Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: April 2013

11 - The roles of vasopressin and oxytocin in aggression

from Part II - Behavioral studies – Comparative approach

REFERENCES

Albers, H. E., Dean, A., Karom, M. C., Smith, D., and Huhman, K. L. (2006). Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Research, 1073–1074, 425–430.
Albers, H. E., Liou, S. Y., and Ferris, C. F. (1988). Testosterone alters the behavioral response of the medial preoptic-anterior hypothalamus to microinjection of arginine vasopressin in the hamster. Brain Research, 456(2), 382–386.
Albers, H. E., Rowland, C. M., and Ferris, C. F. (1991). Arginine-vasopressin immunoreactivity is not altered by photoperiod or gonadal hormones in the Syrian hamster (Mesocricetus auratus). Brain Research, 539(1), 137–142.
Alonso, G., Szafarczyk, A., and Assenmacher, I. (1986). Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extrahypothalamic brain regions. Neuroscience Letters, 66(3), 251–256.
Antoni, F., Holmes, M., Makara, G., Karteszi, M., and Laszlo, F. (1984). Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides, 5(3), 519–522.
Askew, A., Gonzalez, F. A., Stahl, J. M., and Karom, M. C. (2006). Food competition and social experience effects on V1a receptor binding in the forebrain of male Long-Evans hooded rats. Hormones and Behavior, 49(3), 328–336.
Barberis, C., Balestre, M., Jard, S., et al. (1995). Characterization of a novel, linear radioiodinated vasopressin antagonist: an excellent radioligand for vasopressin V1a receptors. Neuroendocrinology, 62(2), 135–146.
Baumgartner, T., Heinrichs, M., Vonlanthen, A., Fischbacher, U., and Fehr, E. (2008). Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 58(4), 639–650.
Bester-Meredith, J. K. and Marler, C. A. (2001). Vasopressin and aggression in cross-fostered California mice (Peromyscus californicus) and white-footed mice (Peromyscus leucopus). Hormones and Behavior, 40(1), 51–64.
Bester-Meredith, J. K., Martin, P. A., and Marler, C. A. (2005). Manipulations of vasopressin alter aggression differently across testing conditions in monogamous and non-monogamous Peromyscus mice. Aggressive Behavior, 31, 189–199.
Bester-Meredith, J. K., Young, L. J., and Marler, C. A. (1999). Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors. Hormones and Behavior, 36(1), 25–38.
Blanchard, D. C. and Blanchard, R. J. (2003). What can animal aggression research tell us about human aggression? Hormones and Behavior, 44(3), 171–177.
Blanchard, D. C., Blanchard, R. J., Takahashi, L. K., and Takahashi, T. (1977). Septal lesions and aggressive behavior. Behavioral Biology, 21(1), 157–161.
Blanchard, R. J. and Blanchard, D. C. (1977). Aggressive behavior in the rat. Behavioral Biology, 21(2), 197–224.
Blanchard, R. J., Fukunaga, K., Blanchard, D. C., and Kelley, M. J. (1975). Conspecific aggression in the laboratory rat. Journal of Comparative and Physiological Psychology, 89(10), 1204–1209.
Blanchard, R. J., Griebel, G., Farrokhi, C., et al. (2005). AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacology Biochemistry and Behavior, 80(1), 189–194.
Bosch, O. J., Meddle, S. L., Beiderbeck, D. I., Douglas, A. J., and Neumann, I. D. (2005). Brain oxytocin correlates with maternal aggression: link to anxiety. Journal of Neuroscience, 25(29), 6807–6815.
Bosch, O. J. and Neumann, I. D. (2010). Vasopressin released within the central amygdala promotes maternal aggression. European Journal of Neuroscience, 31(5), 883–891.
Bosch, O. J., Pfortsch, J., Beiderbeck, D. I., Landgraf, R., and Neumann, I. D. (2010). Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat. Journal of Neuroendocrinology, 22(5), 420–429.
Bosch, O. J., Sartori, S. B., Singewald, N., and Neumann, I. D. (2007). Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: regulation by oxytocin. Stress, 10(3), 261–270.
Boyd, S. K. and Moore, F. L. (1992). Sexually dimorphic concentrations of arginine vasotocin in sensory regions of the amphibian brain. Brain Research, 588(2), 304–306.
