Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: December 2013

Chapter 5 - Peripheral and central sensitization

from Section 2 - The Condition of Neuropathic Pain

References

1. AppelboomT. Arthropathy in art and the history of pain management – through the centuries to cyclooxygenase-2 inhibitors. Rheumatology (Oxford) 2002;41 Suppl 1:28–34.
2. DarwinC. The Expression of the Emotions in Man and Animals. MurrayJ, editor. London 1872.
3. ToddEM, KucharskiA. Pain: historical perspectives. In WarfieldCA, BajwaZH, eds. Principles and Practice of Pain Medicine. New York, NY: McGraw-Hill; 2004, pp. 1–10.
4. BussingA, OstermannT, NeugebauerEA, HeusserP. Adaptive coping strategies in patients with chronic pain conditions and their interpretation of disease. BMC Public Health 2010;10:507.
5. MurrayGM. Referred pain, allodynia and hyperalgesia. J Am Dent Assoc 2009;140:1122–4.
6. BediSS, YangQ, CrookRJ, et al. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury. J Neurosci 2010;30:14870–82.
7. FujitaM, AndohT, SasakiA, SaikiI, KuraishiY. Involvement of peripheral adenosine 5’-triphosphate and P2X purinoceptor in pain-related behavior produced by orthotopic melanoma inoculation in mice. Eur J Neurosci 2010;31(9):1629–36.
8. AmayaF, SamadTA, BarrettL, BroomDC, WoolfCJ. Periganglionic inflammation elicits a distally radiating pain hypersensitivity by promoting COX-2 induction in the dorsal root ganglion. Pain 2009;142:59–67.
9. HuangSM, LeeH, ChungMK, et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J Neurosci 2008;28:13727–37.
10. PalazzoE, LuongoL, de NovellisV, et al. Transient receptor potential vanilloid type 1 and pain development. Curr Opin Pharmacol 2012;12:9–17.
11. WhiteJP, CibelliM, Rei FidalgoA, et al. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain. Anesthesiology 2010;112:729–41.
12. MandadiS, ArmatiPJ, RoufogalisBD. Protein kinase C modulation of thermo-sensitive transient receptor potential channels: implications for pain signaling. J Nat Sci Biol Med 2011;2:13–25.
13. LiuDY, ScholzeA, KreutzR, et al. Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical type 3 channels. Am J Hypertens 2007;20:1111–18.
14. RitterAM, MendellLM. Somal membrane properties of physiologically identified sensory neurons in the rat: effects of nerve growth factor. J Neurophysiol 1992;68:2033–41.
15. KirchhoffC, LeahJD, JungS, ReehPW. Excitation of cutaneous sensory nerve endings in the rat by 4-aminopyridine and tetraethylammonium. J Neurophysiol 1992;67:125–31.
16. BaumannTK, ChaudharyP, MartensonME. Background potassium channel block and TRPV1 activation contribute to proton depolarization of sensory neurons from humans with neuropathic pain. Eur J Neurosci 2004;19:1343–51.
17. TsunozakiM, BautistaDM. Mammalian somatosensory mechanotransduction. Curr Opin Neurobiol 2009;19:362–9.
18. KwanKY, GlazerJM, CoreyDP, RiceFL, StuckyCL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 2009;29:4808–19.
19. PriceMP, McIlwrathSL, XieJ, et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001;32:1071–83.
20. HarriottAM, GoldMS. Contribution of primary afferent channels to neuropathic pain. Curr Pain Headache Rep 2009;13:197–207.
21. VianaF, de la PenaE, BelmonteC. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 2002;5:254–60.
22. ZimmermannK, LefflerA, BabesA, et al. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 2007;447:855–8.
23. ZhaoJ, LeeMC, MominA, et al. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 2010;30:10860–71.
24. del CaminoD, MurphyS, HeiryM, et al. TRPA1 contributes to cold hypersensitivity. J Neurosci 2010;30:15165–74.
25. WoodburyCJ, ZwickM, WangS, et al. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 2004;24:6410–15.
26. PatelAJ, HonoreE. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 2001;24:339–46.
27. MaingretF, FossetM, LesageF, LazdunskiM, HonoreE. TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 1999;274:1381–7.
