Skip to main content Accessibility help
×
Home
Monoidal Topology
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize 'spaces' in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line. Hence, equipped with a quantale V (replacing the reals) and a monad T (replacing the ultrafilter monad) laxly extended from set maps to V-valued relations, the book develops a categorical theory of (T,V)-algebras that is inspired simultaneously by its metric and topological roots. The book highlights in particular the distinguished role of equationally defined structures within the given lax-algebraic context and presents numerous new results ranging from topology and approach theory to domain theory. All the necessary pre-requisites in order and category theory are presented in the book.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Abramsky, S. and A., Jung. Domain theory. In S., Abramsky, D.M., Gabbay, and T.S.E., Maibaurn, eds., Handbook of Logic in Computer Science. Oxford University Press, Oxford, 1994, pp. 1-168.
Adámek, J., H., Herrlich, and G.E., Strecker. Abstract and Concrete Categories: The Joy of Cats. Wiley, New York, 1990. Republished as Repr. Theory Appl. Categ., 17 (2006).
Adámek, J., F.W., Lawvere, and J., Rosicky. Continuous categories revisited. Theory Appl. Categ., 11:252-282, 2003.
Adámek, J., J., Rosický, and E.M., Vitale. Algebraic Theories: A Categorical Introduction to General Algebra. Cambridge University Press, Cambridge, 2011. With a foreword by F.W. Lawvere.
Akhvlediani, A.Hausdorff and Gromov distances in quantale-enriched categories. MA thesis, York University, Toronto, 2008.
Akhvlediani, A., M. M., Clementino, and W., Tholen. On the categorical meaning of Hausdorff and Gromov distances, I. Topology Appl., 157(8):1275-1295, 2010.
Awodey, S.Category Theory. Clarendon, New York, 2006.
Banaschewski, B.Essential extensions of T0-spaces. Gen. Topol. Appl., 7:233-246, 1977.
Banaschewski, B. and G., Bruns. Categorical characterization of the MacNeille completion. Arch. Math. (Basel), 18:369-377, 1967.
Banaschewski, B., R., Lowen, and C. Van, Olmen. Sober approach spaces. Topol. Appl., 153:3059-3070, 2006.
Barr, M.Relational algebras. Lect. Notes Math., 137:39-55, 1970.
Barr, M. and C., Wells. Toposes, Triples and Theories. Springer, New York, 1985. Republished as Repr. Theory Appl. Categ., 12 (2005).
Beck, J.Distributive laws. Lect. Notes Math., 80:119-140, 1969. Republished as Repr. Theory Appl. Categ., 18 (2008).
Bénabou, J.Catégories avec multiplication. C.R., Acad. Sci. Paris, 256:1887-1890, 1963.
Bénabou, J.Fibrations petites et localement petites. C.R., Acad. Sci. Paris Sér. A, 281:897-900, 1975.
Bénabou, J.Fiberedcategories and the foundations of naive category theory. J. Symb. Log., 50:10-37, 1985.
Bénabou, J.Distributors at work. http://www.mathematik.tu-darmstadt.de/~streicher/, 2000. Lecture notes by T. Streicher.
Bentley, H.L., H., Herrlich, and R., Lowen. Improving constructions in topology. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work.Heldermann, Berlin, 1991, pp. 3-20.
Betti, R., A., Carboni, R., Street, and R., Walters. Variation through enrichment. J. Pure Appl. Algebra, 29:109-127, 1983.
Birkedal, L., K., Støvring, and J., Thamsborg. The category-theoretic solution of recursive metric-space equations. Theoret. Comput. Sci., 411:4102-4122, 2010.
Birkhoff, G.A new definition of limit. Bull. Amer. Math. Soc., 41:636, 1935.
Birkhoff, G.Moore-Smith convergence in general topology. Ann. of Math. (2), 38:39-56, 1937.
Birkhoff, G.Lattice Theory, 3rd edn. American Mathematical Society, Providence, RI, 1979.
Bonsangue, M.M., F. van, Breugel, and J.J.M.M., Rutten. Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding. Theoret. Comput. Sci., 193:1-51, 1998.
Borceux, F.Handbook of Categorical Algebra 1. Basic Category Theory. Cambridge University Press, Cambridge, 1994a.
Borceux, F.Handbook of Categorical Algebra 2. Categories and Structures. Cambridge University Press, Cambridge, 1994b.
Borceux, F.Handbook of Categorical Algebra 3. Categories of Sheaves. Cambridge University Press, Cambridge, 1994c.
Börger, R.Coproducts and ultrafilters. J. Pure Appl. Algebra, 46:35-47, 1987a.
Börger, R.Disjoint and universal coproducts, I, II. Seminarberichte, Fern Universität, Hagen, 1987b.
Börger, R.Disjointness and related properties of coproducts. Acta Univ. Carolin. Math. Phys., 35:43-63, 1994.