Buijs, R. M. (1987). Vasopressin localization and putative functions in the brain. In D. M. Gash and G. J. Boer (Eds.), Vasopressin: Principles and Properties (pp. 91–115). New York: Plenum Press.
Buijs, R. M., Swaab, D. F., Dogterom, J., and van Leeuwen, F. W. (1978). Intra- and extra-hypothalamic vasopressin and oxytocin pathways in the rat. Cell and Tissue Research, 186(3), 423–433.
Caffe, A. R. and van Leeuwen, F. W. (1983). Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell and Tissue Research, 233(1), 23–33.
Caldwell, H. K. and Albers, H. E. (2003). Short-photoperiod exposure reduces vasopressin (V1a) receptor binding but not arginine-vasopressin-induced flank marking in male Syrian hamsters. Journal of Neuroendocrinology, 15(10), 971–977.
Caldwell, H. K. and Albers, H. E. (2004). Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Hormones and Behavior, 46(4), 444–449.
Caldwell, H. K., Dike, O. E., Stevenson, E. L., Storck, K., and Young, W. S., III. (2010). Social dominance in male vasopressin 1b receptor knockout mice. Hormones and Behavior, 58(2), 257–263.
Caldwell, H. K., Lee, H. J., Macbeth, A. H., and Young, W. S., III. (2008). Vasopressin: behavioral roles of an “original” neuropeptide. Progress in Neurobiology, 84(1), 1–24.
Caldwell, H. K. and Young, W. S., III. (2009). Persistence of reduced aggression in vasopressin 1b receptor knockout mice on a more “wild” background. Physiology and Behavior, 97(1), 131–134.
Castel, M. and Morris, J. F. (1988). The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience, 24(3), 937–966.
Cheng, S. Y. and Delville, Y. (2009). Vasopressin facilitates play fighting in juvenile golden hamsters. Physiology and Behavior, 98(1–2), 242–246.
Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., and Ferris, C. F. (1998). Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Archives of General Psychiatry, 55(8), 708–714.
Compaan, J. C., Buijs, R. M., Pool, C. W., De Ruiter, A. J., and Koolhaas, J. M. (1993). Differential lateral septal vasopressin innervation in aggressive and nonaggressive male mice. Brain Research Bulletin, 30(1–2), 1–6.
Consiglio, A. R., Borsoi, A., Pereira, G. A., and Lucion, A. B. (2005). Effects of oxytocin microinjected into the central amygdaloid nucleus and bed nucleus of stria terminalis on maternal aggressive behavior in rats. Physiology and Behavior, 85(3), 354–362.
Consiglio, A. R. and Lucion, A. B. (1996). Lesion of hypothalamic paraventricular nucleus and maternal aggressive behavior in female rats. Physiology and Behavior, 59(4–5), 591–596.
Cooper, M. A., Karom, M., Huhman, K. L., and Albers, H. E. (2005). Repeated agonistic encounters in hamsters modulate AVP V1a receptor binding. Hormones and Behavior, 48(5), 545–551.
Crawley, J. N. (2000). What's Wrong with My Mouse. New York: Wiley-Liss, pp. 171–174.
Curley, J. P., Davidson, S., Bateson, P., and Champagne, F. A. (2009). Social enrichment during postnatal development induces transgenerational effects on emotional and reproductive behavior in mice. Frontiers of Behavioral Neuroscience, 3, Article 25.
de Dreu, C. K. W., Greer, L. L., Handgraaf, M. J. J., et al. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 32 (5984), 1408–1411.
de Dreu, C. K. W., Greer, L. L., Van Kleef, G. A., et al. (2011). Oxytocin promotes human ethnocentrism. Proceedings of the National Academy of Sciences USA, 108(4), 1262–1266.
de Vries, G. J. and Buijs, R. M. (1983). The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Research, 273(2), 307–317.
de Vries, G. J., Buijs, R. M., Van Leeuwen, F. W., Caffe, A. R., and Swaab, D. F. (1985). The vasopressinergic innervation of the brain in normal and castrated rats. Journal of Comparative Neurology, 233(2), 236–254.
de Vries, G. J., Duetz, W., Buijs, R. M., van Heerikhuize, J., and Vreeburg, J. T. (1986). Effects of androgens and estrogens on the vasopressin and oxytocin innervation of the adult rat brain. Brain Research, 399(2), 296–302.
Delville, Y., Mansour, K. M., and Ferris, C. F. (1996a). Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiology and Behavior, 59(4–5), 813–816.
