Skip to main content Accessibility help
×
Home
Optical Code Division Multiple Access
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 16
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

A comprehensive guide to optical fiber communications, from the basic principles to the latest developments in OCDMA for Next-Generation Fiber-to-the-Home (FTTH) systems. Part I starts off with the fundamentals of light propagation in optical fibers, including multiple access protocols, and their enabling techniques. Part II is dedicated to the practical perspectives of Next-Generation Fiber-to-the-Home (FTTH) technology. It covers the key building blocks of OCDMA, devices such as optical encoders and decoders, signal impairments due to noise, and data confidentiality, a unique property of OCDMA. This is followed by hybrid system architectures with TDM and WDM and practical aspects such as system cost, energy efficiency and long-reach PONs. Featuring the latest research, with cutting-edge coverage of system design, optical implementations, and experimental demonstrations in test beds, this text is ideal for students, researchers and practitioners in the industry seeking to obtain an up-to-date understanding of optical communication networks.

Reviews

'This book delivers more than its title seems to promise. Rather than simply presenting the key principles of Optical Code Division Multiple Access (OCDMA), it also provides a very useful introduction to optical fiber transmission systems.'

K. Alan Shore Source: Optics and Photonics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Chapter 1

1. Wellbrock G. and Xia R. J. (2010). The road to 100G deployment, IEEE Commun. Mag., March, S14–S18.
3.Disclosure of Quarterly Data concerning Competition Review in the Telecommunications Business Field: 2288; First quarter of FY 2011, Ministry of Internal Affairs and Communications (www.soumu.go.jp/menu_news/s-news/01kiban04_02000033.html in Japanese).
4. Sakano T. (2009). Intelligent optical networking to achieve customer satisfaction – Challenges and direction toward the future, OFC2009, NWB (Los Angeles, CA).
5. Vanier F. (2011). World Broadband Statics: Q1 2011, POINT topic.
6. Nagel S. R. (1987). Optical fiber – the expanding medium, IEEE Commun. Mag., 25; 4, 33–43.
7. Kao K. C. and Hockham G. A. (1966). Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE, 113; 7, 1151–1158.
8. Suematsu Y. and Iga K. (2006). Introduction to Optical Fiber Communications (in Japanese), Tokyo: Ohmsha.
9. Kapron F. P., Keck D. B. and Maurer R. D. (1970). Radiation losses in glass optical waveguides, Appl. Phys. Lett., 17; 10, 423–425.
10. Itaya Y. (2008). Photonic Challenges Toward Future Broadband Society, ACP 2008, Plenary talk (Shanghai, China).
11. Morioka T., Jinno M., Takara H. and Kubota H. (2011). Revolutional optical transport technology in the future (in Japanese), NTT Technol. J., 23; 3, 32–36.
12. Morioka T., Awaji Y., Ryf R., Winzer P. and Richardson D. (2012). Enhancing optical communications with brand new fibers, IEEE Commun. Mag., February, S31–S42.
13. Takara H., Sano A., Kobayashi T., Kubota H., Kawakami H., Matsuura A., Miyamoto Y., Abe Y., Ono H., Shikama K., Goto Y., Tsujikawa K., Sasaki Y., Ishida I., Takenaga K., Matsuo S., Saitoh K., Koshiba M. and Morioka T. (2012). 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed Transmission with 91.4-b/s/Hz Aggregate Spectral Efficiency, ECOC2012, Th.3.c.1 (Amsterdam).