28. CumminsTR, Dib-HajjSD, BlackJA, et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 1999;19:RC43.
29. FaberCG, HoeijmakersJG, AhnHS, et al. Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012;71:26–39.
30. Dib-HajjSD, RushAM, CumminsTR, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 2005;128:1847–54.
31. Dib-HajjSD, EstacionM, JareckiBW, et al. Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable. Mol Pain 2008;4:37.
32. WaxmanSG. Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nat Neurosci 2007;10:405–9.
33. GoldMS, GebhartGF. Nociceptor sensitization in pain pathogenesis. Nat Med 2010;16:1248–57.
34. AlvesDP, SoaresAC, FrancischiJN, et al. Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K+ channels, and sodium nitroprusside and dibutyryl-cGMP. Eur J Pharmacol 2004;489:59–65.
35. SchaibleHG, EbersbergerA, Von BanchetGS. Mechanisms of pain in arthritis. Ann N Y Acad Sci 2002;966:343–54.
36. RussellFA, VeldhoenVE, TchitchkanD, McDougallJJ. Proteinase-activated receptor-4 (PAR4) activation leads to sensitization of rat joint primary afferents via a bradykinin B2 receptor-dependent mechanism. J Neurophysiol 2010;103:155–63.
37. SterankaLR, BurchRM, VavrekRJ, StewartJM, EnnaSJ. Multiple bradykinin receptors: results of studies using a novel class of receptor antagonists. Adv Exp Med Biol 1988;236:111–27.
38. MousaSA. Morphological correlates of immune-mediated peripheral opioid analgesia. Adv Exp Med Biol 2003;521:77–87.
39. CarltonSM, HargettGL. Colocalization of metabotropic glutamate receptors in rat dorsal root ganglion cells. J Comp Neurol 2007;501:780–9.
40. ChaudhuryS, BalM, BeluginS, ShapiroMS, JeskeNA. AKAP150-mediated TRPV1 sensitization is disrupted by calcium/calmodulin. Mol Pain 2011;7:34.
41. HuchoTB, DinaOA, LevineJD. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 2005;25:6119–26.
42. AnandP. Nerve growth factor regulates nociception in human health and disease. Br J Anaesth 1995;75(2):201–8.
43. AmirR, ArgoffCE, BennettGJ, et al. The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 2006;7(5 Suppl. 3):S1–29.
44. RukwiedR, MayerA, KluschinaO, et al. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain 2010;148:407–13.
45. HeftiFF, RosenthalA, WalickePA, et al. Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci 2006;27:85–91.
46. McNameeKE, BurleighA, GompelsLL, et al. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain 2010;149:386–92.
47. LaneNE, SchnitzerTJ, BirbaraCA, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 2010;363:1521–31.
48. AbbadieC, BhangooS, De KoninckY, et al. Chemokines and pain mechanisms. Brain Res Rev 2009;60:125–34.
49. FehrenbacherJC, LovermeJ, ClarkeW, et al. Rapid pain modulation with nuclear receptor ligands. Brain Res Rev 2009;60:114–24.
50. WalderRY, RasmussenLA, RainierJD, LightAR, WemmieJA, SlukaKA. ASIC1 and ASIC3 play different roles in the development of hyperalgesia after inflammatory muscle injury. J Pain 2010;11:210–18.
51. ShinodaM, FengB, GebhartGF. Peripheral and central P2X receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Gastroenterology 2009;137:2096–104.
52. VaughnAH, GoldMS. Ionic mechanisms underlying inflammatory mediator-induced sensitization of dural afferents. J Neurosci 2010;30:7878–88.
53. JanigW, GrossmannL, GorodetskayaN. Mechano- and thermosensitivity of regenerating cutaneous afferent nerve fibers. Exp Brain Res 2009;196:101–14.
54. McLachlanEM, JanigW, DevorM, MichaelisM. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 1993;363:543–6.
55. WoolfCJ. Evidence for a central component of post-injury pain hypersensitivity. Nature 1983;306:686–8.
56. MalickA, BursteinR. Peripheral and central sensitization during migraine. Funct Neurol 2000;15 Suppl. 3:28–35.
57. MaleticV, RaisonCL. Neurobiology of depression, fibromyalgia and neuropathic pain. Front Biosci 2009;14:5291–338.
58. HerreroJF, LairdJM, Lopez-GarciaJA. Wind-up of spinal cord neurones and pain sensation: much ado about something?Prog Neurobiol 2000;61:169–203.