Delville, Y., Mansour, K. M., and Ferris, C. F. (1996b). Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiology and Behavior, 60(1), 25–29.
DeVito, L. M., Konigsberg, R., Lykken, C., et al. (2009). Vasopressin 1b receptor knock-out impairs memory for temporal order. Journal of Neuroscience, 29(9), 2676–2683.
DeVries, A. C., Young, W. S., III, and Nelson, R. J. (1997). Reduced aggressive behaviour in mice with targeted disruption of the oxytocin gene. Journal of Neuroendocrinology, 9(5), 363–368.
Dolan, M. C. (2010) What imaging tells us about violence in anti-social men. Crim Behav Ment Health, 20(3):199–214.
Elands, J., Barberis, C., Jard, S., et al. (1988). 125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT: a selective oxytocin receptor ligand. European Journal of Pharmacology, 147(2), 197–207.
Elliott, J. C., Lubin, D. A., Walker, C. H., and Johns, J. M. (2001). Acute cocaine alters oxytocin levels in the medial preoptic area and amygdala in lactating rat dams: implications for cocaine-induced changes in maternal behavior and maternal aggression. Neuropeptides, 35(2), 127–134.
Engelmann, M., Ebner, K., Landgraf, R., Holsboer, F., and Wotjak, C. T. (1999). Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. Journal of Neuroendocrinology, 11(11), 867–872.
Everts, H. G., De Ruiter, A. J., and Koolhaas, J. M. (1997). Differential lateral septal vasopressin in wild-type rats: correlation with aggression. Hormones and Behavior, 31(2), 136–144.
Ferris, C. F. (2008). Functional magnetic resonance imaging and the neurobiology of vasopressin and oxytocin. Progress in Brain Research, 170, 305–320.
Ferris, C. F., Albers, H. E., Wesolowski, S. M., Goldman, B. D., and Luman, S. E. (1984). Vasopressin injected into the hypothalamus triggers a stereotypic behavior in golden hamsters. Science, 224(4648), 521–523.
Ferris, C. F., Axelson, J. F., Martin, A. M., and Roberge, L. F. (1989). Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters. Neuroscience, 29(3), 675–683.
Ferris, C. F. and Delville, Y. (1994). Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology, 19(5–7), 593–601.
Ferris, C. F., Delville, Y., Grzonka, Z., Luber-Narod, J., and Insel, T. R. (1993). An iodinated vasopressin (V1) antagonist blocks flank marking and selectively labels neural binding sites in golden hamsters. Physiology and Behavior, 54(4), 737–747.
Ferris, C. F., Foote, K. B., Meltser, H. M., et al. (1992). Oxytocin in the amygdala facilitates maternal aggression. Annals of the New York Academy of Science, 652, 456–457.
Ferris, C. F., Lu, S. F., Messenger, T., et al. (2006). Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacology Biochemistry and Behavior, 83(2), 169–174.
Ferris, C. F., Meenan, D. M., Axelson, J. F., and Albers, H. E. (1986). A vasopressin antagonist can reverse dominant/subordinate behavior in hamsters. Physiology and Behavior, 38(1), 135–138.
Ferris, C. F., Melloni, R. H., Jr., Koppel, G., et al. (1997). Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. Journal of Neuroscience, 17(11), 4331–4340.
Ferris, C. F. and Potegal, M. (1988). Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiology and Behavior, 44(2), 235–239.
Ferris, C. F., Rasmussen, M. F., Messenger, T., and Koppel, G. (2001). Vasopressin-dependent flank marking in golden hamsters is suppressed by drugs used in the treatment of obsessive-compulsive disorder. BMC Neuroscience, 2, 10.
Ferris, C. F., Singer, E. A., Meenan, D. M., and Albers, H. E. (1988). Inhibition of vasopressin-stimulated flank marking behavior by V1-receptor antagonists. European Journal of Pharmacology, 154(2), 153–159.
Ferris, C. F., Stolberg, T., and Delville, Y. (1999). Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behavioral Neuroscience, 113(4), 804–815.
Ferris, C. F., Stolberg, T., Kulkarni, P., et al. (2008). Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neuroscience, 9, 111.
Fetissov, S. O., Hallman, J., Nilsson, I., et al. (2006). Aggressive behavior linked to corticotropin-reactive autoantibodies. Biological Psychiatry, 60(8), 799–802.
