Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2017
  • Online publication date: February 2017

9 - Magnetic Fields on Asteroids and Planetesimals

from Part Two - Chemical and Mineralogical Diversity
Acuña, M. H., Anderson, B. J., Russell, C.T., et al. 2002. NEAR magnetic field observations at 433 Eros: First measurements from the surface of an asteroid. Icarus, 155, 220228.
Acuña, M. H., Kletetschka, G., and Connerney, J. E. P. 2008. Mars’ crustal magnetization: A window into the past. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J.F.. Cambridge: Cambridge University Press, 242262.
Anderson, B. J., Johnson, C. L., Korth, H., et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862.
Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.
Auster, H. U., Richter, I., Glassmeier, K.-H., et al. 2010. Magnetic field investigations during Rosetta’s 2867 Šteins flyby. Planetary and Space Science, 58, 11241128.
Auster, H. U., Apathy, I., Berghofer, G., et al. 2015. The nonmagnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science, 349, aaa5102-1.
Bai, X.-N. and Stone, J. M. 2013. Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophysical Journal, 769, 76.
Baumgartel, K., Sauer, K., Story, T. R., and Mckenzie, J. F. 1997. Solar wind response to a magnetized asteroid: Linear theory. Icarus, 129, 94-105.
Bland, P. A., Collins, G. S., Davison, T. M., et al. 2014. Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications, 5, 5451.
Blanco-Cano, X., Omidi, N. and Russell, C. T. 2003. Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida. Journal of Geophysical Research, 108, 1216.
Brett, R. and Bell, P. M. 1969. Melting relations in the Fe-rich portion of the system Fe–FeS at 30 kb pressure, Earth and Planetary Science Letters, 6, 479482.
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., et al., 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.
Burke, B. F. and Franklin, K. L. 1955. Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60, 213217.
Butler, R. F. 1972. Natural remanent magnetization and thermomagnetic properties of Allende meteorite. Earth and Planetary Science Letters, 17, 120128.
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T. et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 63866389.
Cerantola, V., Walte, N. P., and Rubie, D. C. 2015. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core–mantle differentiation. Earth and Planetary Science Letters, 417, 6777.
Chabot, N. L. and Haack, H. 2006. Evolution of asteroidal cores. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 747771.
Chan, K. H., Zhang, K., Li, L., and Liao, X. 2007. A new generation of convection-driven spherical dynamos using EBE finite element method. Physics of the Earth and Planetary Interiors, 163, 14.
Christensen, U. R., 2010. Dynamo scaling laws and applications to the planets. Space Science Reviews, 152, 565590.
Christensen, U. R. 2014. Iron snow dynamo models for Ganymede. Icarus, 247, 248259.
Christensen, U. R. and Wicht, J. 2007. Numerical dynamo simulations. In Treatise on Geophysics, ed. Olson, P. L.. Amsterdam: Elsevier, 245282.
Christensen, U. R., Olson, P., and Glatzmaier, G. 1999. Numerical modeling of the geodynamo: A systematic parameter study. Geophysical Journal International, 138, 393409.
Christensen, U. R., Holzwarth, V., and Reiners, A. 2009. Energy flux determines magnetic field strength of planets and stars. Nature, 457, 167169.
Cisowski, S. M. 1991. Remanent magnetic properties of unbrecciated eucrites. Earth and Planetary Science Letters, 107, 173181.
Collinson, D. W. and Morden, S. J. 1994. Magnetic-properties of howardite, eucrite and diogenite (HED) meteorites: Ancient mgnetizing fields and meteorite evolution. Earth and Planetary Science Letters, 126, 421434.
Cournède, C., Gattacceca, J., Zanda, B., and Rochette, P. 2012. Magnetic study of CM chondrites. EGU General Assembly, Vienna, April 22–27, paper no. 9740.
Cournède, C., Gattacceca, J., and Rochette, P. 2014. Partial asteroid differentiation revealed by paleomagnetism of R-chondrite meteorites. EGU General Assembly. Vienna, April 27–May 2, paper no. 4155.
Cournède, C., Gattacceca, J., Gounelle, M., et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 6274.
Cowling, T. G. 1934. The magnetic field of sunspots. Monthly Notices of the Royal Astronomical Society, 34, 3948.
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.
Emmerton, S., Muxworthy, A. R., Hezel, D. C., and Bland, P. A. 2011. Magnetic characteristics of CV chondrules with paleointensity implications. Journal of Geophysical Research, 116, E12007.
Fei, Y., Bertka, C. M., and Finger, L. W. 1997. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science, 275, 16211623.
Fischer, S. R., Fu, R. R., Weiss, B. P., et al. 2013. Paleomagnetic detection of magnetic fields on a differentiated asteroid during the dynamo epoch. AGU Fall Meeting, San Francisco, December 9–13, abstract GP41D–1166.
