Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T17:28:50.283Z Has data issue: false hasContentIssue false

5 - Origin and Evolution of Volatile-rich Asteroids

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 92 - 114
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, O. and Mojzsis, S. (2011) Abode for life in carbonaceous asteroids? Icarus, 213, 273279.CrossRefGoogle Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. 2009. Why aqueous alteration in asteroids was isochemical: High porosity does not equal permeability. Earth and Planetary Science Letters, 287, 559568.CrossRefGoogle Scholar
Bland, P. A., Travis, B. J., Dyl, K. A., and Schubert, G. 2013. Giant convecting mudballs of the early solar system. Lunar and Planetary Science Conference, 44, 1447l.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A., and O’Brien, D. P. 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Brearley, A. J. 2006. The action of water. In Meteorites of the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, 587624.Google Scholar
Brearley, A. J. and Krot, A. N. 2013. Metasomatism in the early solar system: The record from chondritic meteorites. Metasomatism and the Chemical Transformation of Rock, Lecture Notes in Earth System Sciences, 659–789.Google Scholar
Briani, G., Quirico, E., Gounelle, M., et al. 2013. Short duration thermal metamorphism in CR chondrites. Geochimica et Cosmochimica Acta, 122, 267279.Google Scholar
Britt, D. T. and Consolmagno, G. J. 1997. The porosity of meteorites and asteroids: Results from the Vatican collection of meteorites. Lunar and Planetary Science, 28, 159160.Google Scholar
Browning, L. B., McSween, H. Y. Jr., and Zolensky, M. E. 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 26212633.Google Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459. doi:10.1016/j.icarus.2009.04.008.Google Scholar
Castillo-Rogez, J. C. and Schmidt, B. E. 2010. Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.Google Scholar
Castillo-Rogez, J. C. 2011. Ceres: Neither a porous nor salty ball. Icarus, 215, 599602.CrossRefGoogle Scholar
Castillo-Rogez, J. C. and Lunine, J. I. 2013. Small worlds habitability. In: Astrobiology: The Next Frontier, ed Impey, C., Lunine, J., Funes, J.. Cambridge: Cambridge University Press, 201208.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters, 67, 151161.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Corrigan, C. M., Zolensky, M. E., Dahl, J., et al. 1997. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteoritics & Planetary Science, 32, 509515.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518538.Google Scholar
De León, J., Pinilla-Alonso, N., Campins, H., Licandro, J., and Marzo, G. A. 2012. Near-infrared spectroscopic survey of B-type asteroids: compositional analysis. Icarus, 218, 196206.CrossRefGoogle Scholar
DeMeo, F. E. and Carry, B. 2014. Solar system evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. 2015. Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature, 528, 241244.Google Scholar
Dodson-Robinson, S. E., Willacy, K., Bodenheimer, P., Turner, N. J., and Beichman, C. A. 2009. Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus, 200, 672693.Google Scholar
Drummond, J. D., Carry, B., Merline, W. J., et al. 2014. Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images. Icarus, 236, 2837.Google Scholar
Dyl, K. A., Manning, C. E., and Young, E. D. 2010. The implications of cronstedtite formation in water-rich planetesimals and asteroids. Astrobiology Science Conference, 5627.Google Scholar
Dyl, K. A., Schmidt, B. E., and Bland, P. A. 2013. Linking scales of carbonaceous chondrite alteration and asteroid differentiation. Workshop on Planetesimal Formation and Differentiation, 8031.Google Scholar
Dyl, K. A., Boyce, J. W., Guan, Y., Bland, P. A., and Eiler, J. M. 2014. Characterizing early solar system fluids on the Allende (CV3) parent body: NanoSIMS study of phosphate volatile contents. Paper presented at the 77th Annual Meeting of the Meteoritical Society, September 7–12, Casablanca, Morocco. LPI Contribution No. 1800, id. 5386.Google Scholar