Foletta, V. C., Brown, F. D., and Young, W. S., III. (2002). Cloning of rat ARHGAP4/C1, a RhoGAP family member expressed in the nervous system that colocalizes with the Golgi complex and microtubules. Molecular Brain Research, 107(1), 65–79.
Frazier, C. R., Trainor, B. C., Cravens, C. J., Whitney, T. K., and Marler, C. A. (2006). Paternal behavior influences development of aggression and vasopressin expression in male California mouse offspring. Hormones and Behavior, 50(5), 699–707.
Gammie, S. C. and Nelson, R. J. (2000). Maternal and mating-induced aggression is associated with elevated citrulline immunoreactivity in the paraventricular nucleus in prairie voles. Journal of Comparative Neurology, 418(2), 182–192.
Gammie, S. C. and Nelson, R. J. (2001). cFOS and pCREB activation and maternal aggression in mice. Brain Research, 898(2), 232–241.
Giovenardi, M., Padoin, M.J., Cadore, L. P., and Lucion, A. B. (1998). Hypothalamic paraventricular nucleus modulates maternal aggression in rats: effects of ibotenic acid lesion and oxytocin antisense. Physiology and Behavior, 63(3), 351–359.
Gobrogge, K. L., Liu, Y., Jia, X., and Wang, Z. (2007). Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. Journal of Comparative Neurology, 502(6), 1109–1122.
Gobrogge, K. L., Liu, Y., Young, L. J., and Wang, Z. (2009). Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proceedings of the National Academy of Sciences USA, 106(45), 19144–19149.
Goodson, J. L. and Bass, A. H. (2001). Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Research Reviews, 35(3), 246–265.
Gould, B. R. and Zingg, H. H. (2003). Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor-LacZ reporter mouse. Neuroscience, 122(1), 155–167.
Grimes, J. M., Ricci, L. A., and Melloni, R. H., Jr. (2006). Plasticity in anterior hypothalamic vasopressin correlates with aggression during anabolic-androgenic steroid withdrawal in hamsters. Behavioral Neuroscience, 120(1), 115–124.
Guastella, A. J., Kenyon, A. R., Alvares, G. A., Carson, D. S., and Hickie, I. B. (2010). Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biological Psychiatry, 67(12), 1220–1222.
Hallbeck, M., Hermanson, O., and Blomqvist, A. (1999). Distribution of preprovasopressin mRNA in the rat central nervous system. Journal of Comparative Neurology, 411(2), 181–200.
Hansen, S. and Ferreira, A. (1986). Food intake, aggression, and fear behavior in the mother rat: control by neural systems concerned with milk ejection and maternal behavior. Behavioral Neuroscience, 100(1), 64–70.
Harmon, A. C., Huhman, K. L., Moore, T. O., and Albers, H. E. (2002). Oxytocin inhibits aggression in female Syrian hamsters. Journal of Neuroendocrinology, 14(12), 963–969.
Harrison, R. J., Connor, D. F., Nowak, C., Nash, K., and Melloni, R. H., Jr. (2000). Chronic anabolic-androgenic steroid treatment during adolescence increases anterior hypothalamic vasopressin and aggression in intact hamsters. Psychoneuroendocrinology, 25(4), 317–338.
Hasen, N. S. and Gammie, S. C. (2006). Maternal aggression: new insights from Egr-1. Brain Research, 1108(1), 147–156.
Heinrichs, M., Baumgartner, T., Kirschbaum, C., and Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 1389–1398.
Hernando, F., Schoots, O., Lolait, S. J., and Burbach, J. P. (2001). Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology, 142(4), 1659–1668.
Insel, T. R. and Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Academy of Sciences USA, 89(13), 5981–5985.
Insel, T. R., Young, L., Witt, D. M., and Crews, D. (1993). Gonadal steroids have paradoxical effects on brain oxytocin receptors. Journal of Neuroendocrinology, 5(6), 619–628.
Jard, S., Barberis, C., Audigier, S., and Tribollet, E. (1987). Neurohypophyseal hormone receptor systems in brain and periphery. Progress in Brain Research, 72, 173–187.
Jarrett, T. M., McMurray, M. S., Walker, C. H., and Johns, J. M. (2006). Cocaine treatment alters oxytocin receptor binding but not mRNA production in postpartum rat dams. Neuropeptides, 40(3), 161–167.
