Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:17:30.815Z Has data issue: false hasContentIssue false

8 - Planetary structural mapping

Published online by Cambridge University Press:  30 March 2010

Kenneth L. Tanaka
Affiliation:
U.S. Geological Survey, Flagstaff
Robert Anderson
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
James M. Dohm
Affiliation:
Department of Hydrology and Water Resources, University of Arizona, Tucson
Vicki L. Hansen
Affiliation:
Department of Geological Sciences, University of Minnesota Duluth
George E. McGill
Affiliation:
University of Massachusetts, Amherst
Robert T. Pappalardo
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena
Richard A. Schultz
Affiliation:
Geomechanics – Rock Fracture Group, Department of Geological Sciences and Engineering, University of Nevada, Reno
Thomas R. Watters
Affiliation:
Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC
Thomas R. Watters
Affiliation:
Smithsonian Institution, Washington DC
Richard A. Schultz
Affiliation:
University of Nevada, Reno
Get access

Summary

Summary

As on Earth, other solid-surfaced planetary bodies in the solar system display landforms produced by tectonic activity, such as faults, folds, and fractures. These features are resolved in spacecraft observations directly or with techniques that extract topographic information from a diverse suite of data types, including radar backscatter and altimetry, visible and near-infrared images, and laser altimetry. Each dataset and technique has its strengths and limitations that govern how to optimally utilize and properly interpret the data and what sizes and aspects of features can be recognized. The ability to identify, discriminate, and map tectonic features also depends on the uniqueness of their form, on the morphologic complexity of the terrain in which the structures occur, and on obscuration of the features by erosion and burial processes. Geologic mapping of tectonic structures is valuable for interpretation of the surface strains and of the geologic histories associated with their formation, leading to possible clues about: (1) the types or sources of stress related to their formation, (2) the mechanical properties of the materials in which they formed, and (3) the evolution of the body's surface and interior where timing relationships can be determined. Formal mapping of tectonic structures has been performed and/or is in progress for Earth's Moon, the planets Mars, Mercury, and Venus, and the satellites of Jupiter (Callisto, Ganymede, Europa, and Io).

Type
Chapter
Information
Planetary Tectonics , pp. 351 - 396
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, E. A. (2001). A stratigraphic study of small volcano clusters on Venus. Icarus, 149, 16–36.CrossRefGoogle Scholar
Agnor, C. B. and Hamilton, D. P. (2006). Neptune's capture of its moon Triton in a binary–planet gravitational encounter. Nature, 441, 192–194.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P., Haldemann, A., Franklin, B. J., Tanaka, K., Lias, J. andPeer, B. (2001). Significant centers of tectonic activity through time for the western hemisphere of Mars. J. Geophys. Res., 106, 20 563–20 585.CrossRefGoogle Scholar
Avery, T. E. and Berlin, G. L. (1992). Fundamentals of Remote Sensing and Airphoto Interpretation, 5th edn. New York: Macmillan.Google Scholar
Baker, V. R., Maruyama, S., and Dohm, J. M. (2007). Tharsis superplume and the geological evolution of early Mars. In Superplumes: Beyond Plate Tectonics, eds. Yuen, D. A., Maruyama, S., Karato, S.-I. and Windley, B. F.. London: Springer, pp. 507–523.CrossRefGoogle Scholar
Baldwin, R. B. (1963). The Measure of the Moon. Chicago: University of Chicago Press.Google Scholar
Banerdt, W. B., Phillips, R. J., Sleep, N. H., and Saunders, R. S. (1982). Thick-shell tectonics on one-plate planets: Applications to Mars. J. Geophys. Res., 87, 9723–9733.CrossRefGoogle Scholar
Banerdt, W. B., Golombek, M. P. and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, eds. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 249–297.Google Scholar
Banks, B. K. and Hansen, V. L. (2000). Relative timing of crustal plateau magmatism and tectonism at Tellus Regio, Venus. J. Geophys. Res., 105, 17 655–17 668.CrossRefGoogle Scholar
Bart, G. D., Turtle, E. P., Jaeger, W. L., Keszthelyi, L. P., and Greenberg, R. (2004). Ridges and tidal stress on Io. Icarus, 169, 111–126.CrossRefGoogle Scholar
Basilevsky, A. T. and Head, J. W. (1998). The geologic history of Venus: A stratigraphic view. J. Geophys. Res., 103, 8531–8544.CrossRefGoogle Scholar
Bell, J. F., Campbell, B. A., and Robinson, M. S. (1999). Planetary geology. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing, ed. Rencz, A. N.. 3rd edn, Vol. 3. New York: John Wiley & Sons, pp. 509–563.Google Scholar
Binder, A. B. (1982). Post-Imbrian global lunar tectonism: Evidence for an initially totally molten moon. Earth Moon Planets, 26, 117–133.CrossRefGoogle Scholar
Binder, A. B. and Gunga, H. C. (1985). Young thrust-fault scarps in the highlands: Evidence for an initially totally molten Moon. Icarus, 63, 421–441.CrossRefGoogle Scholar
Blasius, K. R., Cutts, J. A., Guest, J. E., and Masursky, H. (1977). Geology of the Valles Marineris: First analysis of imaging from the Viking 1 orbiter primary mission. J. Geophys. Res., 82, 4067–4091.CrossRefGoogle Scholar
Buczkowski, D. L. and McGill, G. E. (2002). Topography within circular grabens: Implications for polygon origin, Utopia Planitia, Mars. Geophys. Res. Lett., 29, doi:10.1029/2001GL014100.CrossRefGoogle Scholar
Campbell, B. A. (1999). Surface formation rates and impact crater densities on Venus. J. Geophys. Res., 104, 21 951–21 955.CrossRefGoogle Scholar
Carr, M. H. (1974). Tectonism and volcanism of the Tharsis region of Mars. J. Geophys. Res., 79, 3943–3949.CrossRefGoogle Scholar
Chicarro, A. F., Schultz, P. H., and Masson, P. (1985). Global and regional ridge patterns on Mars. Icarus, 63, 153–174.CrossRefGoogle Scholar
Collins, G. C. (2006). Global expansion of Ganymede derived from strain measurements in grooved terrain (abs.). Lunar Planet. Sci. Conf. XXXVII, 2077. Houston, TX: Lunar and Planetary Institute (CD-Rom).Google Scholar
Collins, G. C. and Goodman, J. C. (2007). Enceladus' south polar sea. Icarus, 189, 72–82.CrossRefGoogle Scholar
Collins, G. C., HeadIII, J. W., and Pappalardo, R. T. (1998). Role of extensional instability in creating Ganymede grooved terrain: Insights from Galileo high-resolution stereo imaging. Geophys. Res. Lett., 25, 233–236.CrossRefGoogle Scholar
Cook, A. C., Watters, T. R., Robinson, M. S., Spudis, P. D., and Bussey, D. B. J. (2000). Lunar polar topography derived from Clementine stereoimages. J. Geophys. Res., 105, 12 023–12 034.CrossRefGoogle Scholar
Cordell, B. M. and Strom, R. G. (1977). Global tectonics of Mercury and the Moon. Phys. Earth Planet. Inter., 15, 146–155.CrossRefGoogle Scholar
Croft, S. K., Kargel, J. S., Kirk, R. L., Moore, J. M., Schenk, P. M., and Strom, R. G. (1995). Geology of Triton. In Neptune, eds. Bergstralh, J. T.et al. Tucson, AZ: University of Arizona Press, pp. 879–948.Google Scholar
Cruikshank, D. P., Schmitt, B., Roush, T. L., Owen, T. C., Quirico, E., Geballe, T. R., Bergh, C., Bartholomew, M. J., Dalle Ore, C. M., Doute, S., and Meier, R. (2000). Water ice on Triton. Icarus, 147, 309–316.CrossRefGoogle Scholar
Crumpler, L. S., Aubele, J. C., Senske, D. A., Keddie, S. T., Magee, K. P., and Head, J. W. (1997). Volcanoes and centers of volcanism on Venus. In Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, eds. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 697–756.Google Scholar
Davies, M. E. and Batson, R. M. (1975). Surface coordinates and cartography of Mercury. J. Geophys. Res., 80, 2417–2430.CrossRefGoogle Scholar
Davies, M. E., Dwornik, S. E., Gault, D. E., and Strom, R. G. (1978). Atlas of Mercury, NASA Spec. Publ. SP-423.Google Scholar
Davis, P. A. and Soderblom, L. A. (1984). Modeling crater topography and albedo from monoscopic Viking Orbiter images: I. Methodology. J. Geophys. Res., 89, 9449–9457.CrossRefGoogle Scholar
Davis, P. A., Tanaka, K. L., and Golombek, M. P. (1995). Topography of closed depressions, scarps, and grabens in the north Tharsis region of Mars: Implications for shallow crustal discontinuities and graben formation. Icarus, 114, 403–422.CrossRefGoogle Scholar
Dimitrova, L. L., Holt, W. E., Haines, A. J., and Schultz, R. A. (2006). Towards understanding the history and mechanisms of Martian faulting: The contribution of gravitational potential energy. Geophys. Res. Lett., 33, doi:10.1029/2005GL025307.CrossRefGoogle Scholar
Dohm, J. M. and Tanaka, K. L. (1999). Geology of the Thaumasia region, Mars: Plateau development, valley origins, and magmatic evolution. Planet. Space Sci., 47, 411–431.CrossRefGoogle Scholar
Dohm, J. M., Tanaka, K. L., and Hare, T. M. (2001a). Geologic map of the Thaumasia region of Mars. U.S. Geol. Surv. Misc. Invest. Ser. Map I-2650, scale 1:5 000 000.