Ehlmann, B. L., Bish, D. L., Ruff, S. W., and Mustard, J. F. 2012. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. Journal of Geophysical Research, 117, E00J16.CrossRefGoogle Scholar
Engel, S. and Lunine, J. I. 1994. Silicate interactions with ammonia–water fluids on early Titan. Journal of Geophysical Research, 99, 37453752.Google Scholar
Flynn, G. J., Moore, L. B., and Klock, W. 1999. Density and porosity of stone meteorites: Implications for the density, porosity, cratering, and collisional disruption of asteroids. Icarus, 142, 97105.Google Scholar
Fries, M., Messenger, S., Steele, A., and Zolensy, M. 2014. The H chondrite halite parent body: Warm, wet, organic-rich, rather habitable and possibly Ceres. Workshop on the Habitability of Icy Worlds, February 5–7, Pasadena, CA, #4078.Google Scholar
Gounelle, M. and Zolensky, M. E. 2001. A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science, 36, 13211329.Google Scholar
Grazier, K. R., Castillo-Rogez, J. C., and Sharp, P. W. 2014. Dynamical delivery of volatiles to the outer main belt. Icarus, 232, 1321.Google Scholar
Gregory, R. T. and Criss, R. E. 1986. Isotopic exchange in open and closed systems. In Stable Isotopes in High Temperature Geological Processes, ed. Valley, J. W., Taylor, H. P., and O’Neil, J. R.. Washington DC: Mineralogical Society of America, 91127.CrossRefGoogle Scholar
Grimm, R. E. and McSween, H. Y. Jr. 1993. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.CrossRefGoogle Scholar
Guo, W. and Eiler, J. M. 2007. Temperature of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.Google Scholar
Haghighipour, N. 2009. Dynamical constraints on the origin of the main belt comets. Meteorites and Planetary Science, 44, 18631869.CrossRefGoogle Scholar
Hand, K. P. and Carlson, R. W. 2015. Europa’s surface color indicates an ocean rich with sodium chloride. Geophysical Research Letters, 42, 31743178.Google Scholar
Herndon, J. M. and Herndon, M. A. 1977. Aluminum-26 as a planetoid heat source in the early solar system. Meteoritics, 12, 459465.Google Scholar
Hiroi, T., 1996. Asteroid surface materials detected from their reflectance spectra. Journal of the Mineralogical Society of Japan, 25, 6167.Google Scholar
Jewitt, D. and Guilbert-Lepoutre, A.. 2012. Limits to ice on asteroids (24) Themis and (65) Cybele. Astronomical Journal, 143, 21.Google Scholar
Jewitt, D., Hsieh, H., and Agarwal, J. 2015. The active asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 221242.Google Scholar
Johansen, A., Blum, J., Tanaka, H., et al. 2014. The multifaceted planetesimal formation process. In Protostars and Planets VI, ed. Beuther, H., Klessen, R. S, Dullemond, C. P, and Henning, T.. Tucson, AZ: University of Arizona Press, 547570.Google Scholar
Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., and Gounelle, M. 2015. New paradigms for asteroid formation, In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 471492.Google Scholar
Jones, C. L. and Brearley, A. J. 2006. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration. Geochimica et Cosmochimica Acta, 70, 10401058.Google Scholar
Jones, T. D., Lebosky, L. A., Lewis, J. S., and Marley, M. S. 1990. The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt, Icarus, 88, 172192.CrossRefGoogle Scholar
Jura, M., Xu, S., and Young, E. D. 2013. 26Al in the early solar system: not so unusual after all. Astrophysical Journal Letters, 775, L41.Google Scholar
Kallemeyn, G. W. and Wasson, J. T. 1981. The compositional classification of chondrites: I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.Google Scholar
Kargel, J. S. 1991. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94, 368390.Google Scholar
Kargel, J. S., Kaye, J. Z., Head, J. W. III, et al. 2000. Europa’s crust and ocean: Origin, composition, and the prospect for life. Icarus, 148, 226265.Google Scholar
Keil, K. 2000. Thermal alteration of asteroids: Evidence from meteorites. Planetary and Space Science, 48, 887903.CrossRefGoogle Scholar
Kerekgyarto, M. G., Jeffcoat, C. R., Lapen, T. J., et al. 2015. Supra-canonical initial 26Al/27Al from a reprocessed Allende CAI. Lunar and Planetary Science Conference, 46, 2918.Google Scholar