Jirikowski, G. F., Caldwell, J. D., Stumpf, W. E., and Pedersen, C. A. (1990). Topography of oxytocinergic estradiol target neurons in the mouse hypothalamus. Folia et Histochemica Cytobiologica, 28(1–2), 3–9.
Johns, J. M., Lubin, D. A., Walker, C. H., Meter, K. E., and Mason, G. A. (1997). Chronic gestational cocaine treatment decreases oxytocin levels in the medial preoptic area, ventral tegmental area and hippocampus in Sprague-Dawley rats. Neuropeptides, 31(5), 439–443.
Johns, J. M., McMurray, M. S., Joyner, P. W., et al. (2010). Effects of chronic and intermittent cocaine treatment on dominance, aggression, and oxytocin levels in post-lactational rats. Psychopharmacology, 211(2), 175–185.
Johnson, A. E., Audigier, S., Rossi, F., et al. (1993). Localization and characterization of vasopressin binding sites in the rat brain using an iodinated linear AVP antagonist. Brain Research, 622(1–2), 9–16.
Johnson, A. E., Barberis, C., and Albers, H. E. (1995). Castration reduces vasopressin receptor binding in the hamster hypothalamus. Brain Research, 674(1), 153–158.
Kimura, T., Tanizawa, O., Mori, K., Brownstein, M. J., and Okayama, H. (1992). Structure and expression of a human oxytocin receptor. Nature, 356(6369), 526–529.
Kirsch, P., Esslinger, C., Chen, Q., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 11489–11493.
Koolhaas, J. M., Everts, H., de Ruiter, A. J., de Boer, S. F., and Bohus, B. (1998). Coping with stress in rats and mice: differential peptidergic modulation of the amygdala-lateral septum complex. Progress in Brain Research, 119, 437–448.
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., and Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676.
Kremarik, P., Freund-Mercier, M. J., and Stoeckel, M. E. (1993). Histoautoradiographic detection of oxytocin- and vasopressin-binding sites in the telencephalon of the rat. Journal of Comparative Neurology, 333(3), 343–359.
Labuschagne, I., Phan, K. L., Wood, A., et al. (2010). Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology, 35(12), 2403–2413.
Lapiz, M. D., Fulford, A., Muchimapura, S., et al. (2001). Influence of postweaning social isolation in the rat on brain development, conditioned behaviour and neurotransmission. Neuroscience and Behavioral Physiology, 87(6), 730–751.
Lapiz, M. D., Mateo, Y., Durkin, S., Parker, T., and Marsden, C. A. (2001). Effects of central noradrenaline depletion by the selective neurotoxin DSP-4 on the behaviour of the isolated rat in the elevated plus maze and water maze. Psychopharmacology, 155(3), 251–259.
Lee, H. J., Macbeth, A. H., Pagani, J. H., and Young, W. S., III. (2009). Oxytocin: the great facilitator of life. Progress in Neurobiology, 88(2), 127–151.
Lolait, S. J., O’Carroll, A. M., Mahan, L. C., et al. (1995). Extrapituitary expression of the rat V1b vasopressin receptor gene. Proceedings of the National Academy of Sciences USA, 92(15), 6783–6787.
Lonstein, J. S. and Gammie, S. C. (2002). Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neuroscience and Biobehavioral Reviews, 26(8), 869–888.
Lowry, C. A., Richardson, C. F., Zoeller, T. R., et al. (1997). Neuroanatomical distribution of vasotocin in a urodele amphibian (Taricha granulosa) revealed by immunohistochemical and in situ hybridization techniques. Journal of Comparative Neurology, 385(1), 43–70.
Lubin, D. A., Elliott, J. C., Black, M. C., and Johns, J. M. (2003). An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behavioral Neuroscience, 117(2), 195–201.
Lubin, D. A., Meter, K. E., Walker, C. H., and Johns, J. M. (2001a). Dose-related effects of chronic gestational cocaine treatment on maternal aggression in rats on postpartum days 2, 3, and 5. Progress Neuropsychopharmacology and Biological Psychiatry, 25(7), 1403–1420.
Lubin, D. A., Meter, K. E., Walker, C. H., and Johns, J. M. (2001b). Effects of chronic cocaine administration on aggressive behavior in virgin rats. Progress Neuropsychopharmacology and Biological Psychiatry, 25(7), 1421–1433.