Dohm, J. M., Ferris, J. C., Baker, V. R., Anderson, R. C., Hare, T. M., Strom, R. G., Barlow, N. G., Tanaka, K. L., Klemaszewski, J. E., and Scott, D. H. (2001b). Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res., 106, 32 943–32 958.CrossRefGoogle Scholar
Dohm, J. M., Baker, V. R., Maruyama, S., and Anderson, R. C. (2007a). Traits and evolution of the Tharsis superplume, Mars. In Superplumes: Beyond Plate Tectonics, eds. Yuen, D. A., Maruyama, S., Karato, S.-I. and Windley, B. F.. London: Springer, pp. 523–537.CrossRefGoogle Scholar
Dohm, J. M., Barlow, N. G., Anderson, R. C., Williams, J.-P., Miyamoto, H., Ferris, J. C., Strom, R. G., Taylor, G. J., Fairén, A. G., Baker, V. R., Boynton, W. V., Keller, J. M., Kerry, K., Janes, D., Rodríguez, A., and Hare, T. M. (2007b). Possible ancient giant basin and related water enrichment in the Arabia Terra province, Mars. Icarus, doi:10.1016/j.Icarus.2007.03.006.CrossRefGoogle Scholar
Dombard, A. J. and McKinnon, W. B. (2001). Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, superplastic creep. Icarus, 154, 321–336.CrossRefGoogle Scholar
Downs, G. S., Mouginis-Mark, P. J., Zisk, S. H., and Thompson, T. W. (1982). New radar derived topography for the northern hemisphere of Mars. J. Geophys. Res., 87, 9747–9754.CrossRefGoogle Scholar
Elachi, C., Wall, S., Allison, M., Anderson, Y., Boehmer, R., Callahan, P., Encrenaz, P., Flamini, E., Franceschetti, G., Gim, Y., Hamilton, G., Hensley, S., Janssen, M., Johnson, W., Kelleher, K.et al. (2005). Cassini radar views the surface of Titan. Science, 308, 970–974.CrossRefGoogle ScholarPubMed
Fairén, A. G. and Dohm, J. M. (2004). Age and origin of the lowlands of Mars. Icarus, 168, 277–284.CrossRefGoogle Scholar
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W., and Franklin, N. M. (2004). Dilational fault slip and pit chain formation on Mars. GSA Today, 14, 4–12.2.0.CO;2>CrossRefGoogle Scholar
Figueredo, P. H. and Greeley, R. (2004). Resurfacing history of Europa from pole-to-pole geological mapping. Icarus, 167, 287–312.CrossRefGoogle Scholar
Ford, P. G. and Pettengill, G. H. (1992). Venus topography and kilometer-scale slopes. J. Geophys. Res., 97, 13 103–13 114.CrossRefGoogle Scholar
Ford, J. P., Blom, R. G., Crisp, J. A., Elachi, C., Farr, T. G., Saunders, R. S., Theilig, E. E., Wall, S. D., and Yewell, S. B. (1989). Spaceborne Radar Observations: A Guide for Magellan Radar-Image Analysis. JPL Publ. 89–41. Pasadena, CA: Jet Propulsion Laboratory, 126pp.Google Scholar
Ford, J. P., Plaut, J. J., Weitz, C. M., Farr, T. G., Senske, D. A., Stofan, E. R., Michaels, G., and Parker, T. J. (1993). Guide to Magellan Image Interpretation. JPL Publ. 93–24. Pasadena, CA: Jet Propulsion Laboratory, 148pp.Google Scholar
Forsythe, R. D. and Zimbelman, J. R. (1988). Is the Gordii Dorsum escarpment on Mars an exhumed transcurrent fault?Nature, 336, 143–146.CrossRefGoogle Scholar
Frey, H. V. (2006). Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res., 111, doi:10.1029/2005JE002449.CrossRefGoogle Scholar
Frey, H., Roark, J. H., Shockey, K. M., Frey, E. L., and Sakimoto, S. H. E. (2002). Ancient lowlands on Mars. Geophys. Res. Lett., 29, 1384, doi:10.1029/2001GL013832.CrossRefGoogle Scholar
Furfaro, R., Dohm, J. M., Fink, W., Kargel, J. S., Schulze-Makuch, D., Fairén, A. G., Ferre, P. T., Palmero-Rodriguez, A., Baker, V. R., Hare, T. M., Tarbell, M., Miyamoto, H. H., and Komatsu, G. (2007). The search for life beyond Earth through fuzzy expert systems. Planet. Space Sci., 56, 448–472.CrossRefGoogle Scholar
Ghent, R. R. and Hansen, V. L. (1999). Structural and kinematic analysis of eastern Ovda Regio, Venus: Implications for crustal plateau formation. Icarus, 139, 116–136.CrossRefGoogle Scholar
Gilbert, G. K. (1886). The inculcation of scientific method by example, with an illustration drawn from the Quaternary of Utah. Am. J. Sci., 31 (3rd Series), 284–299.CrossRefGoogle Scholar
Gilbert, G. K. (1893). The Moon's face, a study of the origin of its features. Philos. Soc. Wash. Bull., 12, 241–292.Google Scholar
Gilmore, M. S., Collins, G. C., Ivanov, M. A., Marinangeli, L., and Head, J. W. (1998). Style and sequence of extensional structures in tessera terrain, Venus. J. Geophys. Res., 103, 16 813–16 840.CrossRefGoogle Scholar
Golombek, M. P. (1979). Structural analysis of lunar grabens and the shallow crustal structure of the Moon. J. Geophys. Res., 84, 4657–4666.CrossRefGoogle Scholar
Golombek, M. P. (1982). Constraints on the expansion of Ganymede and the thickness of the lithosphere (abs.). Proc. Lunar Planet. Sci. Conf. 13. J. Geophys. Res., 87, A77–A83.CrossRefGoogle Scholar
Golombek, M. P. (1992). Planetary tectonic processes, terrestrial planets. In The Astronomy and Astrophysics Encyclopedia, ed. Maran, S. P.. New York: Van Nostrand Reinhold, pp. 544–546.Google Scholar
Golombek, M. P. and McGill, G. E. (1983). Grabens, basin tectonics, and the maximum total expansion of the Moon. J. Geophys. Res., 88, 3563–3578.CrossRefGoogle Scholar
Golombek, M. P., Plescia, J. B., and Franklin, B. J. (1991). Faulting and folding in the formation of planetary wrinkle ridges. Proc. Lunar Planet. Sci. Conf. 21, 679–693.Google Scholar
Golombek, M. P., Tanaka, K. L., and Franklin, B. J. (1996). Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters. J. Geophys. Res., 101, 26 119–26 130.CrossRefGoogle Scholar
Golombek, M. P., Anderson, F. S., and Zuber, M. T. (2001). Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. J. Geophys. Res., 106, 23 811–23 821.CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435, 466–469.CrossRefGoogle ScholarPubMed
Goudy, C. L. and Schultz, R. A. (2005). Dike intrusions beneath grabens south of Arsia Mons, Mars. Geophys. Res. Lett., 32, doi:10.1029/2004GL021977.CrossRefGoogle Scholar
Goudy, C. L., Schultz, R. A., and Gregg, T. K. P. (2005). Coulomb stress changes in Hesperia Planum, Mars, reveal regional thrust fault reactivation. J. Geophys. Res., 110, doi:10.1029/2004JE002293.CrossRefGoogle Scholar
Greeley, R. and Guest, J. E. (1987). Geologic map of the eastern equatorial region of Mars. U.S. Geol. Surv. Misc. Invest. Ser., Map I-1802-B, scale 1:15 000 000.