14. Gregory G. Raleigh and Cioffi J. M. (1998). Spatio-temporal coding for wireless communication, IEEE Trans. Commun., 46; 3, 357–366.
15. Randel S., Sierra A., Mumtaz S., Tulino A., Ryf R., Winzer P. J., Schmidt C. and Essiambre R. J. (2012). Adaptive MIMO Signal Processing for Mode-division Multiplexing, OFC2012, OW3D.5 (Los Angeles, CA).
16. Koester C. J. and Snitzer E. (1964). Amplification in a fiber laser, Appl. Opt., 3, 1182–1186.
17. Stone J. and Burrus C. A. (1973). Neodymium-doped silica lasers in end-pumped fiber geometry, Appl. Phys. Lett., 23, 388–389.
18. Mears R. J., Reekie L., Poole S. B. and Payne D. N. (1985). Neodymium-doped silica single-mode fibre laser, Electron. Lett., 21, 738–740.
19. Roberts K., Beckett D., Boertjes D., Berthold J. and Laperle C. (2010). 100G and beyond with digital coherent signal processing, IEEE Commun. Mag., July, 62–69.
20. Okoshi T. and Kikuchi K. (1980). Frequency stabilization of semiconductor lasers for heterodyne-type optical communication schemes, Electron. Lett., 16; 5, 179–181.
21. Favre F. and LeGuen D. (1980). High frequency stability of laser diode for heterodyne communication systems, Electron. Lett., 16; 18, 709–710.
22. Yamazaki E., Yamanaka S., Kisaka Y., Nakagawa T., Murata K., Yoshida E., Sakano T., Tomizawa M., Miyamoto Y., Matsuoka S., Matsui J., Shibayama A., Abe J., Nakamura Y., Noguchi H., Fukuchi K., Onaka H., Fukumitsu K., Komaki K., Takeuchi O., Sakamoto Y., Nakashima H., Mizuochi T., Kubo K., Miyata Y., Nishimoto H., Hirano S. and Onohara K. (2011). Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP, Opt. Express, 19; 14, 13179–13184.
23. Shannon C. E. (1949). Communication in the presence of noise, Proc. IRE, 37; 2, 10–21.
24. Duand L. B. and Lowery A. J. (2010). Improved single channel backpropagration for inta-channel fiber nonlinearity compensation in long-haul optical communication systems, Opt. Express, 18:2, 17075–17088.
25. Li L., Tao Z., Liu L., Yan W., Oda S., Hoshida T. and Rasmussen J. C. (2010). Nonlinear polarization crosstalk canceller for dual-polarization digital coherent receivers, OFC 2010, OWE3 (San Diego, CA, March 2010).
26. Mitra P. P. and Stark J. B. (2001). Nonlinear limits to the information capacity of optical fibre communications, Nature, 411, 1027–1030.
27. Essiambre R.-J. and Tkach R. W. (2012). Capacity trends and limits of optical communication networks, Proc. IEEE, 100; 5, 1035–1055.
28. Roberts P. J., Couny F., Sabert H., Mangan B. J., Williams D. P., Farr L., Mason M. W., Tomlinson A., Birks T. A., Knight J. C. and Russell P. S. J. (2005). Ultimate low loss of hollow-core photonic crystal fibres, Opt. Express, 13; 1, 236–244.
29. Collins B. C. (200). Wavelength Selectable Switches and Future Photonic Network Applications, PS 2009, FrII2–4 (Pisa, Italy).
30. Baran P. (2002). The beginning of packet switching: some underlying concepts, IEEE Commun. Mag., July, 42–48.
31. Miyahara H. (2001). Osaka University-NTT Meeting.
32. Recommendation ITU-T G.694.1 (02/2012). Figure I.1.
33. Reduction of CO2 by the ICT in 2020. Working group for environmental problem, Ministry of Internal Affairs and Communications in Japan, May 2010 (www.soumu.go.jp/main_content/000065258.pdf).
34. Hogari K., Yamada Y. and Toge K. (2010). Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons, Opt. Fiber Technol., 16, 257–263.
35. Muller S., Bechtolsheim A. and Hendel A. (2007). HSSG Speeds and Feeds Reality Check, IEEE 802.3 Higher Speed Study Group Meeting, January.