Lukas, M., Bredewold, R., Neumann, I. D., and Veenema, A. H. (2010). Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology, 58(1), 78–87.
Mahalati, K., Okanoya, K., Witt, D. M., and Carter, C. S. (1991). Oxytocin inhibits male sexual behavior in prairie voles. Pharmacology Biochemistry and Behavior, 39(1), 219–222.
Malick, J. B. (1975). Effects of age and food deprivation on the development of muricidal behavior in rats. Physiology and Behavior, 14(2), 171–175.
Malick, J. B. (1979). The pharmacology of isolation-induced aggressive behavior in mice. Curr Dev Psychopharmacology, 5, 1–27.
Mason, W. T., Ho, Y. W., and Hatton, G. I. (1984). Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience, 11(1), 169–182.
Melloni, R. H., Jr., Connor, D. F., Hang, P. T., Harrison, R. J., and Ferris, C. F. (1997). Anabolic-androgenic steroid exposure during adolescence and aggressive behavior in golden hamsters. Physiology and Behavior, 61(3), 359–364.
Meyer-Lindenberg, A. (2008). Impact of prosocial neuropeptides on human brain function. Progress in Brain Research, 170, 463–470.
Miczek, K. A., de Almeida, R. M., Kravitz, E. A., et al. (2007). Neurobiology of escalated aggression and violence. Journal of Neuroscience, 27(44), 11803–11806.
Miczek, K. A., Maxson, S. C., Fish, E. W., and Faccidomo, S. (2001). Aggressive behavioral phenotypes in mice. Behavioural Brain Research, 125(1–2), 167–181.
Millan, M. J., Millan, M. H., Czlonkowski, A., and Herz, A. (1984). Vasopressin and oxytocin in the rat spinal cord: distribution and origins in comparison to [Met]enkephalin, dynorphin and related opioids and their irresponsiveness to stimuli modulating neurohypophyseal secretion. Neuroscience, 13(1), 179–187.
Miller, M. A., Ferris, C. F., and Kolb, P. E. (1999). Absence of vasopressin expression by galanin neurons in the golden hamster: implications for species differences in extrahypothalamic vasopressin pathways. Molecular Brain Research, 67(1), 28–35.
Moore, F. L., Lowry, C. A., and Rose, J. D. (1994). Steroid-neuropeptide interactions that control reproductive behaviors in an amphibian. Psychoneuroendocrinology, 19(5–7), 581–592.
Moyer, K. E. (1968). Kinds of aggression and their physiological basis. Communications in Behavioral Biology, 2A, 65–87.
Nephew, B. C. and Bridges, R. S. (2008). Central actions of arginine vasopressin and a V1a receptor antagonist on maternal aggression, maternal behavior, and grooming in lactating rats. Pharmacology Biochemistry and Behavior, 91(1), 77–83.
Nephew, B. C., Bridges, R. S., Lovelock, D. F., and Byrnes, E. M. (2009). Enhanced maternal aggression and associated changes in neuropeptide gene expression in multiparous rats. Behavioral Neuroscience, 123(5), 949–957.
Olazabal, D. E. and Ferreira, A. (1997). Maternal behavior in rats with kainic acid-induced lesions of the hypothalamic paraventricular nucleus. Physiology and Behavior, 61(5), 779–784.
Ophir, A. G., Crino, O. L., Wilkerson, Q. C., Wolff, J. O., and Phelps, S. M. (2008). Female-directed aggression predicts paternal behavior, but female prairie voles prefer affiliative males to paternal males. Brain Behavior and Evolution, 71(1), 32–40.
Ostrowski, N. L., Lolait, S. J., Bradley, D. J., et al. (1992). Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology, 131(1), 533–535.
Ostrowski, N. L., Lolait, S. J., and Young, W. S., III. (1994). Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology, 135(4), 1511–1528.
Otten, S. and Stapel, D. A. (2007). Who is this Donald? How social categorization affects aggression-priming effects. European Journal of Social Psychology, 37, 1000–1015.
Planas, B., Kolb, P. E., Raskind, M. A., and Miller, M. A. (1995). Vasopressin and galanin mRNAs coexist in the nucleus of the horizontal diagonal band: a novel site of vasopressin gene expression. Journal of Comparative Neurology, 361(1), 48–56.