Greeley, R., Chyba, C., Head, J. W., McCord, T., McKinnon, W. B., and Pappalardo, R. T. (2004). Geology of Europa. In Jupiter: The Planet, Satellites and Magnetosphere, eds. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. Tucson, AZ: University of Arizona Press, pp. 329–362.Google Scholar
Greenberg, R., Croft, S. K., Janes, D. M., Kargel, J. S., Lebofsky, L. A., Lunine, J. I., Marcialis, R. L., Melosh, H. J., Ojakangas, G. W., and Strom, R. G. (1991). Miranda. In Uranus, eds. Bergstralh, J. T.et al. Tucson, AZ: University of Arizona Press, pp. 693–735.Google Scholar
Greenberg, R., Geissler, P. E., Hoppa, G., Tufts, B. R., Durda, D. D., Pappalardo, R., Head, J. W., Greeley, R., Sullivan, R., and Carr, , , M. H. (1998). Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features. Icarus, 135, 64–78.CrossRefGoogle Scholar
Greenberg, R., Hoppa, G. V., Tufts, B. R., Geissler, P. E., and Reilly, J. (1999). Chaos on Europa. Icarus, 141, 263–286.CrossRefGoogle Scholar
Guest, J. E. and Stofan, E. R. (1999). A new view of the stratigraphic history of Venus. Icarus, 139, 55–66.CrossRefGoogle Scholar
Guest, J. E., Bulmer, M. H., Aubele, J. C., Beratan, K., Greeley, R., Head, J. W., Michaels, G., Weitz, C., and Wiles, C. (1992). Small volcanic edifices and volcanism in the plains on Venus. J. Geophys. Res., 97, 15 949–15 966.CrossRefGoogle Scholar
Hansen, V. L. (2000). Geologic mapping of tectonic planets. Earth Planet. Sci. Lett., 176, 527–542.CrossRefGoogle Scholar
Hansen, V. L. (2005). Venus's shield terrain. Geol. Soc. Am. Bull., 117, 808–822.CrossRefGoogle Scholar
Hansen, V. L. (2006). Geologic constraints on crustal plateau surface histories, Venus: The lava pond and bolide impact hypotheses. J. Geophys. Res., 111, doi:10.1029/2006JE002714.CrossRefGoogle Scholar
Hansen, V. L. and Willis, J. J. (1996). Structural analysis of a sampling of tesserae: Implications for Venus geodynamics. Icarus, 123, 296–312.CrossRefGoogle Scholar
Hansen, V. L. and Willis, J. J. (1998). Ribbon terrain formation, southwestern Fortuna Tessera, Venus: Implications for lithosphere evolution. Icarus, 132, 321–343.CrossRefGoogle Scholar
Hansen, V. L., Banks, B. K., and Ghent, R. R. (1999). Tessera terrain and crustal plateaus, Venus. Geology, 27, 1071–1074.2.3.CO;2>CrossRefGoogle Scholar
Hansen, V. L., Phillips, R. J., Willis, J. J., and Ghent, R. R. (2000). Structures in tessera terrain, Venus: Issues and answers. J. Geophys. Res., 105, 4135–4152.CrossRefGoogle Scholar
Hapke, B., Danielson, E., Klaasen, K., and Wilson, L. (1975). Photometric observations of Mercury from Mariner 10. J. Geophys. Res., 80, 2431–2443.CrossRefGoogle Scholar
Harmon, J. K., Campbell, D. B., Bindschadler, K. L., Head, J. W., and Shapiro, I. I. (1986). Radar altimetry of Mercury: A preliminary analysis. J. Geophys. Res., 91, 385–401.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and evolution of Mars. Space Sci. Rev., 96, 165–194.CrossRefGoogle Scholar
Hauber, E. and Kronberg, P. (2005). The large Thaumasia graben on Mars: Is it a rift?J. Geophys. Res., 110, doi:10.1029/2005JE002407.CrossRefGoogle Scholar
Hauck, S. A., Dombard, A. J., Phillips, R. J., and Solomon, S. C. (2004). Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett., 222, 713–728.CrossRefGoogle Scholar
Head, J. W., Kreslavsky, M. A., and Pratt, S. (2002). Northern lowlands of Mars: Evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res., 107, doi:10.1029/2000JE001445.CrossRefGoogle Scholar
Helfenstein, P., Thomas, P. C., and Veverka, J. (1989). Evidence from Voyager II photometry for early resurfacing of Umbriel. Nature, 338, 324–326.CrossRefGoogle Scholar
Herrick, R. R. and Sharpton, V. L. (2000). Implications from stereo-derived topography of Venusian impact craters. J. Geophys. Res., 105, 20 245–20 262.CrossRefGoogle Scholar
Herrick, R. R., Sharpton, V. L., Malin, M. C., Lyons, S. N., and Feely, K. (1997). Morphology and morphometry of impact craters. In Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, eds. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 1015–1046.Google Scholar
Hillier, J. and Squyres, S. W. (1991). Thermal stress tectonics on the satellites of Saturn and Uranus. J. Geophys. Res., 96, 15 665–15 674.CrossRefGoogle Scholar
Hoppa, G. V., Tufts, B. R., Greenberg, R., and Geissler, P. E. (1999a). Formation of cycloidal features on Europa. Science, 285, 1899–1902.CrossRefGoogle ScholarPubMed
Hoppa, G., Tufts, B. R., Greenberg, R., and Geissler, P. (1999b). Strike-slip faults on Europa: Global shear patterns driven by tidal stress. Icarus, 141, 287–298.CrossRefGoogle Scholar
Howard, K. A. and Muehlberger, W. R. (1973). Lunar thrust faults in the Taurus-Littrow region. In Apollo 17 Prel. Sci. Rep., NASA SP-330, 31–12 to 31–21.Google Scholar
Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R., and Bills, B. G. (2007). Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature, 447, 292–294.CrossRefGoogle ScholarPubMed
Hussmann, H. and Spohn, T. (2004). Coupled thermal and orbital evolution of Europa and Io. Icarus, 171, 391–410.CrossRefGoogle Scholar
Ivanov, M. A. and Head, J. W. (1996). Tessera terrain on Venus: A survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J. Geophys. Res., 101, 14 861–14 908.CrossRefGoogle Scholar
Jaeger, W. L., Turtle, E. P., Keszthelyi, L. P., Radebaugh, J., McEwen, A. S., and Pappalardo, R. T. (2003). Orogenic tectonism on Io. J. Geophys. Res., 108, doi:10.1029/2002JE001946.CrossRefGoogle Scholar
Janes, D. M. and Melosh, H. J. (1988). Sinker tectonics: An approach to the surface of Miranda. J. Geophys. Res., 93, 3127–3143.CrossRefGoogle Scholar
Jankowski, D. J. and Squyres, S. W. (1988). Solid-state ice volcanism on the satellites of Uranus. Science, 241, 1322–1325.CrossRefGoogle ScholarPubMed
Johnson, T. V. (2005). Geology of the icy satellites. Space Sci. Rev., 116, 401–420.CrossRefGoogle Scholar
King, S. D. (2008). Pattern of lobate scarps on Mercury's surface reproduced by a model of mantle convection. Nature Geosciences, 1, 229–232.CrossRefGoogle Scholar
Kirk, R. L., Soderblom, L. A., and Lee, E. L. (1992). Enhanced visualization for interpretation of Magellan radar data: Supplement to the Magellan Special Issue. J. Geophys. Res., 97, 16 371–16 381.CrossRefGoogle Scholar
Kirk, R. L., Howington-Kraus, E., Redding, B., Galuszka, D., Hare, T. M., Archinal, B. A., Soderblom, L. A., and Barrett, J. M. (2003). High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J. Geophys. Res., 108, doi:10.1029/2003JE002131.CrossRefGoogle Scholar
Kivelson, M. G., Khurana, K. K., Stevenson, D. J., Bennett, L., Joy, S., Russell, C. T., Walker, R. J., Zimmer, C., and Polanskey, C. (1999). Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. J. Geophys. Res., 104, 4609–4625.CrossRefGoogle Scholar