Chapter 2

1. Kani J., Bourgart F., Cui A., Rafel A., Campbell M., Davey R. and Rodrigues S. (2009). Next-generation PON – Part I: technology roadmap and general requirements, IEEE Commun. Mag., November, 43–49.
2. Chanclou P., Cui A., Geihardt, Nakamura H. and Nesset D. (2012). Network operator requirements for the next generation of optical access networks, IEEE Networks, March/April, 8–14.
3. ITU-T G.983.1 (2001). Broadband Passive Optical Networks (B-PON).
4. ITU-T G.984.1 (2008). Gigabit-Capable Passive Optical Networks (G-PON): General Characteristics.
5. IEEE 802.3ah (2004). Ethernet for the First Mile.
6. IEEE 802.3av (2009) 10Gb/s Ethernet Passive Optical Network.
7. ITU-T G987, 10 Gb/s-Capable Passive Optical Network (XG-PON) Systems.
8. ITU-T G.984.3 (2008). Gigabit-Capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification.
9. ITU-T G.984.2 (2003). Gigabit-Capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) Layer Specification.
10. IEEE Standard 802.3, 2005 Edition, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and physical layer specifications.
11. Effenberger F., Cleary D., Haran O., Kramer G., Ding R., Oron M. and Pfeiffer T. (2007). An introduction to PON technologies, IEEE Commun. Mag., March, S17–S25.
12. Kani J. and Suzuki K. (2009). Standardization of next-generation 10G-PON systems, NTT Technol. J., 21; 9, 90–93 (in Japanese).
13. Tanaka K., Agata A. and Horiuchi Y. (2010). IEEE 802.3av 10G-EPON Standardization and Its Research and Development Status, J. Lightwave Technol., 28; 4, 651–661.
14. Miki N. and Kumozaki K. (2007). Chapter 5, in Lam C. ed., Passive Optical Networks: Principles and Practice, Academic Press.
15. Basic Lecture Series (2005). GE-PON Technology, NTT Technol. J., 17; 10 (in Japanese).
16. Bosco G., Carena A., Curri V., Poggiolini P. and Forghieri F. (2010). Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK, IEEE Photonic Technol. Lett., 22; 15, 1129–1131.
17. Chandrasekhar S. and Liu X. (2012). OFDM based supperchannel transmission technology, J. Lightwave Technol., 30; 24, 3816–3823.
18. Yan M., Tao Z., Li L., Hoshida T. and Rasmussen J. C. (2012). Experimental Comparison of No-Guard-Interval-OFDM and Nyquist-WDM Superchannels, OFC/NFOEC 2012, OTh1B.2 (Los Angeles, CA, March 2012).
19. Iwatsuki K. and Kani J. (2009). Applications and technical issues of wavelength-division multiplexing passive optical networks with colorless optical network units, J. Opt. Commun. Netw., 1; 4, C17–24.
20. Choi K-. M., Baik J-. S. and Lee C.-H. (2005). Broad-band light source using mutually injected Fabry–Pérot laser diodes for WDM-PON, IEEE Photonic Technol Lett., 17; 12, 2529–2531.
21. Ji H.-C., Yamashita I. and Kitayama K. (2008). Bidirectional transmission of downstream broadcast and upstream baseband signals over a single wavelength in WDM-PON using mutually injected FPLDs and RSOA, IEEE Photonic Technol. Lett., 20; 20, 1709–1711.
22.ITU-T G.987 (2013). 40-Gigabit-capable passive optical networks (NG-PON2): General requirements.
23. Luo Y., Zhou X., Yan X., Peng G., Qian Y. and Ma Y. (2013). Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2), IEEE Lightwave Technol., 31: 4, 587–593.
24. Nakamura H., Tamaki S., Hara K., Kimura S. and Hadama H. (2011). 40Gbit/s λ-tunable stacked-WDM/TDM-PON using dynamic wavelength and bandwidth allocation, OFC2011, OThT4 (Los Angeles, CA).
25. Chang R. W. (1966). Synthesis of band-limited orthogonal signals for multi-channel data transmission, Bell Syst. Tech. J., 45, 1775–1796.
26. Nakajima S., Arita T. and Higuchi K. (2012). How Mobile Phones Work (in Japanese), Fig. 6.3, Tokyo: Nikkei BP.
27. Shieh W. and Djordjevic I. (2010). OFDM for Optical Communications, Academic Press.
28. Yoshida Y., Ishii K., Maruta A., Akiyama Y., Yoshida T., Suzuki N., Koguchi K., Nakagawa J., Mizuochi T. and Kitayama K. (2012). Experimental Demonstration of 2xONU 30Gbps Digitally-Supported-Coherent IFDMA-PON Uplink, OFC2012, OW3B.5
29. Ministry of Internal Affairs and Communications, Japan, Taskforce report (in Japanese) (www.soumu.go.jp/main_content/000065258.pdf).
30. Baliga J., Ayre R., Hinton K. and Tucker R. S. (2011). Energy consumption in wired and wireless access networks, IEEE Commun. Mag., June, 70–77.
31. Ishii K., Akiyama Y., Suzuki K and Nakagawa J. (2011). Low-power consumption optical receiver technology toward next-generation PON (in Japanese), IEICE Society Conference, Symposium BI-5, entitled Future Perspectives of Photonic Switching Node (Sapporo, Japan, September 2011).
32. ITU-T Series G Supplement 45, GPON Power Conservation, 05/2009.
33. Kubo R., Kani J., Fujimoto Y., Yoshimoto N. and Kumozaki K. (2010). Adaptive power saving mechanism for 10 gigabit class PON systems, IEICE Trans. Commun., 2; E93.B, 280–288.