Reber, S. O. and Neumann, I. D. (2008). Defensive behavioral strategies and enhanced state anxiety during chronic subordinate colony housing are accompanied by reduced hypothalamic vasopressin, but not oxytocin, expression. Annals of the New York Academy of Sciences, 1148, 184–195.
Rinaman, L. (1998). Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats. Journal of Comparative Neurology, 399(1), 101–109.
Roche, K. E. and Leshner, A. I. (1979). ACTH and vasopressin treatments immediately after a defeat increase future submissiveness in male mice. Science, 204(4399), 1343–1344.
Roper, J. A., Grant, E., Craighead, M., et al. (2009). The role of the vasopressin Vl b receptor in the HPA axis response to stress: molecular and pharmacological studies, World Conference on Neurohypophysial Hormones. Kitakyushu, Japan.
Ross, H. E. and Young, L. J. (2009). Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Frontiers in Neuroendocrinology, 30(4), 534–547.
Savaskan, E., Ehrhardt, R., Schulz, A., Walter, M., and Schachinger, H. (2008). Post-learning intranasal oxytocin modulates human memory for facial identity. Psychoneuroendocrinology, 33(3), 368–374.
Sawchenko, P. E. and Swanson, L. W. (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. Journal of Comparative Neurology, 205(3), 260–272.
Scott, J. P. (1966). Agonistic behavior of mice and rats: a review. American Zoologist, 6: 683–701.
Semsar, K., Kandel, F., and Godwin, J. (2001). Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Hormones and Behavior, 40(1), 21–31.
Serradeil-Le Gal, C., Wagnon, J., Tonnerre, B., et al. (2005). An overview of SSR149415, a selective nonpeptide vasopressin V(1b) receptor antagonist for the treatment of stress-related disorders. CNS Drug Reviews, 11(1), 53–68.
Shamay-Tsoory, S. G., Fischer, M., Dvash, J., et al. (2009). Intranasal administration of oxytocin increases envy and schadenfreude (gloating). Biological Psychiatry, 66(9), 864–870.
Siegel, H. I. (1985). Aggressive Behavior. In H. I. Siegel (Ed.), The Hamster: Reproduction and Behavior (pp. 261–286). New York: Plenum Press.
Sofroniew, M. V. (1983). Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Progress in Brain Research, 60, 101–114.
Sofroniew, M. V. (1985). Vasopressin- and neurophysin-immunoreactive neurons in the septal region, medial amygdala and locus coeruleus in colchicine-treated rats. Neuroscience, 15(2), 347–358.
Stemmelin, J., Lukovic, L., Salome, N., and Griebel, G. (2005). Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology, 30(1), 35–42.
Stribley, J. M. and Carter, C. S. (1999). Developmental exposure to vasopressin increases aggression in adult prairie voles. Proceedings of the National Academy of Sciences USA, 96(22), 12601–12604.
Svare, B., Betteridge, C., Katz, D., and Samuels, O. (1981). Some situational and experiential determinants of maternal aggression in mice. Physiology and Behavior, 26(2), 253–258.
Szot, P., Bale, T. L., and Dorsa, D. M. (1994). Distribution of messenger RNA for the vasopressin V1a receptor in the CNS of male and female rats. Molecular Brain Research, 24(1–4), 1–10.
Takayanagi, Y., Yoshida, M., Bielsky, I. F., et al. (2005). Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the National Academy of Sciences USA, 102(44), 16096–16101.
Thompson, R., Gupta, S., Miller, K., Mills, S., and Orr, S. (2004). The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology, 29(1), 35–48.
Thompson, R. R., George, K., Walton, J. C., Orr, S. P., and Benson, J. (2006). Sex-specific influences of vasopressin on human social communication. Proceedings of the National Academy of Sciences USA, 103(20), 7889–7894.
Todeschin, A. S., Winkelmann-Duarte, E. C., Jacob, M. H., et al. (2009). Effects of neonatal handling on social memory, social interaction, and number of oxytocin and vasopressin neurons in rats. Hormones and Behavior, 56(1), 93–100.
Tribollet, E., Barberis, C., and Arsenijevic, Y. (1997). Distribution of vasopressin and oxytocin receptors in the rat spinal cord: sex-related differences and effect of castration in pudendal motor nuclei. Neuroscience, 78(2), 499–509.
Urban, J. H., Miller, M. A., Drake, C. T., and Dorsa, D. M. (1990). Detection of vasopressin mRNA in cells of the medial amygdala but not the locus coeruleus by in situ hybridization. Journal of Chemical Neuroanatomy, 3(4), 277–283.
