open and closed systems. Reviews in Mineralology and Geochemistry, 16, 91127.
Grimm, R. E. and McSween, H. Y. 1989. Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 82, 244280.
Hauri, E. H., Gaetani, G. A., and Green, T. H. 2006. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters, 248, 715734.
Henke, S., Gail, H.-P., Trieloff, M., et al. 2012. Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, p.A135.
Huenges, E., Erzinger, J., Kück, J., et al. 1997. The permeable crust: Geohydraulic properties down to 9101 m depth. Journal of Geophysical Research, 102, 18,25518,265.
Humayun, M. and Clayton, R.N. 1995. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochimica et Cosmochimica Acta, 59, 21312148.
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.
Jarosewich, E. 1990. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.
Jenniskens, P., Fries, M. D., Yin, Q-Z. et al. 2012. Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia. Science, 1583, 15831587.
Johnson, C. A., Prinz, M., Weisberg, M. K., et al. 1990. Dark inclusions in Allende, Leoville, and Vigarano: Evidence for nebular oxidation of CV3 constituents. Geochimica et Cosmochimica Acta, 54, 819830.
Kallemeyn, G. W. and Wasson, J. T. 1981. The compostional classification of chondrites – I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. 1998. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science, 33, 10651085.
Lee, T., Papanastassiou, D. A., and Wasserburg, G.J. 1976. Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophysical Research Letters, 3, 4144.
Leshin, L. A., Farquhar, J., Guan, Y., et al. 2001. Oxygen isotopic anatomy of Tagish Lake: relationship to primary and secondary minerals in CI and CM chondrites. Lunar and Planetary Science Conference, 32, 1843.
McCoy, T. J., Keil, K., Muenow, D. W., et al. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.
McCoy, T., Mittlefehldt, D. W., and Wilson, L. 2003. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. Lauretta, D. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, 733745.
McCoy, T. J., Ketcham, R. A., Wilson, L., et al. 2006. Formation of vesicles in asteroidal basaltic meteorites. Earth and Planetary Science Letters, 246, 102108.
Muenow, D. W., Keil, K., and Wilson, L. 1992. High-temperature mass spectrometric degassing of enstatite chondrites: Implications for pyroclastic volcanism on the aubrite parent body. Geochimica et Cosmochimica Acta, 56, 42674280.
Muenow, D. W., Keil, K., and McCoy, T. J. 1995. Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids. Meteoritics & Planetary Science, 30, 639645.
Neumann, W., Breuer, D., and Spohn, T. 2013. The thermo-chemical evolution of Asteroid 21 Lutetia. Icarus, 224, 126143.
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.
Öberg, K., Murray-Clay, R., and Bergin, E. A. 2011. The effects of snowlines on C/O in planetary atmospheres. Astrophysical Journal Letters, 743, L16.
Ootsubo, T., Kawakita, H., and Hamada, S., et al. 2012. AKARI near-infrared spectroscopic survey for CO2 in 18 comets. Astrophysical Journal, 752, 112.
Palguta, J., Schubert, G., and Travis, B. J. 2010. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters, 296, 235243.
Papale, P. 1997. Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids. Contributions to Mineralology and Petrology, 126, 237251.
Rosenberg, N. D., Browning, L., and Bourcier, W. L. 2001. Modeling aqueous alteration of CM carbonaceous chondrites. Meteoritics & Planetary Science, 36, 239244.
Sakamoto, N., Seto, Y., Itoh, S., et al. 2007. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science, 317, 231233.
Sarafian, A. R., Roden, M. F., and Patiño-Douce, A. E. 2013. The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 21352154.
Sarafian, A. R., Nielson, S. G., Berger, E. L., et al. 2015. Wet angrites? A D/H and Pb–Pb study of silicates and phosphates. Lunar and Planetary Science Conference, 46, 1542.
Schiller, M., Connelly, J. N., Glad, A. C., et al. 2015. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 420, 4554.
Schultz, R. A., 1993. Brittle strength of basaltic rock masses with applications to Venus. Journal of Geophysical Research, 98, 10,810–883,895.
Sears, D. W. G. 1998. The case for rarity of chondrules and calcium–aluminum-rich inclusions in the early solar system and some implications for astrophysical models. Astrophysical Journal, 498, 773778.
Šrámek, O., Milelli, L., Ricard, Y., et al. 2012. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339354.
Sugiura, N., Brar, N. S., and Strangway, D. W. 1984. Degassing of meteorite parent bodies. Journal of Geophysical Research, 89, B641B644.
Sugiura, N. and Strangway, D.W. 1985. NRM directions around a centimeter-sized dark inclusion in Allende. Lunar and Planetary Science Conference, 15, C729–C738.
Taitel, Y. and Witte, L. 1996. The role of surface tension in microgravity slug flow. Chemical Engineering Science, 51, 695700.
Tang, H. and Dauphas, N. 2012. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters, 359–360, pp.248263.
Turcotte, D. L. and Schubert, G. 2002. Geodynamics. New York: Cambridge University Press.
Urey, H. C. 1955. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127144.
Walker, D. and Grove, T. L. 1993. Ureilite smelting. Meteoritics, 28, 629636.
Webster, J. D. 1997. Chloride solubility in felsic melts and the role of chloride in magmatic degassing. Journal of Petrology, 38, 17931807.
Weiss, B. P., Elkins-Tanton, L. T., Barucci, M. A., et al., 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science, 66, 137146.
Wilson, L. and Keil, K. 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.
Wilson, L., Keil, K., and McCoy, T. J. 2010. Pyroclast loss or retention during explosive volcanism on asteroids: Influence of asteroid size and gas content of melt. Meteoritics & Planetary Science, 45, 12841301.
Wood, J. A. 1964. The cooling rates and parent bodies of several iron meteorites. Icarus, 3, 429459.
Xu, T., Sonnenthal, E., Spycher, N., et al. 2004. TOUGHREACT – A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Compututers & Geosciences, 32, 145165.
Young, E. D. 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosphical Transactions of the Royal Society of London A, 359, 20952110.
Young, E. D. and Russell, S. S., 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282, 452455.
Young, E. D., Ash, R. D., England, P., and Rumble, D. III. 1999. Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals. Science, 286, 13311335.
Young, E. D., Zhang, K., and Schubert, G., 2003. Conditions for pore water convection within carbonaceous chondrite parent bodies: Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249259.
Zolensky, M. E., Bourcier, W. L., and Gooding, J. L. 1989. Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411425.