Chapter 3

1. Kao K. C. and Hockham G. A. (1966). Dielectric-fibre surface waveguides for optical frequencies, Proc. IEE, 113; 7, 1151–1158.
2. Nagayama K., Kakui M., Matsui M., Saitoh I. and Chigusa Y. (2002). Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance, Electron. Lett., 38; 20, 1168–1169.
3. Roberts P. J., Couny F., Sabert H., Mangan B. J., Williams D. P., Farr L., Mason M. W., Tomlinson A., Birks T. A., Knight J. C. and Russell P. S. J. (2005). Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 13; 1, 236–244.
4. Hecht J. (2002). Understanding Fiber Optics, fourth edn., Colombus, OH: Prentice Hall.
5. Kikuchi K. (1997). Fundamentals of Optical Fiber Communications (in Japanese), Tokyo: Shokodo.
6. Gloge D. (1971). Weakly guiding fibers, Appl. Opt., 10;10, 2252–2258.
7. ITU-T Recommendation G.652 (06/2005).
8. ITU-T Recommendation G.655 (03/2003) and (11/2009).
9. ITU-T Recommendation G.657 (12/2006).
10. Marcuse D. (1977). Loss analysis of single-mode fiber splices, Bell Syst. Tech. J., 56; 5, 703–718.
11. Snyder A. W. and Love J. (1983). Optical Waveguide Theory, Chapter 36, Springer.
12. Matsuo S., Ikeda M., Kuwaki H. and Himeno K. (2005). Low-bending-loss and low-splice-loss single-mode fibers employing a trench index profile, IEICE Trans., E88; 5, 889–895.
13. Sakai J., K. Kitayama K., Ikeda M., Kato Y. and Kimura T. (1978). Design considerations of broadband dual mode optical fibers, IEEE Trans. Microwave Theory Technol., 26, 658–665.
14. Kitayama K., Kato Y., Seikai S. and Uchida N. (1981). Structural optimization for two-mode fiber: theory and experiment, IEEE J. Quantum Electron., 17; 6, 1057–1063.
15. Kitayama K., Kato Y., Seikai S., Uchida N. and Akiyama M. (1982). Transmission bandwidth of the two-mode fiber link, IEEE J. Quantum Electron., 18; 11, 1871–1876.
16. Qian D., Huang M.-F., Ip E., Huang Y.-K., Shao Y., Hu J. and Wang T. (2011). 101.7-Tb/s (370 × 294-Gb/s) PDM-128QAM-OFDM Transmission over 3 × 55-km SSMF Using Pilot-Based Phase Noise Mitigation, OFC2011, PDPB5, 2011 (Los Angeles, CA).
17. Nakazawa M., Yoshida Y., Maruta A. and Kitayama K. (2012). On the Computational Complexity of MIMO Processing in Mode Division Multiplexing Transmission over 2-mode Fiber, OECC2012 (Busan, Korea, July 2012).
18. Kato Y., Kitayama K., Seikai S. and Uchida N. (1982). Modal equalization for two-mode fibre link using a step-index fibre, Electron. Lett., 18: 9, 356–358.
19. Maruyama R., Shoji T., Kuwaki N., Matsuo S., Sato K. and Ohashi M. (2013). Design and fabrication of long DMD maximally flattened two-mode optical fibres suitable for MIMO processing, ECOC 2013, Mo.4.A.3, (London, September 2013).
20. Okamoto K. and Okoshi T. (1976). Analysis of wave propagation in optical fibers having core with a-power refractive-index distribution and uniform cladding, IEEE Trans. Microwave Theory Technol., 24; 7, 416–421.
21. The Japan Society of Applied Physics, 1987. Fundamentals of Laser Diodes (in Japanese), Tokyo: Ohmsha.
22. Malitson I. H. (1965). Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am., 55, 1205–1209.
23. ITU-T Recommendation G.656 (03/2003) and (07/2010).
24. Agrawal G. P. (2001). Nonlinear Fiber Optics, third edn., Chapter 3, San Diego, CA: Academic Press.
25. Grüner-Nielsen L., Wandel M., Kristensen P., Jørgensen C., Jørgensen L. V., Edvold B., Pálsdóttir B. and Jakobsen D. (2005). Dispersion-compensating fibers, J. Lightwave Technol., 23; 11, 3566–3579.
26. Yamazaki E., Yamanaka S., Kisaka Y., Nakagawa T., Murata K., Yoshida E., Sakano T., Tomizawa M., Miyamoto Y., Matsuoka S., Matsui J., Shibayama A., Abe J., Nakamura Y., Noguchi H., Fukuchi K., Onaka H., Fukumitsu K., Komaki K., Takeuchi O., Sakamoto Y., Nakashima H., Mizuochi T., Kubo K., Miyata Y., Nishimoto H., Hirano S. and Onohara K. (2011). Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP, Opt. Express, 19; 14, 13179–13184.

Chapter 4

1. Kikuchi K. (1997). Fundamentals of Optical Fiber Communications (in Japanese), Chapter 5, Tokyo: Shokodo.
2. Green Jr. P. E. (1993). Fiber Optical Networks, Chapter 8, Prentice Hall.
3. Okoshi T. and Kikuchi K. (1988). Coherent Optical Fiber Communications, Boston, MA: Kluwer Academic.
4. Gnauck A. H. and Winzer P. J. (2005). Optical phase-shift-keyed transmission, J. Lightwave Technol., 23; 1, 115–130.
5. Winzer P. J. and Essiambre R.-J. (2006). Advanced modulation formats, Proc. IEEE, 94; 5, 952–985.
6. Essiambre R.-J., Cramer G., Winzer P. J., Foschini G. J. and Goebel B. (2010). Capacity limits of optical fiber networks, J. Lightwave Technol., 28; 4, 662–701.
7. Kametani S., Sugihara T. and Mizuochi T. (2009). 6-QAM modulation by polar coordinate transformation with a single dual drive Mach-Zehnder Modulator, OFC2009, OWG6 (San Diego, CA).
8. Agrawal G. P. (2001). Nonlinear Fiber Optics, third edn., Chapter 9, San Diego, CA: Academic Press.
9. Cotter D. (1983). Stimulated Brillouin scattering in monomode optical fiber, J. Opt. Commun., 4; 1, 10–19.