Kivelson, M. G., Khurana, K. K., and Volwerk, M. (2002). The permanent and inductive magnetic moments of Ganymede. Icarus, 157, 507–522.CrossRefGoogle Scholar
Knapmeyer, M., Oberst, J., Hauber, E., Wählisch, M., Deuchler, C., and Wagner, R. (2006). Working models for spatial distribution and level of Mars' seismicity. J. Geophys. Res., 111, E11006, doi:10.1029/2006JE002708.CrossRefGoogle Scholar
Koenig, E. and Aydin, A. (1998). Evidence for large-scale strike-slip faulting on Venus. Geology, 26, 551–554.2.3.CO;2>CrossRefGoogle Scholar
Komatsu, G., Gulick, V. C., and Baker, V. R. (2001). Valley networks on Venus. Geomorphology, 37, 225–240.CrossRefGoogle Scholar
Kring, D. A. and Cohen, B. A. (2002). Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J. Geophys. Res., 107, doi:10.1029/2001JE001529.CrossRefGoogle Scholar
Kumar, P. S. (2005). An alternative kinematic interpretation of Thetis Boundary Shear Zone, Venus: Evidence for strike-slip ductile duplexes. J. Geophys. Res., 110, doi:10.1029/2004JE002387.CrossRefGoogle Scholar
Lillesand, T. M. and Kiefer, R. W. (1994). Remote Sensing and Image Interpretation, 3rd edn. New York: John Wiley & Sons.Google Scholar
Lucchitta, B. K. (1976). Mare ridges and highland scarps: Results of vertical tectonism?Proc. Lunar Sci. Conf. 7, 2761–2782.Google Scholar
Lucchitta, B. K. (1977). Topography, structure, and mare ridges in southern Mare Imbrium and northern Oceanus Procellarum. Proc. Lunar Sci. Conf. 8, 2691–2703.Google Scholar
Lucchitta, B. K., McEwen, A. S., Clow, C. D., Geissler, R. B., Singer, R. B., Schultz, R. A., and Squyres, S. W. (1992). The canyon system on Mars. In Mars, eds. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 453–492.Google Scholar
Margot, J. L., Campbell, D. B., Jurgens, R. F., and Slade, M. A. (1999). Topography of the lunar poles from radar interferometry: A survey of cold trap locations. Science, 284, 1658–1660.CrossRefGoogle ScholarPubMed
Márquez, A., Fernández, C., Anguita, F., Farelo, A., Anguita, J., and de la Casa, M.-A. (2004). New evidence for a volcanically, tectonically, and climatically active Mars. Icarus, 172, 573–581.CrossRefGoogle Scholar
Masursky, H., Colton, G. W., and El-Baz, F. (eds.) (1978). Apollo Over the Moon: A View From Orbit, NASA SP-362. Washington, DC: NASA Scientific and Technical Information Office.
Maxwell, T. A., El-Baz, , , F., and Ward, S. H. (1975). Distribution, morphology, and origin of ridges and arches in Mare Serenitatis. Geol. Soc. Am. Bull., 86, 1273–1278.2.0.CO;2>CrossRefGoogle Scholar
McEwen, A. S., Kezthelyi, L., Lopes, R., Schenk, P., and Spencer, J. (2004). The lithosphere and surface of Io. In Jupiter: The Planet, Satellites and Magnetosphere, eds. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. Tucson, AZ: University of Arizona Press, pp. 307–328.Google Scholar
McGill, G. E. (1971). Attitude of fractures bounding straight and arcuate lunar rilles. Icarus, 14, 53–58.CrossRefGoogle Scholar
McGill, G. E. (1986). The giant polygons of Utopia, northern Martian plains. Geophys. Res. Lett., 13, 705–708.CrossRefGoogle Scholar
McGill, G. E. (1989). Buried topography of Utopia, Mars: Persistence of a giant impact depression. J. Geophys. Res., 94, 2753–2759.CrossRefGoogle Scholar
McGill, G. E. and Hills, L. S. (1992). Origin of giant Martian polygons. J. Geophys. Res., 97, 2633–2647.CrossRefGoogle Scholar
McKinnon, W. B. (1982). Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede. Proc. Lunar Planet. Sci. Conf. 12, 1585–1597.Google Scholar
McKinnon, W. B. and Melosh, H. J. (1980). Evolution of planetary lithospheres: Evidence from multiring basins on Ganymede and Callisto. Icarus, 44, 454–471.CrossRefGoogle Scholar
Mége, D. and Masson, P. (1996). Amounts of crustal stretching in Valles Marineris, Mars. Planet. Space Sci., 44, 749–781.CrossRefGoogle Scholar
Melosh, H. J. (1976). On the origin of fractures radial to lunar basins. Proc. Lunar Sci. Conf. 7, 2967–2982.Google Scholar
Melosh, H. J. (1978). The tectonics of mascon loading. Proc. Lunar Planet. Sci. Conf. 9, 3513–3525.Google Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York: Oxford University Press.Google Scholar
Melosh, H. J. and Dzurisin, D. (1978a). Tectonic implications for gravity structure of Caloris basin, Mercury. Icarus, 33, 141–144.CrossRefGoogle Scholar
Melosh, H. J. and Dzurisin, D. (1978b). Mercurian global tectonics: A consequence of tidal despinning?Icarus, 35, 227–236.CrossRefGoogle Scholar
Melosh, H. J. and McKinnon, W. B. (1988). The tectonics of Mercury. In Mercury, eds. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 374–400.Google Scholar
Moore, J. M. (1984). The tectonic and volcanic history of Dione. Icarus, 59, 205–220.CrossRefGoogle Scholar
Moore, J. M. and Ahern, J. L. (1983). The geology of Tethys. J. Geophys. Res., 88, A577–A584.CrossRefGoogle Scholar
Moore, J. M., Sullivan, R. J., Chuang, F. C., Head, J. W., McEwen, A. S., Milazzo, M. P., Nixon, B. E., Pappalardo, R. T., Schenk, P. M., and Turtle, E. P. (2001). Landform degradation and slope processes on Io: The Galileo view. J. Geophys. Res., 106, 33 223–33 240.CrossRefGoogle Scholar
Moore, J. M., Chapman, C. R., Chapman., C., Bierhaus, E., Greeley, R., Chuang, F., Klemaszewski, J., Clark, R., Dalton, J., Hibbitts, C., Schenk, P., Spencer, J., and Wagner, R. (2004a). Callisto. In Jupiter: The Planet, Satellites and Magnetosphere, eds. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. Tucson, AZ: University of Arizona Press, pp. 397–426.Google Scholar
Moore, J. M., Schenk, P. M., Bruesch, L. S., Asphaug, E., and McKinnon, W. B. (2004b). Large impact features on middle-sized icy satellites. Icarus, 171, 421–443.CrossRefGoogle Scholar
Moore, W. B. (2006). Thermal equilibrium in Europa's ice shell. Icarus, 180, 141–146.CrossRefGoogle Scholar
Moore, W. B. and Schubert, G. (2000). The tidal response of Europa. Icarus, 147, 317–319.CrossRefGoogle Scholar
Montesi, L. G. J. and Zuber, M. T. (2003a). Spacing of faults at the scale of the lithosphere and localization instability: 1. Theory. J. Geophys. Res., 108, doi:10.1029/2002JB001923.Google Scholar
Montesi, L. G. J. and Zuber, M. T. (2003b). Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. J. Geophys. Res., 108, doi:10.1029/2002JE001974.CrossRefGoogle Scholar
Murchie, S. L. and Head, J. W. (1988). Possible breakup of dark terrain on Ganymede by large-scale shear faulting. J. Geophys. Res., 93, 8795–8824.CrossRefGoogle Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L., and Blewett, D. T. (2008). Geology of the Caloris Basin, Mercury: A new view from MESSENGER. Science, 321, 73–76.CrossRefGoogle Scholar
