Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: April 2013

3 - Regulation of oxytocin and vasopressin secretion

from Part I - Oxytocin and vasopressin systems

Related content

Powered by UNSILO

REFERENCES

Adan, R. A. H., Van Leeuwen, F. W., Sonnemans, M. A. F., et al. (1995). Rat oxytocin receptor in brain, pituitary, mammary gland, and uterus: partial sequence and immunocytochemical localization. Endocrinol, 136, 4022–4028.
Amina, S., Hashii, M., Ma, W. J., et al. (2010). Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108–15 neuronal cells with or without exogenous expression of human oxytocin receptors. J Neuroendocrinol, 22, 460–466.
Barata, H., Thompson, M., Zielinska, W., et al. (2004). The role of cyclic-ADP-ribose-signaling pathway in oxytocin-induced Ca2+ transients in human myometrium cells. Endocrinol, 145, 881–889.
Beck. A., Kolisek, M., Bagley, L. A., Fleig, A., and Penner, R. (2006). Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J, 20: 962–964.
Boittin, F. X., Dipp, M., Kinnear, N. P., Galione, A., and Evans, A. M. (2003). Vasodilation by the calcium-mobilizing messenger cyclic ADP-ribose. J Biol Chem, 278, 9602–9608.
Carter, C. S. (2003). Developmental consequences of oxytocin. Physiol Behav, 79: 383–397.
Ceni, C., Pochon, N., Villaz, M., et al. (2006). The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain. Biochem J, 395, 417–426.
De Flora, A., Zocchi, E., Guida, L., Franco, L., and Bruzzone, S. (2004). Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann NY Acad Sci 1028, 176–191.
Donaldson, Z. R. and Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322, 900–904.
Ebstein, R. P., Israel, S., and Lerer, E. (2009). Arginine vasopressin and oxytocin modulate human social behavior. Ann NY Acad Sci, 1167: 87–102.
Freund-Mercier, M. J., Stoeckel, M. E., and Klein, M. J. (1994). Oxytocin receptors on oxytocin neurons: histoautoradiographic detection in the lactating rat. J Physiol Lond, 480, 155–161.
Gimpl, G. and Fahrenholz, F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiol Rev, 81, 629–683.
Graeff, R. M., Franco, L., De Flora, A., and Lee, H. C. (1998). Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid denine dinucleotide phosphate. J Biol Chem, 273, 118–125.
Graeff, R. M., Walseth, T. F., Fryxell, K., Branton, W. D., and Lee, H. C. (1994). Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem, 269, 30260–30267.
Hashii, M., Minabe, Y., and Higashida, H. (2000). cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108–15 neuronal cells. Biochem J, 345, 207–215.
Higashida, H., Bowden, S. E., Yokoyama, S., et al. (2007). Overexpression of human CD38/ADP-ribosyl cyclase enhances acetylcholine-induced Ca2+ signalling in rodent NG108–15 neuroblastoma cells. Neurosci Res, 57, 339–346.
Higashida, H., Egorova, A., Higashida, C., et al. (1999). Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem, 274, 33348–33353.
Higashida, H., Lopatina, O., Yoshihara, T., et al. (2010). Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice. J Neuroendocrinol, 22, 373–379
Higashida, H., Salmina, A. B., Olovyannikova, et al. (2007). Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem Int, 51, 192–199.
Higashida, H., Yokoyama, S., Hashii, M., et al. (1997). Muscarinic receptor-mediated dual regulation of ADP-ribosyl cyclase in NG108–15 neuronal cell membranes. J Biol Chem, 227, 31272–31277.
Insel, T. R. (2010). The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768–779.
Jin, D., Liu, H. X., Hirai, H., et al. (2007). CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 446, 41–45.
Kim, S. Y., Cho, B. H., and Kim, U. H. (2010). CD38-mediated Ca2+ signaling contributes to angiotensin II-induced activation of hepatic stellate cells: attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem, 285, 576–582.
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., and Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676.