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.
Fu, R. R. and Weiss, B. P. 2012. Detrital remanent magnetization in the solar nebula. Journal of Geophysical Research, 117, E02003.
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. 2012. An ancient core dynamo in asteroid Vesta. Science, 338, 238241.
Fu, R. R., Lima, E. A., and Weiss, B. P. 2014a. No nebular magnetization in the Allende CV carbonaceous chondrite. Earth and Planetary Science Letters, 404, 5466.
Fu, R. R., Weiss, B. P., Lima, E. A., et al. 2014b. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346, 10891092.
Gattacceca, J., Rochette, P., and Bourot-Denise, M. 2003. Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Physics of the Earth and Planetary Interiors, 140, 343358.
Gattacceca, J. and Rochette, P. 2004. Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth and Planetary Science Letters, 227, 377393.
Gattacceca, J. Berthe, L. Boustie, M., et al. 2008. On the efficiency of shock magnetization processes. Physics of the Earth and Planetary Interiors, 166, 110.
Greenstadt, E. W. 1971a. Conditions for magnetic interaction of asteroids with the solar wind. Icarus, 14, 374381.
Greenstadt, E. W. 1971b. Possible magnetic interaction of asteroids with the solar wind. Proceedings of IAU Colloquium, 12, 567575.
Grove, T. L. 1982. Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: An experimental calibration. American Mineralologist, 67, 251268.
Goldstein, J. I., Scott, E. R. D. and Chabot, N. L 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.
Haisch, K. E., Lada, E. A., and Lada, C. J. 2001. Disk frequencies and lifetimes in young clusters. Astrophysical Journal Letters, 553, L153L156.
Hauck, S. A., Aurnou, J. M., and Dombard, A. J. 2006. Sulfur’s impact on core evolution and magnetic field generation on Ganymede. Journal of Geophysical Research, 111, E09008.
Kerswell, R. R. 1993. The instability of precessing flow. Geophysical & Astrophysical Fluid Dynamics, 72, 107144.
Kivelson, M. G., Bargatze, L. F., Khurana, K. K., et al. 1993. Magnetic field signatures near Galileo’s closest approach to Gaspra. Science, 261, 331334.
Kivelson, M. G., Wang, Z., Joy, S. P., et al. 1995. Solar wind interaction with small bodies. 2. What can Galileo’s detection of magnetic rotations tell us about Gaspra and Ida. Advances in Space Research, 16, 4757.
Kivelson, M. G., Khurana, K. K., Russell, C. T., et al. 1996. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537541.
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. 2014. Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.
Kullerud, G. and Yoder, H. S. 1959. Pyrite stability relations in the Fe–S system. Economic Geology, 54, 533572.
Laneuville, M., Wieczorek, M. A., Breuer, D., et al. 2014. A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 401, 251260.
Le Bars, M., Wieczorek, M. A., Karatekin, O., Cebron, D., and Laneuville, M. 2011. An impact-driven dynamo for the early Moon. Nature, 479, 215218.
McCoy, T. J., Keil, K., Muenow, D.W., and Wilson, L. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.
Monteux, J., Jellinek, A. M., and Johnson, C. L. 2011. Why might planets and moons have early dynamos? Earth and Planetary Science Letters, 310, 349359.
Morden, S. J. 1992. A magnetic study of the Millbillillie (eucrite) achondrite: Evidence for dynamo-type magnetising field. Meteoritics, 27, 560567.
Morden, S. J. and Collinson, D. W. 1992. The implications of the magnetism of ordinary chondrite meteorites. Earth and Planetary Science Letters, 109, 185204.
Nagata, T. 1979. Natural remanent magnetization of the fusion crust of meteorites. Memoirs of National Institute of Polar Research, 15, 253272.
Narayan, C. and Goldstein, J. I. 1982. A dendritic solidification model to explain Ge–Ni variations in iron meteorite chemical groups. Geochimica et Cosmochimica Acta, 46, 259268.
Ness, N. F. 2010. Space exploration of planetary magnetism. Space Science Reviews, 152, 522.
Nimmo, F. 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.
Omidi, N., Blanco-Cano, X., Russell, C. T., Karimabadi, H., and Acuna, M. 2002. Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. Journal of Geophysical Research, 107, 1487.
Pesonen, L. J., Terho, M., and Kukkonen, I. T. 1993. Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium on Antarctic Meteorites, 6, 401416.
Richter, I., Brinza, D. E., Cassel, M., et al. 2001. First direct magnetic field measurements of an asteroidal magnetic field: DS1 at Braille. Geophysical Research Letters, 28, 19131916.