Nimmo, F. and Giese, B. (2005). Thermal and topographic tests of Europa chaos formation models from Galileo E15 observations. Icarus, 177, 327–340.CrossRefGoogle Scholar
Nimmo, F. and Pappalardo, R. T. (2006). Diapir-induced reorientation of Saturn's moon Enceladus. Nature, 441, 614–616.CrossRefGoogle ScholarPubMed
Nimmo, F. and Tanaka, K. (2005). Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci., 33, 133–161.CrossRefGoogle Scholar
Nimmo, F., Spencer, J. R., Pappalardo, R. T., and Mullen, M. E. (2007). Shear heating as the origin of the plumes and heat flux on Enceladus. Nature, 447, 289–291.CrossRefGoogle ScholarPubMed
Ojakangas, G. W. and Stevenson, D. J. (1989). Thermal state of an ice shell on Europa. Icarus, 81, 220–241.CrossRefGoogle Scholar
Okubo, C. H. and Martel, S. J. (1998). Pit crater formation on Kilauea volcano, Hawaii. J. Volcan. Geotherm. Res., 86, 1–18.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2003). Thrust fault vergence directions on Mars: A foundation for investigating global-scale Tharsis-driven tectonics. Geophys. Res. Lett., 30, doi:10.1029/2003GL018664.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2004). Mechanical stratigraphy in the western equatorial region of Mars based on thrust fault-related fold topography and implications for near-surface volatile reservoirs. Geol. Soc. Am. Bull, 116, 594–605.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2006). Variability in Early Amazonian Tharsis stress state based on wrinkle ridges and strike-slip faulting. J. Struct. Geol., 28, 2169–2181.CrossRefGoogle Scholar
Okubo, C. H., Schultz, R. A., and Stefanelli, G. S. (2004). Gridding Mars Orbiter Laser Altimeter data with GMT: Effects of pixel size and interpolation methods on DEM integrity. Computers Geosci., 30, 59–72.CrossRefGoogle Scholar
Pappalardo, R. T. and Collins, G. C. (2005). Strained craters on Ganymede. J. Struct. Geol., 27, 827–838.CrossRefGoogle Scholar
Pappalardo, R. T., Reynolds, S. J., and Greeley, R. (1997). Extensional tilt blocks on Miranda: Evidence for an upwelling origin of Arden Corona. J. Geophys. Res., 102, 13 369–13 379.CrossRefGoogle Scholar
Pappalardo, R. T.et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res., 104, 24 015–24 055.CrossRefGoogle Scholar
Pappalardo, R. T., Collins, G. C., Head, J. W., Helfenstein, P., McCord, T., Moore, J. M., Prockter, L. M., Schenk, P. M., and Spencer, J. R. (2004). Geology of Ganymede. In Jupiter: The Planet, Satellites and Magnetosphere, eds. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. Tucson, AZ: University of Arizona Press, pp. 363–396.Google Scholar
Pechmann, J. C. (1980). The origin of polygonal troughs on the northern plains of Mars. Icarus, 42, 185–210.CrossRefGoogle Scholar
Pechmann, J. B. and Melosh, H. J. (1979). Global fracture patterns of a despun planet application to Mercury. Icarus, 38, 243–250.CrossRefGoogle Scholar
Pettengill, G. H., Eliason, E., Ford, P. G., Loriot, G. B., Masursky, H., and McGill, G. E. (1980). Pioneer Venus radar results: Altimetry and surface properties. J. Geophys. Res., 85, 8261–8270.CrossRefGoogle Scholar
Phillips, R. J. and Hansen, V. L. (1994). Tectonic and magmatic evolution of Venus. Annu. Rev. Earth Planet. Sci., 22, 597–654.CrossRefGoogle Scholar
Phillips, R. J. and Hansen, V. L. (1998). Geological evolution of Venus: Rises, plains, plumes, and plateaus. Science, 279, 1492–1497.CrossRefGoogle Scholar
Phillips, R. J. and Solomon, S. C. (1997). Compressional strain history of Mercury (abs.). Lunar Planet. Sci. Conf. XXVIII, 1107–1108.Google Scholar
Phillips, R. J., Raubertas, R. F., Arvidson, R. E., Sarkar, I. C., Herrick, R. R., Izenberg, N., and Grimm, R. E. (1992). Impact craters and Venus resurfacing history. J. Geophys. Res., 97, 15 923–15 948.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., Golombek, M. P., Jakosky, B. M., Banerdt, W. B., Smith, D. E., Williams, R. M. E., Hynek, B. M., Aharonson, O., and Hauck II, S. A. (2001). Ancient geodynamics and global-scale hydrology on Mars. Science, 291, 2587–2591.CrossRefGoogle ScholarPubMed
Plaut, J. J. (1993). Stereo imaging. In Guide to Magellan Image Interpretation, eds. Ford, J. P., Plaut, J. J., Weitz, C. M., Farr, T. G., Senske, D. A., Stofan, E. R., Michaels, G. and Parker, T. J.. JPL Publ. 93–24. Pasadena, CA: NASA and Jet Propulsion Laboratory, pp. 33–37.Google Scholar
Plescia, J. B. (1987). Geologic terrains and crater frequencies on Ariel. Nature, 327, 201–204.CrossRefGoogle Scholar
Plescia, J. B. (1988). Cratering history of Miranda: Implications for geologic processes. Icarus, 73, 442–461.CrossRefGoogle Scholar
Plescia, J. B. and Golombek, M. P. (1986). Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol. Soc. Am. Bull., 97, 1289–1299.2.0.CO;2>CrossRefGoogle Scholar
Plescia, J. B. and Saunders, R. S. (1982). Tectonic history of the Tharsis Region, Mars. J. Geophys. Res., 87, 9775–9791.CrossRefGoogle Scholar
Polit, A. T. (2005). Influence of mechanical stratigraphy and strain on the displacement–length scaling of normal faults on Mars, 2005. M.S. thesis, University of Nevada, Reno.Google Scholar
Porco, C. C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J. A., Charnoz, S., Cooper, N., Dawson, D. D., Del Genio, A. D., Tilmann, D., Dones, L., Dyudina, U., Evans, M. W., Fussner, S.et al. (2005a). Imaging of Titan from the Cassini spacecraft. Nature, 434, 159.CrossRefGoogle ScholarPubMed
Porco, C. C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J. A., Charnoz, S., Cooper, N., Dawson, D. D., Del Genio, A. D., Denk, T., Dones, L., Dyudina, U., Evans, M. W., Giese, B.et al. (2005b). Cassini imaging science: Initial results on Phoebe and Iapetus. Science, 307, 1237–1242.CrossRefGoogle ScholarPubMed
Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T. B., Rathbun, J.et al. (2006). Cassini observes the active south pole of Enceladus. Science, 311, 1393–1401.CrossRefGoogle ScholarPubMed
Price, M. and Suppe, J. (1995). Constraints on the resurfacing history of Venus from the hypsometry and distribution of volcanism, tectonism, and impact craters. Earth, Moon and Planets, 71, 99–145.CrossRefGoogle Scholar
Prockter, L. M., Head, J. W., Pappalardo, R. T., Sullivan, R. L., Clifton, A. E., Giese, B., Wagner, R., and Neukum, G. (2002). Morphology of Europan bands at high resolution: A mid-ocean ridge-type rift mechanism. J. Geophys. Res., 107, doi:10.1029/2000JE001458.CrossRefGoogle Scholar
Prockter, L. M., Pappalardo, R. T., and Nimmo, F. (2005). A shear heating origin for ridges on Triton. Geophys. Res. Lett., 32, doi:10.1029/2005GL022832.CrossRefGoogle Scholar