59. MelzackR, WallPD. Pain mechanisms: a new theory. Science 1965;150(3699):971–9.
60. WoolfCJ, SalterMW. Neuronal plasticity: increasing the gain in pain. Science 2000;288:1765–9.
61. ToyodaH, ZhaoMG, UlzhoferB, et al. Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex. Mol Pain 2009;5:46.
62. IkedaH, HeinkeB, RuscheweyhR, SandkuhlerJ. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003;299:1237–40.
63. PriceDD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000;288:1769–72.
64. LuoC, SeeburgPH, SprengelR, KunerR. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. Pain 2008;140:358–67.
65. SchoffneggerD, RuscheweyhR, SandkuhlerJ. Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain 2008;135:300–10.
66. JiRR, KohnoT, MooreKA, WoolfCJ. Central sensitization and LTP: do pain and memory share similar mechanisms?Trends Neurosci 2003;26:696–705.
67. SandkuhlerJ. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 2009;89:707–58.
68. PezetS, McMahonSB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006;29:507–38.
69. MilenkovicN, FrahmC, GassmannM, et al. Nociceptive tuning by stem cell factor/c-Kit signaling. Neuron 2007;56:893–906.
70. DerjeanD, BertrandS, Le MassonG, et al. Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 2003;6:274–81.
71. MooreKA, KohnoT, KarchewskiLA, et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002;22:6724–31.
72. ScholzJ, BroomDC, YounDH, et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005;25:7317–23.
73. HarveyRJ, DepnerUB, WassleH, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004;304:884–7.
74. CoullJA, BeggsS, BoudreauD, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005;438:1017–21.
75. CoullJA, BoudreauD, BachandK, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003;424:938–42.
76. LuY, ZhengJ, XiongL, ZimmermannM, YangJ. Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat. J Physiol 2008;586:5701–15.
77. JolivaltCG, LeeCA, RamosKM, CalcuttNA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain 2008;140:48–57.
78. KnablJ, WitschiR, HoslK, et al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 2008;451:330–4.
79. EippertF, BingelU, SchoellED, et al. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 2009;63:533–43.
80. PorrecaF, OssipovMH, GebhartGF. Chronic pain and medullary descending facilitation. Trends Neurosci 2002;25:319–25.
81. ZhaoZQ, GaoYJ, SunYG, et al. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. Proc Natl Acad Sci USA 2007;104:14519–24.
82. ZhaoZQ, ChiechioS, SunYG, et al. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 2007;27:6045–53.
83. ZhangW, GardellS, ZhangD, et al. Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors. Brain 2009;132:778–87.
84. WeiF, GuoW, ZouS, RenK, DubnerR. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 2008;28:10482–95.
85. GuoW, RobbinsMT, WeiF, et al. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 2006;26:126–37.
86. SuzukiR, MorcuendeS, WebberM, HuntSP, DickensonAH. Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci 2002;5:1319–26.
87. FieldsHL. Pain modulation: expectation, opioid analgesia and virtual pain. Prog Brain Res 2000;122:245–53.
88. HeinricherMM, TavaresI, LeithJL, LumbBM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev 2009;60:214–25.
89. LiP, ZhuoM. Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 1998;393:695–8.
90. WeiF, DubnerR, ZouS, et al. Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci 2010;30:8624–36.
91. HoferSB, BonhoefferT. Dendritic spines: the stuff that memories are made of?Curr Biol 2010;20:R157–9.
92. SaneyoshiT, FortinDA, SoderlingTR. Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 2010;20:108–15.
93. YangG, PanF, GanWB. Stably maintained dendritic spines are associated with lifelong memories. Nature 2009;462:920–4.
94. TanAM, StamboulianS, ChangYW, et al. Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J Neurosci 2008;28:13173–83.
95. HotulainenP, HoogenraadCC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol 2010;189:619–29.
96. LuoL. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 2000;1:173–80.
97. TappeA, KlugmannM, LuoC, et al. Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain. Nat Med 2006;12:677–81.