Krot, A. N., Makide, K., and Nagashima, K., et al., 2012. Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions. Meteoritics & Planetary Science, 47, 19481979.Google Scholar
Khurana, K. K., Kivelson, M. G., Stevenson, D. J., et al., 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777780.Google Scholar
Kueppers, M., O’Rourke, L., Bockelee-Morvan, D., et al. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1977. Aluminum-26 in the early solar system: fossil or fuel? Astrophysical Journal, 211, L107L110.Google Scholar
Leshin, L. A., Rubin, A. E. and McKeegan, K. D. 1997. The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta, 61, 835845.Google Scholar
Levison, H. F., Bottke, W. F., Gounelle, M., et al. 2009. Contamination of the asteroid belt by primordial trans-Neptunian objects, Nature, 460, 364366.Google Scholar
Licandro, J., Campins, H., Kelley, M., et al., 2011. (65) Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy & Astrophysics, 525, A34.Google Scholar
Li, Z.-X. A. and Lee, C.-T. A. 2006. Geochemical investigation of serpentinized oceanic mantle lithospheric mantle in the Feather River ophiolite, California: Implications for the recycling rate of water by subduction. Chemical Geology, 235, 161185.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al., 2012. Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from corundum-bearing refractory inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 110, 190215.Google Scholar
McAdam, M. M., Sunshine, J. M., Howard, K. T., and McCoy, T. J. 2015. Aqueous alteration on asteroids: Linking the mineralogy and spectroscopy of CM and CI chondrites. Icarus, 245, 320332.Google Scholar
McCord, T. B. and Sotin, C. 2005. Ceres: Evolution and current state. Journal of Geophysical Research, 110, E05009.Google Scholar
McCord, T. B., Castillo-Rogez, J. C., and Rivkin, A. S. 2011. Ceres: Its origin, evolution and structure and Dawn’s potential contribution. Space Science Reviews, 163, 6376.CrossRefGoogle Scholar
McKinnon, W. B. 2008. Could Ceres be a refugee from the Kuiper belt? Paper presented at Asteroids, Comets, Meteors 2008, Baltimore, MD, July 14–18, LPI Contribution No. 1405, paper 8389.Google Scholar
McKinnon, W. B. 2012. Where did ceres accrete - in situ in the asteroid belt, among the giant planets, or in the primordial trans-neptunian belt? Paper presented at the American Astronomical Society, Division for Planetary Sciences 44th meeting, Reno, NV, October 14–19, paper 111.14.Google Scholar
McKinnon, W. B. and Zolensky, M. E. 2003. Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 879897.Google Scholar
McSween, H. Y. Jr. 1979. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix, Geochimica et Cosmochimica Acta, 43, 17611770.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorny, D., Levison, H. F., 2009. Asteroids were born big. Icarus, 204, 558575.Google Scholar
Mousis, O. and Alibert, Y. 2005. On the composition of ices incorporated in Ceres. Monthly Notices of the Royal Astronomical Society, 358, 188192.Google Scholar
Neveu, M., Desch, S., and Castillo-Rogez, J. C. 2015. Core cracking and hydrothermal circulation can profoundly affect Ceres’ geophysical evolution. Journal of Geophysical Research, 120, 123154.CrossRefGoogle Scholar
Neveu, M. and Desch, S.,2015. Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophysical Research Letters, 42, 1019710206.Google Scholar
IIINuth, J. A., Johnson, N. M., and Hill, H. G. M., 2014. CO Self-shielding as a mechanism to make 16O-enriched solids in the solar nebula. Challenges, 5, 152158.Google Scholar
Ouellette, N., Desch, S. J., Hester, J. J., 2007. Interaction of supernova ejecta with nearby protoplanetary disks. Astrophysical Journal, 662, 12681281.Google Scholar
Palguta, J., Schubert, G., and Travis, B. J. 2010. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters, 296, 235243.Google Scholar
Pizzarello, S., Williams, L. B., Lehman, J., Holland, G. P., and Yarger, J. L. 2011. Abundant ammonia in primitive asteroids and the case for a possible exobiology. Proceedings of the National Academy of Sciences of the United States of America, 108, 43034306.Google Scholar