Riley, J., Hoppa, G. V., Greenberg, R., Tufts, B. R., and Geissler, P. (2000). Distribution of chaotic terrain on Europa. J. Geophys. Res., 105, 22 599–22 615.CrossRefGoogle Scholar
Robinson, M. S., Davies, M. E., Colvin, T. R., and Edwards, K. E. (1999). A revised control network for Mercury. J. Geophys. Res., 104, 30 847–30 852.CrossRefGoogle Scholar
Sabins, F. F. (1997). Remote Sensing: Principles and Interpretation. New York: W.H. Freeman and Company.Google Scholar
Schaber, G. G. and McCauley, J. F. (1980). Geologic map of the Tolstoj quadrangle of Mercury. U.S. Geol. Surv. Misc. Invest. Ser., Map I-1199, scale 1:5 000 000.
Schaber, G. G., Strom, R. G., Moore, H. J., Soderblom, L. A., Kirk, R. L., Chadwick, D. J., Dawson, D. D., Gaddis, L. A., Boyce, J. M., and Russell, J. (1992). Geology and distribution of impact craters on Venus: What are they telling us?J. Geophys. Res., 97, 13 257–13 302.CrossRefGoogle Scholar
Schenk, P. M. (1991). Fluid volcanism on Miranda and Ariel: Flow morphology and composition. J. Geophys. Res., 96, 1887–1906.CrossRefGoogle Scholar
Schenk, P. M. (1993). Central pit and dome craters: Exposing the interiors of Ganymede and Callisto. J. Geophys. Res., 98, 7475–7498.CrossRefGoogle Scholar
Schenk, P. M. and Bulmer, M. H. (1998). Origin of mountains on Io by thrust faulting and large-scale mass movements. Science, 279, 1514–1517.CrossRefGoogle ScholarPubMed
Schenk, P. M. and Bussey, D. B. J. (2004). Galileo stereo topography of the lunar north polar region. Geophys. Res. Lett., 31, doi:10.1029/2004GL021197.CrossRefGoogle Scholar
Schenk, P. M. and Jackson, M. P. A. (1993). Diapirism on Triton: A record of crustal layering and instability. Geology, 21, 299–302.2.3.CO;2>CrossRefGoogle Scholar
Schenk, P. M. and McKinnon, W. B. (1987). Ring geometry on Ganymede and Callisto. Icarus, 72, 209–234.CrossRefGoogle Scholar
Schenk, P. M. and McKinnon, W. B. (1989). Fault offsets and lateral crustal movement on Europa: Evidence for a mobile ice shell. Icarus, 79, 75–100.CrossRefGoogle Scholar
Schenk, P. M., McKinnon, W. B., Gwynn, D., and Moore, J. M. (2001a). Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas. Nature, 410, 57–60.CrossRefGoogle ScholarPubMed
Schenk, P., Hargitai, H., Wilson, R., McEwen, A., and Thomas, P. (2001b). The mountains of Io: Global and geological perspectives from Voyager and Galileo. J. Geophys. Res., 106, 33 201–33 222.CrossRefGoogle Scholar
Schenk, P. M., Chapman, C. R., Zahnle, K., and Moore, J. M. (2004). Ages and interiors: The cratering record of the Galilean satellites. In Jupiter: The Planet, Satellites and Magnetosphere, eds. Bagenal, F., Dowling, T. E. and McKinnon, W. B.. Tucson, AZ: University of Arizona Press, pp. 427–456.Google Scholar
Schubert, G., Spohn, T., and Reynolds, R. T. (1986). Thermal histories and internal structures of the moons of the solar system. In Satellites, eds. Burns, J. A. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 224–292.Google Scholar
Schultz, P. H. (1976). Moon Morphology. Austin: University of Texas Press.Google Scholar
Schultz, R. A. (1985). Assessment of global and regional tectonic models for faulting in the ancient terrains of Mars. J. Geophys. Res., 90, 7849–7860. (Correction to Schultz, R. A. Assessment of global and regional tectonic models for faulting in the ancient terrains of Mars. J. Geophys. Res., 91, 12 861–12 863, 1986.)CrossRefGoogle Scholar
Schultz, R. A. (1989). Strike-slip faulting of ridged plains near Valles Marineris, Mars. Nature, 341, 424–426.CrossRefGoogle Scholar
Schultz, R. A. (1991). Structural development of Coprates Chasma and western Ophir Planum. J. Geophys. Res., 96, 22 777–22 792.CrossRefGoogle Scholar
Schultz, R. A. (1995). Gradients in extension and strain at Valles Marineris. Planet. Space Sci., 43, 1561–1566.CrossRefGoogle Scholar
Schultz, R. A. (1998). Multiple-process origin of Valles Marineris basins and troughs. Planet. Space Sci., 46, 827–834.CrossRefGoogle Scholar
Schultz, R. A. (1999). Understanding the process of faulting: Selected challenges and opportunities at the edge of the 21st century. J. Struct. Geol., 21, 985–993.CrossRefGoogle Scholar
Schultz, R. A. (2000a). Localization of bedding-plane slip and backthrust faults above blind faults: Keys to wrinkle ridge structure. J. Geophys. Res., 105, 12 035–12 052.CrossRefGoogle Scholar
Schultz, R. A. (2000b). Fault-population statistics at the Valles Marineris Extensional Province, Mars: Implications for segment linkage, crustal strains, and its geodynamical development. Tectonophysics, 316, 169–193.CrossRefGoogle Scholar
Schultz, R. A. and Lin, J. (2001). Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamic implications. J. Geophys. Res., 106, 16 549–16 566.CrossRefGoogle Scholar
Schultz, R. A. and Tanaka, K. L. (1994). Lithospheric-scale buckling and thrust structures on Mars: The Coprates rise and south Tharsis ridge belt. J. Geophys. Res., 99, 8371–8385.CrossRefGoogle Scholar
Schultz, R. A. and Watters, T. R. (2001). Forward mechanical modeling of the Amenthes Rupes thrust fault on Mars. Geophys. Res. Lett., 28, 4659–4662.CrossRefGoogle Scholar
Schultz, R. A. and Zuber, M. T. (1994). Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads. J. Geophys. Res., 99, 14 691–14 702.CrossRefGoogle Scholar
Schultz, R. A., Okubo, C. H., Goudy, C. L., and Wilkins, S. J. (2004). Igneous dikes on Mars revealed by MOLA topography. Geology, 32, 889–892.CrossRefGoogle Scholar
Schultz, R. A., Okubo, C. H., and Wilkins, S. J. (2006). Displacement–length scaling relations for faults on the terrestrial planets. J. Struct. Geol., 28, 2182–2193.CrossRefGoogle Scholar
Schultz, R. A., Moore, J. M., Grosfils, E. B., Tanaka, K. L., and Mège, D. (2007). The Canyonlands model for planetary grabens: Revised physical basis and implications. In The Geology of Mars: Evidence from Earth-Based Analogues, eds. Chapman, M. G. and Skilling, I. P.. Cambridge: Cambridge University Press, pp. 371–399.CrossRefGoogle Scholar
Schulze-Makuch, D., Dohm, J. M., Fan, C., Fairén, A. G., Rodriguez, J. A. P., Baker, V. R., and Fink, W. (2007). Exploration of hydrothermal targets on Mars. Icarus, 189, 308–324.CrossRefGoogle Scholar
Scott, D. H. and Dohm, J. M. (1990). Chronology and global distribution of fault and ridge systems on Mars. Proc. Lunar Planet. Sci. Conf. 20, 487–501.Google Scholar
Scott, D. H. and Dohm, J. M. (1997). Mars structural geology and tectonics. In Encyclopedia of Planetary Sciences. New York: Van Nostrand Reinhold, pp. 461–463.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. U.S. Geol. Surv. Misc. Invest. Ser. Map I-1802-A, scale 1:15 000 000.