Chapter 5

1. Green Jr. P. E. (1993). Fiber Optical Networks, Chapter 3, Prentice Hall.
2. Rawson E. G. (1978). Star couplers using fused biconically tapered multimode fibres, Electron. Lett., 14; 9, 274–275.
3. Hida Y., Inoue Y., Hanawa F., Fukumitsu T., Enomoto Y. and Takato N. (1999). IEEE Photonics Technol. Lett., 11; 1, 96–98.
4. Yariv A. (1975). Quantum Electronics, second edn., Chapter 11, New York: John Wiley & Sons.
5. Morioka T., Kawanishi S., Mori K. and Saruwatari M. (1994). Nearly penalty-free, 4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm, Electron Lett., 30; 10, 790–791.
6. Okuno T., Onishi M. and Nishimura M. (1998). Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber, IEEE Photonic Technol. Lett., 10; 1, 72–74.
7. Mori K., Takara H. and Kawanishi S. (2001). Analysis and design of supercontinuum pulse generation in a single-mode optical fiber, J. Opt. Soc. Am. B, 18; 12, 1780–1791.
8. Sotobayashi H., Chujo W. and Kitayama K. (2004). Highly spectral-efficient optical code-division multiplexing transmission system, IEEE J. Select. Topics Quantum Electron., 10; 2, 250–258.
9. Miyoshi Y., Namiki S. and Kitayama k. (2112). Performance evaluation of resolution-enhanced ADC using optical multiperiod transfer functions of NOLMs, IEEE J. Select. Topics Quantum Electron., 18; 2, 779–784.
10. Jiang Z., Seo D. S., Yang S. D., Leaird D. E., Roussev R. V., Langrock C., Fejer M. M. and Weiner A. M. (2005). Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at 30 fJ/bit, IEEE Photonics Technol. Lett., 17, 705–707.
11. Wang X., Hamanaka T., Wada N. and Kitayama K. (2005). Dispersion-flattened- fiber based optical thresholder for multiple-access-interference suppression in OCDMA system, Opt. Express, 13; 14, 5499–5505.
12. Miniscalco W. J. (1991). Erbium-doped glasses for fiber amplifiers at 1500 nm, J. Lightwave Technol., 24; 25, 888–890.
13. Kikuchi K. (1997). Fundamentals of Optical Fiber Communications (in Japanese), Chapter 5, Tokyo: Shokodo.
14. Ono H., Yamada M. and Ohishi Y. (1997). Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57–1.60-mm wavelength region, IEEE Photonic Technol. Lett., 9; 5, 596–598.
15. Nogawa M., Katsurai H., Nakamura M., Kamitsuna H. and Ohtomo Y. (2011). IC Technology for 10 Gb/s Burst-mode receiver, NTT Tech. J., 1, 31–35 (in Japanese).
16. Yoshima S., Tanaka Y., Kataoka N., Wada N., Nakagawa J. and Kitayama K., Full-duplex, extended-reach 10G-TDM-OCDM-PON system without en/decoder at ONU, J. Lightwave Technol., in press.
17. Nakagawa J., Nogami M., Suzuki N., Noda M., Yoshima S. and Tagami H. (2010). 10.3-Gb/s burst-mode 3R receiver incorporating full AGC optical receiver and 82.5 GS/s over-sampling CDR for 10 G-EPON systems, IEEE Photon. Technol. Lett., 22; 7, 471–473.
18. Takesue H. and Sugie T. (2008). Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources, J. Lightwave Technol., 26; 1, 99–107.
19. Kim S. Y., Jun S. B., Takushima Y., Son E. S. and Chung Y. C. (2007). Enhanced performance of RSOA-based WDM PON by using Manchester coding, J. Opt. Networking, 6; 6, 624–630.
20. Ji H.-C., Yamashita I. and Kitayama K. (2008). Bidirectional transmission of downstream broadcast and upstream baseband signals over a single wavelength in WDM-PON using mutually injected FPLDs and RSOA, IEEE Photonic Technol. Lett., 20; 20, 1709–1711.

Chapter 6

1. Dixon R. C. (1994). Spread Spectrum Systems with Commercial Applications Spread Spectrum, Chapter 2, New York: John Wiley & Sons.
2. Shannon, C. E. (1949). Communication in the presence of noise, Proc. IRE, 37; 2, 10–21.
3. Kitayama K., Sotobayashi H. and Wada N. (1999). Optical code division multiplexing (OCDM) and its applications to photonic networks (Invited), IEICE A., E82-A, 2616–2626.
4. Tur M. (1997). Private communications, Tel-Aviv University.
5. Sampson D. D., Pendock G. J. and Griffin R. A. (1997). Photonic code-division multiple- access communications, Fiber Integrated Optics, 16; 2, 129–157.
6. Delisle C. and Cielo P. (1975). Application de la modulation spectrale la transmission de l'information. Can. J. Phys., 53, 1047–1053.
7. Prucnal P. R., Santoro M. A. and Fan T. R. (1986). Spread spectrum fiber-optic local area network using optical processing, J. Lightwave Technol., 4; 5, 547–554.
8. Scott R. P., Cong W., Hernandez V. J., Li K., Kolner B. H., Heritage J. P. and Yoo S. J. B. (2005). An eight-user time-slotted SPECTS O-CDMA testbed: demonstration and simulations, J. Lightwave Technol., 23; 10, 3232–3240.
9. Wang X. and Kitayama K. (2004). Analysis of beat noise in coherent and incoherent time-spreading OCDMA, J. Lightwave Technol., 22; 10, 2226–2235.