Vaccari, C., Lolait, S. J., and Ostrowski, N. L. (1998). Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology, 139(12), 5015–5033.
Valzelli, L. (1969). Aggressive behavior induced by isolation. In S. Garattini and E. B. Sigg (Eds.), Aggressive Behavior (pp. 70–76). London: Excerta Medica Foundation.
van Leeuwen, F. W., Caffe, A. R., and De Vries, G. J. (1985). Vasopressin cells in the bed nucleus of the stria terminalis of the rat: sex differences and the influence of androgens. Brain Research, 325(1–2), 391–394.
Veenema, A. H., Beiderbeck, D. I., Lukas, M., and Neumann, I. D. (2010). Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Hormones and Behavior, 58(2), 273–281.
Veenema, A. H., Blume, A., Niederle, D., Buwalda, B., and Neumann, I. D. (2006). Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24(6), 1711–1720.
Veenema, A. H., Bredewold, R., and Neumann, I. D. (2007). Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology, 32(5), 437–450.
Veenema, A. H. and Neumann, I. D. (2009). Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology, 34(3), 463–467.
Veening, J. G., de Jong, T., and Barendregt, H. P. (2010). Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiology and Behavior, 101(2), 193–210.
Veinante, P. and Freund-Mercier, M. J. (1997). Distribution of oxytocin- and vasopressin-binding sites in the rat extended amygdala: a histoautoradiographic study. Journal of Comparative Neurology, 383(3), 305–325.
Virkkunen, M., Rawlings, R., Tokola, R., et al. (1994). CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51(1), 20–27.
Volpi, S., Rabadan-Diehl, C., and Aguilera, G. (2004). Regulation of vasopressin V1b receptors and stress adaptation. Annals of the New York Academy of Sciences, 1018, 293–301.
Wang, Z., Zhou, L., Hulihan, T. J., and Insel, T. R. (1996). Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. Journal of Comparative Neurology, 366(4), 726–737.
Watters, J. J., Poulin, P., and Dorsa, D. M. (1998). Steroid hormone regulation of vasopressinergic neurotransmission in the central nervous system. Progress in Brain Research, 119, 247–261.
Wersinger, S. R., Caldwell, H. K., Christiansen, M., and Young, W. S., III. (2007). Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain and Behavior, 6(7), 653–660.
Wersinger, S. R., Caldwell, H. K., Martinez, L., et al. (2007). Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain and Behavior, 6(6), 540–551.
Wersinger, S. R., Ginns, E. I., O’Carroll, A. M., Lolait, S. J., and Young, W. S., III. (2002). Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Molecular Psychiatry, 7(9), 975–984.
Wersinger, S. R., Kelliher, K. R., Zufall, F., et al. (2004). Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Hormones and Behavior, 46(5), 638–645.
Wersinger, S. R., Temple, J. L., Caldwell, H. K., and Young, W. S., III. (2008). Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus). Endocrinology, 149(1), 116–121.
Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., and Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365(6446), 545–548.
Winslow, J. T., Hearn, E. F., Ferguson, J., et al. (2000). Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Hormones and Behavior, 37(2), 145–155.
Winslow, J. T. and Insel, T. R. (1991). Social status in pairs of male squirrel monkeys determines the behavioral response to central oxytocin administration. Journal of Neuroscience, 11(7), 2032–2038.
Winslow, J. T., Shapiro, L., Carter, C. S., and Insel, T. R. (1993). Oxytocin and complex social behavior: species comparisons. Psychopharmacology Bulletin, 29(3), 409–414.
Young, L. J., Wang, Z., Cooper, T. T., and Albers, H. E. (2000). Vasopressin (V1a) receptor binding, mRNA expression and transcriptional regulation by androgen in the Syrian hamster brain. Journal of Neuroendocrinology, 12(12), 1179–1185.
Young, W. S., Li, J., Wersinger, S. R., and Palkovits, M. (2006). The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience, 143(4), 1031–1039.
Zak, P. J., Stanton, A. A., and Ahmadi, S. (2007). Oxytocin increases generosity in humans. PLoS One, 2(11), e1128.
Zink, C. F., Stein, J. L., Kempf, L., Hakimi, S., and Meyer-Lindenberg, A. (2010). Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. Journal of Neuroscience, 30(20), 7017–7022.