Sharpton, V. L. and Head, J. W. (1988). Lunar mare ridges: Analysis of ridge-crater intersections and implications for the tectonic origin of mare ridges. Proc. Lunar Planet. Sci. Conf. 18, 307–317.Google Scholar
Shoemaker, E. M. and Hackman, R. J. (1962). Stratigraphic basis for a lunar timescale. In The Moon, eds. Kopal, Z. and Mikhailov, Z. K.. London: Academic Press, pp. 289–300.Google Scholar
Shoemaker, E. M., Lucchitta, B. K., Plescia, J. B., Squyres, S. W., and Wilhelms, D. E. (1982). The geology of Ganymede. In Satellites of Jupiter, ed. Morrison, D.. Tucson, AZ: University of Arizona Press, pp. 435–520.Google Scholar
Simons, M., Solomon, S. C., and Hager, B. H. (1997). Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int., 131, 24–44.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettingill, G. H., Neumann, G. A., Lemoine, F. G., Abshire, J. B., Aharonson, O., Brown, C. D., Hauck, S. A.et al. (1999). The global topography of Mars and implications for surface evolution. Science, 284, 1495–1503.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Frey, H. V., Garvin, J. B., Head, J. W., Muhleman, D. O., Pettingill, G. H., Phillips, R. J., Solomon, S. C., Zwally, H. J., Banerdt, W. B., Duxbury, T. C., Golombek, M. P., Lemoine, F. G., Neumann, G. A., et al. (2001). Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106, 23 689–23 722.CrossRefGoogle Scholar
Smith-Konter, B. and Pappalardo, R. T. (2008). Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus, 198, 435–451.CrossRefGoogle Scholar
Solomon, S. C. (1976). Some aspects of core formation in Mercury. Icarus, 28, 509–521.CrossRefGoogle Scholar
Solomon, S. C. (1977). The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter., 15, 135–145.CrossRefGoogle Scholar
Solomon, S. C. (1978). On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett., 5, 461–464.CrossRefGoogle Scholar
Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Phys. Earth Planet. Inter., 19, 168–182.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1979). Vertical movements in mare basins: Relation to mare emplacement, basin tectonics, and lunar thermal history. J. Geophys. Res., 84, 1667–1682.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1980). Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere. Rev. Geophys., 18, 107–141.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1982). Evolution of the Tharsis province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res., 87, 9755–9774.CrossRefGoogle Scholar
Solomon, S. C., Smrekar, S. E., Bindschadler, D. L., Grimm, R. E., Kaula, W. M., McGill, G. E., Phillips, R. J., Saunders, R. S., Schubert, G., Squyres, S. W., and Stofan, E. R. (1992). Venus tectonics: An overview of Magellan observations. J. Geophys. Res., 97, 13 199–13 255.Google Scholar
Solomon, S. C., McNutt, R. L., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W., Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Philips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I., and Zuber, M. T. (2001). The MESSENGER Mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 1445–1465.CrossRefGoogle Scholar
Solomon, S. C., McNutt, R. L., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A., and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER's first Mercury flyby. Science, 321, 59–62.CrossRefGoogle ScholarPubMed
Sotin, C., Jaumann, R., Buratti, B. J., Brown, R. H., Clark, R. N., Soderblom, L. A., Baines, K. H., Bellucci, G., Bibring, J.-P., Capaccioni, F., Cerroni, P., Combes, M., Coradini, A., Cruikshank, D. P., Drossart, P.et al. (2005). Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature, 435, 786–789.CrossRefGoogle ScholarPubMed
Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B. J., Hendrix, A. R., Spilker, L. J., and Lopes, R. M. C. (2006). Cassini encounters Enceladus: Background and the discovery of a south polar hot spot. Science, 311, 1401–1405.CrossRefGoogle ScholarPubMed
Spitale, J. and Porco, C. (2007). Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Science, 449, 695–697.Google ScholarPubMed
Squyres, S. W. (1980). Volume changes in Ganymede and Callisto and the origin of grooved terrain. Geophys. Res. Lett., 7, 593–596.CrossRefGoogle Scholar
Stofan, E. R., Sharpton, V. L., Schubert, G., Baer, G., Bindschadler, D. L., Janes, D. M., and Squyres, S. W. (1992). Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes. J. Geophys. Res., 97, 13 347–13 378.CrossRefGoogle Scholar
Stofan, E. R., Smrekar, S. E., Tapper, S. W., Guest, J. E., and Grindrod, P. M. (2001). Preliminary analysis of an expanded corona database for Venus. Geophys. Res. Lett., 28, 4267–4270.CrossRefGoogle Scholar
Strom, R. G. (1984). Mercury. In The Geology of the Terrestrial Planets, ed. Carr, M. H.. NASA SP-469. Washington, DC: U.S. Government Printing Office, pp. 13–55.Google Scholar
Strom, R. G., Trask, N. J., and Guest, J. E. (1975). Tectonism and volcanism on Mercury. J. Geophys. Res., 80, 2478–2507.CrossRefGoogle Scholar
Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., and Kring, D. A. (2005). The origin of planetary impactors in the inner solar system. Science, 309, 1847–1850.CrossRefGoogle ScholarPubMed
Tanaka, K. L. (1986). The stratigraphy of Mars. In Proceedings of the 17th Lunar and Planetary Science Conference. J. Geophys. Res., Supplement., pt. 1, 91, E139–E158.CrossRefGoogle Scholar
Tanaka, K. L. (1990). Tectonic history of the Alba Patera-Ceraunius Fossae region of Mars. Proc. Lunar Planet. Sci. Conf. 20, 515–523.Google Scholar
Tanaka, K. L. and Davis, P. A. (1988). Tectonic history of the Syria Planum province of Mars. J. Geophys. Res., 93, 14 893–14 917.CrossRefGoogle Scholar
Tanaka, K. L. and Hartmann, W. K. (2008). The planetary timescale. In The Concise Geologic Time Scale, eds. Ogg, J. G., Ogg, G. M. and Gradstein, F. M.. New York: Cambridge University Press, pp. 13–22.Google Scholar
Tanaka, K. L., Golombek, M. P., and Banerdt, W. B. (1991). Reconciling stress and structural histories of the Tharsis region of Mars. J. Geophys. Res., 96, 15 617–15 633.CrossRefGoogle Scholar
Tanaka, K. L., Scott, D.H., and Greeley, R. (1992). Global stratigraphy. In Mars, eds. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 345–382.Google Scholar
Tanaka, K. T., Moore, H. J., Schaber, G. G., Chapman, M. G., Stofan, E. R., Campbell, D. B., Davis, P. A., Guest, J. E.McGill, G. E., Rogers, P. G., Saunders, R. S., and Zimbelman, J. R. (1994). The Venus geologic mappers' handbook. U.S. Geol. Surv. Open-File Rep. 94–438, 66 pp.