Chapter 7

1. Davies P. A. and Shaar A. A. (1983). Asynchronous multiplexing for an optical fiber local area network, Electronic Lett., 19, 390–392.
2. Dixon R. C. (1994). Spread Spectrum Systems with Commercial Applications Spread Spectrum, Chapter 3, New York: John Wiley & Sons.
3. Prucnal P. R., Santoro M. A. and Fan T. R. (1986). Spread spectrum fiber-optic local area network using optical processing, J. Lightwave Technol., 4; 5, 547–554.
4. Goh T., Yasu M., Hattori K., Himeno A., Okuno M. and Ohmori Y. (1998). Low-loss and high-extinction-ratio silica-based strictly nonblocking 16x16 thermooptic matrix switch, IEEE Photon. Technol. Lett., 10; 6, 810–812.
5. Wada N. and Kitayama K. (1999). A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection, J. Lightwave Technol., 17; 10, 1758–1765.
6. Petropoulos P., Ibsen M., Ellis A. D. and Richardson D. J. (2001). Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating, J. Lightwave Technol., 19; 5, 746–752.
7. Wang X., Matsushima K., Nishiki A., Wada N. and Kitayama K. (2004). High reflectivity superstructured FBG for coherent optical code generation and recognition, Opt. Express, 12; 22, 5457–5468.
8. Wang X., Matsushima K., Kitayama K., Nishiki A., Wada N. and Kubota F. (2005). High-performance optical code generation and recognition by use of a 511-chip, 640 Gchip/s phase-shifted superstructured fiber Bragg grating, Opt. Lett., 30; 4, 355–357.
9. Hill K. O. and Meltz G. (1997). Fiber Bragg grating technology fundamentals and overview, J. Lightwave Technol., 15; 8, 1263–1276.
10. Cincotti G., Wada N., Kataoka N. and Kitayama K. (2006). Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers. Part I: modeling and design, J. Lightwave Technol., 24; 1, 103–112.
11. Wada N., Cincotti G., Yoshima S., Kataoka N. and Kitayama K. (2006). Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers. Part II: experiments and applications, J. Lightwave Technol., 24; 1, 113–121.
12. Wang X., Wada N., Cincotti G., Miyazaki T. and Kitayama K. (2006). Demonstration of over 128-Gb/s-capacity (12-User X 10.71-Gb/s/User) asynchronous OCDMA using FEC and AWG-based multiport optical encoder/decoders, IEEE Photonics Technol. Lett., 18; 15, 1603–1605.
13. Yoshima S., Nakagawa N., Kataoka N., Suzuki N., Noda M., Nogami M, Nakagawa J. and Kitayama K. (2010). 10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver, J. Lightwave Technol., 28; 4, 365–371.
14. Omichi K., Nomura R., Matsumoto R., Shimizu S., Terada Y., Sakamoto A., Yamauchi R., Wada N. and Kitayama K. (2012). Superstructured FBG based optical encoder/decoder for highly-confidential 40 Gbps telecommunication network, OFS 2012, SPIE, 8421, 1–3 (Beijing, China).
15. Kataoka N., Wang X., Wada N., Cincotti G., Terada Y. and Kitayama K. (2009). 8 X 8 full-duplex demonstration of asynchronous, 10Gbps, DPSK-OCDMA system using apodized SSFBG and multi-port en/decoder, ECOC 2009, 6.5.5 (Vienna, Austria, September 2009).
16. Kataoka N., Wada N., Wang X., Cincotti G., Sakamoto A., Terada Y., Miyazaki T. and Kitayama K. (2009). Field trial of duplex, 10 Gbps X 8-user DPSK-OCDMA system using a single 16 X 16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders, J. Lightwave Technol., 27; 3, 299–305.

Chapter 8

1. Kitayama K., Sasaki M., Araki S., Tsubokawa M., Tomita A., Inoue K., Harasawa K., Nagasako Y. and Takada A. (2011). Security in photonic networks: threats and security enhancement, J. Lightwave Technol., 29; 21, 3210–3222.
2. Zeltsan Z. (2005). ITU-T recommendation X.805 and its application to NGN, ITU/IETF Workshop on NGN.
3. Kodama T. (2011). Studies on Secure M-ary Optical Code Division Multiplexing Using a Single Multi-port Encoder/Decoder, Doctoral dissertation.
4. Wang X., Wada N., Miyazaki T., Cincotti G. and Kitayama K. (2007). Asynchronous multiuser coherent OCDMA system with code-shift-keying and balanced detection, IEEE Select. Topics Quantum Electron., 13; 5, 1463–1470.
5. Wang X., Wada N., Miyazaki T. and Kitayama K. (2006). Coherent OCDMA system using DPSK data format with balanced detection, IEEE Photonics Technol. Lett., 18; 7, 826–828.
6. Kataoka N., Wada N., Cincotti G., Kitayama K. and Miyazaki T. (2007). A novel multiplexed optical code label processing with huge number of address entry for scalable optical packet switched network, ECOC2007, Tu3.2.6 (Berlin).
7. Cincotti G., Sacchieri V., Manzacca G., Kataoka N., Wada N. and Kitayama K. (2008). Physical layer security: all-optical cryptography in access networks, ICTON2008 (Athens, Greece).
8. Cincotti G., Manzacca G., Sacchieri V., Wang X., Wada N. and Kitayama K. (2008). Secure OCDM transmission using a planar multiport encoder/decoder, J. Lightwave Technol., 26; 13, 1798–1806.
9. Shake T. (2005). Security performance of optical CDMA against eavesdropping confidentiality performance of spectral-phase-encoded optical CDMA, J. Lightwave Technol., 23; 2, 655–670.
10. Wu B. B., Prucnal P. R. and Narimanov E. E. (2006). Secure transmission over an existing public WDM lightwave network, IEEE Photonic Technol. Lett., 18; 17, 1870–1872.
11. Menendez R., Agarwal A., Toliver P., Jackel J. and Etemad S. (2007). Direct optical processing of M-ary code-shift keyed spectral phase encoded OCDMA, J. Opt. Networks, 6; 5, 442–450.
12. Kodama T., Nakagawa N., Kitayama K., Kataoaka N., Wada N., Cincotti G., Wang X. and Miyamazaki T. (2010). Secure 2.5Gbit/s, 16-ary OCDM block-ciphering with XOR using a single multi-port en/decoder, J. Lightwave Technol., 28; 1, 181–187.
13. Kodama T., Kataoka N., Wada N., Cincotti G., Wang X., Miyazaki T. and Kitayama K. (2010). High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder, Opt. Express, 18; 20, 21376–21385.
14. Kodama T., Kataoka N., Wada N., Cincotti G., Wang X. and Kitayama K. (2011). 4096-Ary OCDM/OCDMA system using multidimensional PSK codes generated by a single multiport en/decoder, J. Lightwave Technol., 29; 22, 3372–3380.