Börger, R. and W., Tholen. Cantors Diagonalprinzip für Kategorien. Math. Z., 160:135-138, 1978.
Bourbaki, N.Elements de Mathématique. Les Structures Fondamentales de l'Analyse, III: Topologie Générale, III. Groupes Topologiques (Théorie Elémentaire) IV. Nombres Réels. Hermann, Paris, 1942.
Bourbaki, N.General Topology, Chapters 1-4. Springer, Berlin, 1989.
Brock, P. and D.C., Kent. Approach spaces, limit tower spaces, and probabilistic convergence spaces. Appl. Categ. Structures, 5:99-110, 1997.
Brock, P. and D.C., Kent. On convergence approach spaces. Appl. Categ. Structures, 6:117-125, 1998.
Bunge, M.Coherent extensions and relational algebras. Trans. Amer. Math. Soc., 197:355-390, 1974.
Burroni, A.T-catégories (catégories dans un triple). Cahiers Topol. Géom. Différent., 12: 215-321, 1971.
Carboni, A., G.M., Kelly, and R.J., Wood. A 2-categorical approach to change of base and geometric morphisms I. Cahiers Topologie Géom. Différentielle, 32: 47-95, 1991.
Carboni, A., S., Lack, and R., Walters. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 84:145-158, 1993.
Cartan, H.Filtres et ultrafiltres. C. R. Acad. Sci. Paris, 205:777-779, 1937a.
Cartan, H.Théorie des filtres. C. R. Acad. Sci. Paris, 205:595-598, 1937b.
Čech, E.On bicompact spaces. Ann. of Math. (2), 38:823-844, 1937.
Chai, Y.-M.A note on the probabilistic quasi-metric spaces. J. Sichuan Univ. (Natur. Sci. Ed.), 46:543-547, 2009.
Choquet, G.Convergences. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.), 23:57-112, 1948.
Clementino, M.M., E., Giuli, and W., Tholen. Topology in a category: compactness. Portugal. Math., 53:397-433, 1996.
Clementino, M.M., E., Giuli, and W., Tholen. A functional approach to general topology. In M.-C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004a, pp. 103-164.
Clementino, M.M. and D., Hofmann. Triquotient maps via ultrafilter convergence. Proc. Amer. Math. Soc., 130:3423-3431, 2002.
Clementino, M.M. and D., Hofmann. Topological features of lax algebras. Appl. Categ. Structures, 11:267-286, 2003.
Clementino, M.M. and D., Hofmann. Effective descent morphisms in categories of lax algebras. Appl. Categ. Structures, 12:413-425, 2004a.
Clementino, M.M. and D., Hofmann. On extensions of lax monads. Theory Appl. Categ., 13:41-60, 2004b.
Clementino, M.M. and D., Hofmann. Exponentiation in V-categories. Topology Appl., 153:3113-3128, 2006.
Clementino, M.M. and D., Hofmann. On some special classes of continuous maps. In E., Pearl, ed., Open Problems in Topology, II.Elsevier, Amsterdam, 2007, pp. 367-376.
Clementino, M.M. and D., Hofmann. Relative injectivity as cocompleteness for a class of distributors. Theory Appl. Categ., 21:210-230, 2008.
Clementino, M.M. and D., Hofmann. Lawvere completeness in topology. Appl. Categ. Structures, 17:175-210, 2009.
Clementino, M.M. and D., Hofmann. Descent morphisms and a van Kampen theorem in categories of lax algebras. Topology Appl., 159:2310-2319, 2012.
Clementino, M.M., D., Hofmann, and G., Janelidze. Local homeomorphisms via ultrafilter convergence. Proc. Amer. Math. Soc., 133:917-922, 2005.
Clementino, M.M., D., Hofmann, and A., Montoli. Covering morphisms in categories of relational algebras. Appl. Categ. Structures, 2013, in press; DOI: 10.1007/s10485- 013-9349-0.
Clementino, M.M., D., Hofmann, and W., Tholen. The convergence approach to exponen- tiable maps. Math. Portugal., 60:139-160, 2003a.
Clementino, M.M., D., Hofmann, and W., Tholen. Exponentiability in categories of lax algebras. Theory Appl. Categ., 11:337-352, 2003b.
Clementino, M.M., D., Hofmann, and W., Tholen. One setting for all: metric, topology, uniformity, approach structure. Appl. Categ. Structures, 12:127-154, 2004b.
Clementino, M.M. and W., Tholen. Tychonoff's theorem in a category. Proc. Amer. Math. Soc., 124:3311-3314, 1996.
Clementino, M.M. and W., Tholen. Metric, topology and multicategory - a common approach. J. Pure Appl. Algebra, 179:13-47, 2003.