Postberg, F., Kempf, S., Schmidt, J., et al., 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Rambaux, N., Chambat, F., Castillo-Rogez, J. C. 2015. Third-order development of shape, gravity, and moment of inertia for highly flattened celestial bodies: Application to Ceres. Astronomy & Astrophysics, 584, A127.Google Scholar
Rivkin, A. S. and Emery, J. P. 2010. Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.Google Scholar
Rosenberg, N. D., Browning, L., and Bourcier, W. L. 2001. Modeling aqueous alteration of CM carbonaceous chondrites. Meteoritics & Planetary Science, 36, 239244.Google Scholar
Schlichting, H. E., Ofek, E. O., Re’em, S., et al. 2012. Measuring the abundance of sub-kilometer-sized Kuiper belt objects using stellar occultations. Astrophysical Journal, 761, 150.Google Scholar
Schorghofer, N. 2008. The lifetime of ice on main belt asteroids. Astrophysical Journal, 682, 697705.Google Scholar
Scott, H. P., Williams, Q., and Ryerson, F. J. 2002. Experimental constraints on the chemical evolution of large icy satellites. Earth and Planetary Science Letters, 203, 399412.Google Scholar
Shock, E., Sassani, D. C., and Betz, H. 1997. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica et Cosmochimica Acta, 61, 42454266.Google Scholar
Sonnett, S., Kleyna, J., Jedicke, R., Masiero, J., 2011. Limits on the size and orbit distribution of main belt comets. Icarus, 215, 534546.Google Scholar
Sugiura, N., Brar, N. S., and Strangway, D. W. 1984. Degassing of meteorite parent bodies. Journal of Geophysical Research, 89, B651B644.Google Scholar
Takir, D. and Emery, J. P. 2012. Outer main belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.Google Scholar
Takir, D., Emery, J. P., and McSween, H. Y. Jr. 2015. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus, 257, 185193.Google Scholar
Thomas, P. C., Parker, J. Wm., McFadden, L. A., et al., 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Vernazza, P., Marsset, M., Beck, P., et al. 2015. Interplanetary dust particles as samples of icy satellites. Astrophysical Journal, 806, 204.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2012. Populating the asteroid belt from two parent source regions due to the migration of giant planets – “The Grand Tack.” Meteoritics & Planetary Science, 47, 19411947.Google Scholar
Weidenschilling, S. J. 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus, 214, 671684, 2011.Google Scholar
Wilson, L., Keil, K., Browning, L. B., Krot, A. N., and Bourcher, W. 1999. Early aqueous alteration, explosive disruption, and reprocessing of asteroids. Meteoritical & Planetary Sciences, 34, 541557.Google Scholar
Young, E. D., 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London A, 359, 20952110.Google Scholar
Young, E. D., Simon, J. I., Galy, A., et al. 2005. Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science, 308, 223227.Google Scholar
Young, E. D. 2014. Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth and Planetary Science Letters, 392, 16027.CrossRefGoogle Scholar
Young, E. D., Ash, R. D., England, P., and Rumble, D. III, 1999. Fluid flow in chondrite parent bodies: deciphering the compositions of planetesimals. Science, 286, 13311335.Google Scholar
Young, E. D., Zhang, K. K., and Schubert, G., 2003. Conditions for pore water convection within carbonaceous chondrite parent bodies: Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249259.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. 2013. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of thermal history of Vesta. Geochemica et Cosmochimica Acta, 110, 152175.Google Scholar
Zolensky, M. E., Bodnar, R. J., Gibson, E. K. Jr., et al, 1999. Asteroidal water within fluid inclusion-bearing halite in an H4 chondrite, Monahans (1998). Science, 285, 13771379.Google Scholar
Zolensky, M. E., Bourcier, W. L., and Gooding, J. L. 1989. Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411425.Google Scholar
Zolotov, M. Y. and Shock, E. L. 2001. Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 3281532828..CrossRefGoogle Scholar
Zolotov, M. Y. 2012. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessment in closed systems. Icarus, 220, 713729.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×