Chapter 9

1. Wang X., Wada N., Cincotti G., Miyazaki T. and Kitayama K. (2006). Demonstration of over 128-Gb/s-capacity (12-User X 10.71-Gb/s/User) asynchronous OCDMA using FEC and AWG-based multiport optical encoder/decoders, IEEE Photonics Technol. Lett., 18; 15, 1603–1605.
2. Shieh W. and Djordjevic I. (2010). OFDM for Optical Communications, Academic Press.
3. Yoshima S., Nakagawa N., Kataoka N., Suzuki N., Noda M., Nogami M., Nakagawa J. and Kitayama K. (2010). 10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver, J. Lightwave Technol., 28; 4, 365–371.
4. Cincotti G., Kataoka N., Wada N., Wang X., Miyazaki T. and Kitayama K. (2009). Demonstration of asynchronous, 10Gbps OCDMA PON system with colorless and sourceless ONUs, ECOC 2009, 6.5.7 (Vienna).
5. Yoshima S., Tanaka Y., Kataoka N., Wada N., Nakagawa J. and Kitayama K., Full-duplex, extended-reach 10G-TDM-OCDM-PON system without en/decoder at ONU, J. Lightwave Technol., in press.
6. Kodama T., Tanaka Y., Yoshima S., Kataoka N., Nakagawa J., Shimizu S., Wada N. and Kitayama K. (2013). Scaling the system capacity and reach of 10G-TDM- OCDM-PON system without en/decoder at ONU, J. Opt. Commun. Networks, 5; 2, 134–143.
7. Kitayama K., Wang X. and Wada N. (2006). OCDMA over WDM PON: A solution path to gigabit-symmetric FTTH, J. Lightwave Technol., 24; 4, 1654–1662.
8. Wang X., Wada N., Cincotti G., Miyazaki T. and Kitayama K. (2007). Field trial of 3-WDM X 10-OCDMA X 10.71 Gbps, asynchronous, WDM/DPSK-OCDMA using hybrid E/D without FEC and optical thresholding, J. Lightwave Technol., 25; 1, 207–215.
9. Kataoka N., Cincotti G., Wada N. and Kitayama K. (2011). Demonstration of asynchronous, 40Gbps X 4-user DPSK-OCDMA transmission using a multi-port encoder/decoder, Opt. Express, 19; 26, B965–970.
10. Kataoka N., Cincotti G., Wada N. and Kitayama K. (2011). 2.56 Tbps (40-Gbps X 8-wavelength X 4-OC X 2-POL) asynchronous WDM-OCDMA-PON using a multi-port encoder/decoder, ECOC 2011, Th.13.B.6 (Geneva, September 2011).
11. Omichi K., Nomura R., Matsumoto R., Shimizu S., Terada Y., Sakamoto A., Yamauchi R., Wada N. and Kitayama K. (2012). Superstructured FBG based optical encoder/decoder for highly- confidential 40 Gbps telecommunication network, OFS 2012, SPIE, 8421, 1–3 (Beijing, China). Matsumoto R., Kodama T., Shimizu S., Nomura R., Omichi K., Wada N. and Kitayama K. (2013). Apodized SSFBG en/decoder for 40G-OCDM-PON system, OECC/PS 2013, MP1-6 (Kyoto, Japan).
12. Matsumoto R., Kodama T., Shimizu S., Nomura R., Omichi K., Wada N. and Kitayama K. (2013). Cost-effective, asynchronous 4 X 40Gbps full-duplex OCDMA demonstrator using apodized SSFBGs and a multi-port encoder/decoder, OFC2013, OW4D.7 (Anaheim, CA).
13. Kitayama K. (1994). Novel spatial spread spectrum based fiber optic CDMA networks for image transmission, IEEE J. Select. Areas Commun., 12; 4, 762–772.
14. Kitayama K., Nakamura M., Igasaki Y. and Kaneda K. (1997). Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment, J. Lightwave Technol., 15; 1, 202–212.
15. Nakamura M. and Kitayama K. (1998). System performances of optical space code- division multiple-access-based fiber-optic two-dimensional parallel data link, Appl. Opt., 37; 14, 2915–2924.
16. Nakamura M., Kitayama K., Igasaki Y., Shamoto N. and Kaneda K. (2002). Image fiber optic space-CDMA parallel transmission experiment using 8 X 8 VCSEL/PD arrays, Appl. Opt., 41; 32, 6901–6906.
17. Nakamura M. and Kitayama K. (2001). Two-dimensional erbium-doped image fiber amplifier (EDIFA), J. Select. Topics Quantum Electron., 7; 3, 434–438.