Lambert, R. C., Dayanithi, G., Moos, F. C., and Richard, P. (1994). A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol (Lond), 478, 275–287.
Lee, H. C. (2001). Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol, 41, 317–345.
Liu, H. X., Lopatina O., Higashida C., et al. (2008). Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett, 448, 67–70.
Lopatina, O., Liu, H. X., Amina, S., Hashii, M., and Higashida, H. (2010). Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice. Neuropharmacology, 58, 50–55.
Malek, A., Blann, E., and Mattison, D. (1996). Human placental transport of OXT. J Matern Fetal Med, 5, 245–255.
McGregor, I. S., Callaghan, P. D., and Hunt, G. E. (2008). From ultrasocial to antisocial: a role for oxytocin in the acute reinforcing effects and long-term adverse consequences of drug use? Brit J Pharmacol, 154, 358–368.
Modahl, C., Green, L., Fein, D., et al. (1998). Plasma OXT levels in autistic children. Biol Psychiatry, 43, 270–277.
Moos, F., Freund-Mercier, M. J., Guerné, Y., et al. (1984). Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol, 102, 63–72.
Munesue, T., Yokoyama, S., Nakamura, K., et al. (2010). Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res, 67, 181–191.
Neumann, I., Douglas, A. J., Pittman, Q. J., Russell, J. A., and Landgraf, R. (1996). Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J Neuroendocrinol, 8, 227–233.
Neumann, I. D. (2008). Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol, 20, 858–865.
Neumann, I., Koehler, E., Landgraf, R., and Summy-Long, J. (1994). An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinol, 134, 141–148.
Nirenberg, M., Wilson, S., Higashida, H., et al. (1983). Modulation of synapse formation by cyclic adenosine monophosphate. Science, 222, 794–799.
Nishimori, K., Young, L. J., Guo, Q., et al. (1996). Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA, 93, 11699–704.
OuYang, W., Wang, G., and Hemmings, H. C. Jr. (2004). Distinct rat neurohypophysial nerve terminal populations identified by size, electrophysiological properties and neuropeptide content. Brain Res, 1024, 203–211.
Perraud, A. L., Fleig, A., and Dunn, C. A. (2001). ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature, 411, 595–599.
Rah, S. Y., Park, K. H., Han, M. K., Im, M. J., and Kim, U. H. (2005). Activation of CD38 by interleukin-8 signaling regulates intracellular Ca2+ level and motility of lymphokine-activated killer cells. J Biol Chem, 280, 2888–2895.
Richard, P., Moos, F., and Freund-Mercier, M. J. (1991). Central effects of oxytocin. Physiol Rev, 71, 331–370.
Skuse, D. H. and Gallagher, L. (2009). Dopaminergic-neuropeptide interactions in the social brain. Trends Cogn Sci, 13, 27–35.
Sternfeld, L., Krause, E., Guse, A., and Schulz, I. (2003). Hormonal control of ADP-ribosyl cyclase activity in pancreatic acinar cells from rats. J Biol Chem, 278, 33629–33636.
Tanoue, Y., Oda, S. (1989). Weaning time of children with infantiole autism. J Autism Dev Disord, 19, 425–434.
Takayanagi. Y., Yoshida, M., and Bielsky, I. F. (2005). Pervasive social deficits, but normal parturition, in OXT receptor-deficient mice. Proc Natl Acad Sci USA, 102, 16096–16101.
Togashi, K., Hara, Y., Tominaga, T., et al. (2006). TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J, 25, 1804–1815.
Togashi, K., Inada, H., and Tominaga, M. (2008). Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol, 153, 1324–1330.
Tobin, V. A., Leng, G., Ludwig, M., and Douglas, A. J. (2010). Increased sensitivity of monoamine release in the supraoptic nucleus in late pregnancy: region- and stimulus-dependent responses. J Neuroendocrinol, 22, 430–437.
Young, L. J., Muns, S., Wang, Z., and Insel, T. R. (1997). Changes in oxytocin receptor mRNA in rat brain during pregnancy and the effects of estrogen and interleukin-6. J Neuroendocrinol, 9, 859–865.
Zak, P. J., Stanton, A. A., and Ahmadi, S. (2007). Oxytocin increases generosity in humans. PLoS ONE, 2, e1128.