Clementino, M.M. and W., Tholen. Proper maps for lax algebras and the Kuratowski- Mrówka theorem. Theory Appl. Categ., 27:327-346, 2013.
Colebunders, E. and R., Lowen. A quasitopos containing CONV and MET as full subcategories. Internat. J. Math. Math. Sci., 11:417-438, 1988.
Colebunders, E. and R., Lowen. Topological quasitopos hulls of categories containing topological and metric objects. Cah. Topol. Géom. Différ. Catég., 30:213-227, 1989.
Colebunders, E. and R., Lowen. Metrically generated theories. Proc. Amer. Math. Soc., 133:1547-1556, 2005.
Colebunders, E., R., Lowen, and W., Rosiers. Lax algebras via initial monad morphisms: APP, TOP, MET and ORD. Topology Appl., 158:882-903, 2011.
Colebunders, E., R., Lowen, and P., Wuyts. A Kuratowski-Mrówka theorem in approach theory. Topology Appl., 153:756-766, 2005.
Colebunders, E. and G., Richter. An elementary approach to exponential spaces. Appl. Categ. Structures, 9:303-310, 2001.
Cook, C.H. and H.R., Fischer. Regularconvergence spaces. Math. Ann., 174:1-7, 1967.
Cruttwell, G.S.H.Normed Spaces and the Change of Base for Enriched Categories. Ph.D. thesis, Dalhousie University, Halifax, 2008.
Cruttwell, G.S.H. and M.A., Shulman. A unified framework for generalized multicategories. Theory Appl. Categ., 24:580-655, 2010.
Davey, B.A. and H. A., Priestley. Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990.
Day, A.Filtermonads, continuous lattices and closure systems. Canad. J. Math., 27:50-59, 1975.
Day, B.J. and G.M., Kelly. On topologically quotient maps preserved by pullbacks or products. Proc. Cambridge Philos. Soc., 67:553-558, 1970.
de Groot, J.An isomorphism principle in general topology. Bull. Amer. Math. Soc., 73:465-467, 1967.
de Groot, J., G.E., Strecker, and E., Wattel. The compactness operator in general topology. In General Topology and its Relations to Modern Analysis and Algebra, II.Academia, Prague, 1967, pp. 161-163.
Dikranjan, D. and E., Giuli. Closure operators I. Topology Appl., 27:129-143, 1987.
Dikranjan, D. and E., Giuli. Compactness, minimality and closedness with respect to a closure operator. In J., Adámek and S., MacLane, eds., Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, World Scientific Publishing, Teaneck, 1989, pp. 284-296.
Dikranjan, D. and W., Tholen. Categorical Structure of Closure Operators: With Applications to Topology, Algebra and Discrete Mathematics. Kluwer, Dordrecht, 1995.
Duskin, J.Variations on Beck's tripleability criterion. Lect. Notes Math., 106:74-129, 1969.
Dyckhoff, R.Total reflections, partial products, and hereditary factorizations. Topology Appl., 17:101-113, 1984.
Dyckhoff, R. and W., Tholen. Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra, 49:103-116, 1987.
Eilenberg, S. and G.M., Kelly. Closed categories. In Proc. Conf. Categorical Algebra. Springer, New York, 1966, pp. 421-562.
Eilenberg, S. and J.C., Moore. Adjoint functors and triples. Illinois J. Math., 9:381-398, 1965.
Engelking, R.General Topology, 2nd edn. Heldermann, Berlin, 1989.
Erné, M.Vollständig Distributive Topologien und Idempotente Relationen. Deutsche Mathematiker-Vereinigung, Dortmund, 1980.
Erné, M.Scott convergence and Scott topology in partially ordered sets, II. In B., Bemaschewski and R.-E., Hoffmann, eds., Continuous Lattices, Lecture Notes in Mathematics, 871. Springer, Berlin, 1981, pp. 61-96.
Erné, M.The ABC of order and topology. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work. Heldermann, Berlin, 1991, pp. 57-83.
Erné, M.Z-continuous posets and their topological manifestation. Appl. Categ. Structures, 7:31-70, 1999.
Erné, M. and G., Wilke. Standard completions for quasiordered sets. Semigroup Forum, 27:351-376, 1983.
Ershov, Y.L.Theory of domains and nearby. In D., Bjørner, M., Broy, and I.V., Pottosin, eds., Formal Methods in Programming and their Applications. Lecture Notes in Computer Science 735. Springer, Berlin, 1993, pp. 1-7.
Escardó, M.H.Properly injective spaces and function spaces. Topology Appl., 89:75-120, 1998.
Fawcett, B. and R., Wood. Constructive complete distributivity I.Math. Proc. Camb. Phil. Soc., 107:81-89, 1990.
Feferman, S.Set-theoretical foundations of category theory. In Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106. Springer, Berlin, 1969, pp. 106-201.