Tanaka, K. L., Senske, D. A., Price, M., and Kirk, R. L. (1997). Physiography, geomorphic/geologic mapping, and stratigraphy of Venus. In Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, eds. Bougher, S. W., Hunten, D. M. and Phillips, R. J.. Tucson, AZ: University of Arizona Press, pp. 667–694.Google Scholar
Tanaka, K. L., Dohm, J. M., Lias, J. H., and Hare, T. M. (1998). Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins. J. Geophys. Res., 103, 31 407–31 419.CrossRefGoogle Scholar
Tanaka, K. L., SkinnerJr., J. A., Hare, T. M., Joyal, T., and Wenker, A. (2003). Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res., 108, doi:10.1029/2002JE001908.CrossRefGoogle Scholar
Tera, F., Papanastassiou, D. A., and Wasserburg, G. J. (1974). Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett., 22, 1–21.CrossRefGoogle Scholar
Thomas, P. G. (1997). Are there other tectonics than tidal despinning, global contraction and Caloris-related events on Mercury? A review of questions and problems. Planet. Space Sci., 45, 3–13.CrossRefGoogle Scholar
Thomas, P. G., Masson, P., and Fleitout, L. (1988). Tectonic history of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press.Google ScholarPubMed
Tuckwell, G. W. and Ghail, R. C. (2003). A 400-km-scale strike-slip zone near the boundary of Thetis Regio, Venus. Earth Planet. Sci. Lett., 211, 45–45.CrossRefGoogle Scholar
Turtle, E. P., Jaeger, W. L., Keszthelyi, L. P., McEwen, A. S., Milazzo, M., Moore, J., Phillips, C. B., Radebaugh, J., Simonelli, D., Chuang, F., and Schuster, P. (2001). Galileo SSI Team, Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models. J. Geophys. Res., 106, 33 175–33 200.CrossRefGoogle Scholar
Urey, H. C. (1952). The Planets. New Haven, CT: Yale University Press.Google Scholar
Watters, T. R. (1988). Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res., 93, 10 236–10 254.CrossRefGoogle Scholar
Watters, T. R. (1992). A system of tectonic features common to Earth, Mars, and Venus. Geology, 20, 609–612.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98, 17 049–17 060.CrossRefGoogle Scholar
Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171, 284–294.CrossRefGoogle Scholar
Watters, T. R. and Maxwell, T. A. (1986). Orientation, relative age, and extent of the Tharsis plateau ridge system. J. Geophys. Res., 91, 8113–8125.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (1998). Topography of lobate scarps on Mercury: New constraints on the planet's contraction. Geology, 26, 991–994.2.3.CO;2>CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., and Cook, A. C. (2001). Large-scale lobate scarps in the southern hemisphere of Mercury. Planet. Space Sci., 49, 1523–1530.CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S., and Cook, A. C. (2002). The mechanical and thermal structure of Mercury's early lithosphere. Geophys. Res. Lett., 29, 1542.CrossRefGoogle Scholar
Watters, T. R., Robinson, M. S., Bina, C. R., and Spudis, P. D. (2004). Thrust faults and the global contraction of Mercury. Geophys. Res. Lett., 31, doi:10.1029/2003GL019171.CrossRefGoogle Scholar
Watters, T. R., Nimmo, F., and Robinson, M. S. (2005). Extensional troughs in the Caloris Basin of Mercury: Evidence of lateral crustal flow. Geology, 33, doi:10.1130/G21678.CrossRefGoogle Scholar
Watters, T. R., McGovern, P. J., and IrwinIII, R. P. (2007).Hemispheres apart: The crustal dichotomy on Mars. Annu. Rev. Earth Planet. Sci., 35, 621–652.CrossRefGoogle Scholar
Wilhelms, D. E. (1972). Geologic mapping of the second planet. U.S. Geol. Surv. Interagency Report, Astrogeology 55, 36 pp.
Wilhelms, D. E. (1987). The geologic history of the Moon. U.S. Geol. Surv., Prof. Paper 1348.
Wilhelms, D. E. (1990). Geologic mapping. In Planetary Mapping, eds. Greeley, R. and Batson, R. M.. New York: Cambridge University Press, pp. 208–260.Google Scholar
Wilkins, S. J., Schultz, R. A., Anderson, R. C., Dohm, J. M., and Dawers, N. C. (2002). Deformation rates from faulting at the Tempe Terra extensional province, Mars. Geophys. Res. Lett., 29, doi:10.1029/2002GL015391.CrossRefGoogle Scholar
Wilkins, S. J. and Schultz, R. A. (2003). Cross faults in extensional settings: Stress triggering, displacements localization, and implications for the origin of blunt troughs at Valles Marineris. J. Geophys. Res., 108, doi:10.1029/2002JE001968.CrossRefGoogle Scholar
Wise, D. U., Golombek, M. P., and McGill, G. E. (1979). Tharsis province of Mars: Geologic sequence, geometry, and a deformation mechanism. Icarus, 38, 456–472.CrossRefGoogle Scholar
Withers, P. and Neumann, G. A. (2001). Enigmatic northern plains of Mars. Nature, 410, 651.CrossRefGoogle ScholarPubMed
Wyrick, D., Ferrill, D. A., Morris, A. P., Colton, S. L., and Sims, D. W. (2004). Distribution, morphology, and origins of Martian pit crater chains. J. Geophys. Res., 109, doi:06010.01029/02004JE002240.CrossRefGoogle Scholar
Young, D. A. and Hansen, V. L. (2003). Geologic map of the Rusalka quadrangle (V-25), Venus. U.S. Geol. Surv. Invest. Ser., Map 1-2783, scale 1:5 000 000.
Zahnle, K., Schenk, P., Levison, H., and Dones, L. (2003). Cratering rates in the outer solar system. Icarus, 163, 263–289.CrossRefGoogle Scholar
Zuber, M. T., Smith, D. E., Lemoine, F. G., and Neumann, G. A. (1994). The shape and internal structure of the Moon from the Clementine mission. Science, 266, 1839–1843.CrossRefGoogle ScholarPubMed
Zuber, M. T., Solomon, S. C., Phillips, R. J., Smith, D. E., Tyler, G. L., Aharonson, O., Balmino, G., Banerdt, W. B., Head, J. W., Johnson, C. L., Lemoine, F. G., McGovern, P. J., Neumann, G. A., Rowlands, D. D., and Zhong, S. (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–1793.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×