Richter, I., Auster, H. U., Glassmeier, K. H., et al. 2012. Magnetic field measurements during the Rosetta flyby at asteroid (21) Lutetia. Planetary and Space Science, 66, 155164.
Rückriemen, T., Breuer, D., and Spohn, T. 2015. The Fe snow regime in Ganymede’s core: A deep-seated dynamo below a stable snow zone. Journal of Geophysical Research: Planets, 120, 10951118.
Scheinberg, A., Fu, R. R., Elkins-Tanton, E. T., and Weiss, B. P. 2015. Asteroid differentiation: melting and large-scale structure. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 533552.
Scheinberg, A., Elkins-Tanton, E. T., Schubert, G., and Bercovici, D. 2016. Core solidification and dynamo evolution in a mantle-stripped planetesimal. Journal of Geophysical Research: Planets, 121, 220.
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. 2006. Hf‚W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.
Sears, D. W. 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology, 5, 155164.
Shea, E. K., Weiss, B. P., Cassata, W. S., et al. 2012. A long-lived lunar core dynamo. Science, 335, 453456.
Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J., and Beckwith, K. 2013a. Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophysical Journal, 764, 66.
Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J., and Beckwith, K. 2013b. Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophysical Journal, 775, 73.
Sterenborg, M. G. and Crowley, J. W. 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of the Earth and Planetary Interiors, 214, 5373.
Stevenson, D. J. 2001. Mars’ core and magnetism. Nature, 412, 214219.
Stevenson, D. J. 2003. Planetary magnetic fields. Earth and Planetary Science Letters, 208, 111.
Stöffler, D., Keil, K., and Scott, E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.
Suavet, C., Gattacceca, J., Rochette, P., et al. 2009. Magnetic properties of micrometeorites. Journal of Geophysical Research, 114, B04102.
Sugiura, N., Lanoix, M., and Strangway, D. W. 1979. Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Physics of the Earth and Planetary Interiors, 20, 342349.
Swindle, T. D. 1998. Implications of iodine-xenon studies for the timing and location of secondary alteration. Meteoritics & Planetary Science, 33, 11471155.
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.
Tarduno, J. A. and Cottrell, R. D. 2012. Single crystal paleointensity analyses of olivine–diogenites: Implications for a past Vestan dynamo. Lunar and Planetary Science Conference, 43, 2663.
Tilgner, A. 2005. Precession driven dynamos. Physics of Fluids, 17, 034104.
Tomkins, A. G., Mare, E. R., and Raveggi, M. 2013. Fe-carbide and Fe-sulfide liquid immiscibility in IAB meteorite, Campo del Cielo: Implications for iron meteorite chemistry and planetesimal core compositions. Geochimica et Cosmochimica Acta, 117, 8098.
Turner, N. J. Fromang, S., Gammie, C., et al., 2014. Transport and accretion in planet-forming disks. In Protostars and Planets VI, ed. Beuther, H., Klessen, R. S, Dullemond, C. P, and Henning, T.. Tucscon, AZ: University of Arizona Press, 411434.
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J., 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications of paleomagnetism of meteorites. Earth and Planetary Science Letters, 306, 241252.
Wasilewski, P. 1981. New magnetic results from Allende C3(V). Physics of the Earth and Planetary Interiors, 26, 134148.
Wasilewski, P., Acuña, M. H., and Kletetschka, G. 2002. 433 Eros: Problems with the meteorite magnetism record in attempting an asteroid match. Meteoritics & Planetary Science, 37, 937950.
Wei, X., Arlt, R., and Tilgner, A. 2014. A simplified model of collision-driven dynamo action in small bodies. Physics of the Earth and Planetary Interiors, 231, 3038.
Weisberg, M. K., McCoy, T. J., and Krot, A. N., 2006. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 1952.
Weiss, B. P. and Tikoo, S. M. 2014. The lunar dynamo. Science, 346, 1246753, doi: 10.1126/science.1246753.
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L. T., et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713716.
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U. R. 2010. Paleomagnetic records of meteorites and early planetesimal differentiation. Space Science Reviews, 152, 341390.
Weiss, B. P., Wang, H., Downey, B. G., et al., 2014. An unmagnetized early planetary body. AGU Fall Meeting, San Francisco, December 15–19, abstract GP51B–3733.
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.
Yang, J., Goldstein, J. I., Michael, J. R., Kotula, P. G., and Scott, E. R. D. 2010. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 44934506.
Yoshino, T., Walter, M. ., and Katsura, T. 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422, 154157.
Zhan, X., Zhang, K., and Zhu, R. 2011. A full-sphere convection-driven dynamo: Implications for the ancient geomagnetic field. Physics of the Earth and Planetary Interiors, 187, 328335.
Ziegler, L. B. and Stegman, D. R. 2013. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochemistry, Geophysics, Geosystems, 14, 47354742.