Chapter 10

1. Kaneko S., Kataoka N., Miki N., Kimura H., Wada N. and Kitayama K. (2011). Optical code-division-multiple access: thorough comparison with TDM- and DWDM-PONs for future PON systems toward 100Gbit/s/ONU, unpublished work.
2. Kataoka N., Cincotti G., Wada N. and Kitayama K. (2011). Demonstration of asynchronous, 40Gbps X 4-user DPSK-OCDMA transmission using a multi-port encoder/decoder, ECOC2011, Tu.5.C.4 (Geneva).
3. Wang X., Wada N., Kataoka N., Miyazaki T., Cincotti G. and Kitayama K. (2007). 100 km field trial of 1.24 Tbit/s, spectral efficient asynchronous 5 WDM × 25 DPSK-OCDMA using one set of 50 × 50 ports large scale en/decoder, OFC2007, PDP14 (Anaheim, CA.).
4. Tucker R. S. (2011). Green optical communications – part 1: Energy limitations in transport, IEEE J. Select. Topics Quantum Electron., 17; 2, 245–260.
6. Kitayama K., Wada N. and Sotobayashi H. (2000). Architectural considerations for photonic IP router based upon optical code correlation (Invited), IEEE J. Lightwave Technol., 18; 12, 1834–1844.
7. Nozaki K., Shinya A., Matsuo S., Segawa T., Sato T., Kawaguchi Y., Takahashi R. and Notomi M. (2012). Ultralow-power all-optical RAM based on nanocavities, Nature Photonics, 26; February, 1–5.
8. Nakahara T., Suzaki Y., Urata R., Segawa T., Ishikawa H. and Takahashi R. (2011). Enhanced multi-hop operation using hybrid optoelectronic router with time-to-live-based selective forward error correction, Opt. Express, 12; 19, B301–307.
9. Takushima Y. and Kikuchi K. (1994). Photonic switching using spread spectrum technique, Electron. Lett., 30, 436–438.
10. Vaughn M. D. and Blumenthal D. J. (1997). All-optical updating of subcarrier encoded packet headers with simultaneous wavelength conversion of baseband payload in semiconductor amplifiers, IEEE Photon. Technol. Lett., 9, 827–829.
11. Way W. I., Lin Y.-M. and Chang G.-K. (2000). A novel optical label swapping technique using erasable optical single-sideband subcarrier label, OFC1999, WD6 (Baltimore, MD).
12. Cardakli M. C., Gurkan D., Havstad S. A. and Willner A. E. (2000). Variable-bit-rate header recognition for reconfigurable networks using tunable fiber-Bragg-gratings as optical correlators, OFC2000, TuN2 (Baltimore, MD).
13. Kitayama K. and Wada N. (1999). Photonic IP routing, IEEE Photonic Technol. Lett., 11, 1689–1691.
14. Wada N., Cincotti G., Yoshima S., Kataoka N. and Kitayama K. (2006). Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers. Part II: experiments and applications, IEEE/OSA J. Lightwave Technol., 24; 1, 113–121.
15. Kitayama K. (1998). Code division multiplexing lightwave networks based upon optical code conversion, IEEE Select. Areas Commun., 16, 1309–1319.
16. Huang S., Baba K., Murata M. and Kitayama K. (2006). Variable-bandwidth optical paths: Comparison between optical code-labeled path and OCDM path, IEEE/OSA J. Lightwave Technol., 24; 10, 3563–3573.
17. Huang S., Baba K., Murata M. and Kitayama K. (2006). Architecture design and performance evaluation of multigranularity optical networks based on optical code division multiplexing, J. Opt. Networking, 5; 12, 1028–1042.
18. Maintenance & Troubleshooting of a PON Network with an OTDR, JDSU.
19.FTTx PON Guide: Testing Passive Optical Networks, third edition, EXFO (www.3-edge.de/export/sites/3EDGE/de/main/solutions/FTTx-PON-Networks/Content-Misc/FTTx-PON-Reference-Guide.pdf).
20. NTT East Japan (2012). Case studies of faults and countermeasures in a passive optical network system, NTT Technical Review, 10; 7, 31–35.
21. Technical reference 73603 (1999). Unbundled dark fiber (UDF) Technical specifications, February (www.docstoc.com/docs/2140807/Unbundled-Dark-Fiber-(UDF)-Technical-Specifications#).
22. Green P. E. Jr. (2006). Fiber To The Home, The New Empowerment, John Wiley & Sons.
23. Kashyap R. and Blow K. J. (1988). Observation of catastrophic self-propelled self-focusing in optical fibres, Electron. Lett., 24; 1 47–49.
24. Todoroki S. (2005). Origin of periodic void formation during fiber fuse, Optic Express, 13; 17, 6381–6389.
25. Shuto Y., Yanagi S., Asakawa S., Kobayashi M. and Nagase R. (2004). Fiber fuse generation in single-mode fiber-optic connectors, IEEE Photonics Technol. Lett., 16; 1, 171–176.
26. Yanagi S., Asakawa S., Kobayashi M., Shuto Y. and Naruse R. (2004). Fiber fuse terminator (in Japanese), Technical Report of IEICE, OPE2004–178.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.