Feferman, S.Categorical foundations and foundations of category theory. In R.E., Butts and J., Hintikka, eds., Logic, Foundations of Mathematics, and Computability Theory, Proc. 5th Int. Congr., London, Ontario, 1975, Part1, 1977, pp. 149-169. Philos. Sci., 9:149-169, 1977.
Flagg, R.C.Completeness in continuity spaces. In R.A.G., Seely, ed., Category Theory 1991. AMS, Providence, RI, 1992, pp. 183-200.
Flagg, R.C.Quantales and continuity spaces. Algebra Universalis, 37:257-276, 1997.
Flagg, R.C. and R., Kopperman. Continuity spaces: reconciling domains and metric spaces. Theoret. Comput. Sci., 177:111-138, 1997.
Flagg, R.C., P., Sünderhauf, and K., Wagner. A logical approach to quantitative domain theory. Topology Atlas, Preprint 23, http://at.yorku.ca/e/a/p/p/23.htm, 1996.
Fréchet, M.Généralisation d'un théorème de Weierstrass. C.R. Acad. Sci. Paris, 139:848-850, 1905.
Fréchet, M.Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22:1-74, 1906.
Fréchet, M.Surdivers modes deconvergenced'unesuite de fonctions d'unevariable. Bull. Calcutta Math. Soc., 11:187-206, 1921.
Freyd, P.J. and A., Scedrov. Categories, Allegories. North-Holland, Amsterdam, 1990.
Gabriel, P. and F., Ulmer. Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221. Springer, Berlin, 1971.
Gähler, W.Monads and convergence. In Proc. Conf. Generalized Functions, Convergence Structures and Their Applications, Dubrovnik, Yugoslavia, 1987. Springer, New York, 1988, pp. 29-46.
Gähler, W. (ed.) etal. Recent Developments of General Topology and its Applications. Int. Conf. in Memory of Felix Hausdorff (1868-1942), Berlin, Germany, March 22-28, 1992. Akademie Verlag. Math. Res. 67, Berlin, 1992, pp. 136-149.
Gerlo, A., E., Vandersmissen, and C. Van, Olmen. Sober approach spaces are firmly reflective for the class of epimorphic embeddings. Appl. Categ. Structures, 14:251-258, 2006.
Gierz, G., K.H., Hofmann, K., Keimel, J.D., Lawson, M.W., Mislove, and D.S., Scott. A Compendium of Continuous Lattices. Springer, Berlin, 1980.
Gierz, G., K.H., Hofmann, K., Keimel, J.D., Lawson, M.W., Mislove, and D.S., Scott. Continuous Lattices and Domains. Cambridge University Press, Cambridge, 2003.
Godement, R.Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris, 1958.
Grimeisen, G.Gefilterte Summation von Filtern und iterierte Grenzprozesse I. Math. Ann., 141:318-342, 1960.
Grimeisen, G.Gefilterte Summation von Filtern und iterierte Grenzprozesse, II. Math. Ann., 144:386-417, 1961.
Grothendieck, A., J.-L., Verdier, and P., Deligne. Conditions de finitude, topos et sites fibrés. Applications aux questions de passage à la limite. In Séminaire de Géométrie Algébrique du Bois Marie 1963/64, SGA 4, no. 6. Lecture Notes in Mathematics 270. Springer, Berlin, 1972, pp. 163-340.
Gutierres, G. and D., Hofmann. Axioms for sequential convergence. Appl. Categ. Structures, 15:599-614, 2007.
Gutierres, G. and D., Hofmann. Approaching metric domains. Appl. Categ. Structures, 21(6):617-650, 2013.
Hausdorff, F.Grundzüge der Mengenlehre. Veit, Leipzig, 1914.
Hermida, C.Representable multicategories. Adv. Math., 151:164-225, 2000.
Hermida, C.From coherent structures to universal properties. J. Pure Appl. Algebra, 165:7-61, 2001.
Herrlich, H.Perfect subcategories and factorizations. In Topics in Topol., Colloqu. Keszthely 1972. Colloquia Math. Soc. János Bolyai 8, 1974, pp. 387-403, 1974.
Herrlich, H.Topologie, I: Topologische Räume. Heldermann, Berlin, 1986.
Herrlich, H.On the representability of partial morphisms in Top and in related constructs. In Proc. 1st Conf. Categorical Algebra and its Applications, Louvain-la-Neuve, Belgium, 1987. Lecture Notes in Mathematics 1348. Springer, Berlin, 1988a, pp. 143-153.
Herrlich, H.Topologie, II: Uniforme Räume. Heldermann, Berlin, 1988b.
Herrlich, H.Axiom of Choice. Lecture Notes in Mathematics 1876. Springer, Berlin, 2006.
Herrlich, H., E., Colebunders, and F., Schwarz. Improving Top: PrTop and PsTop. In H., Herrlich and H.-E., Porst, eds., Category Theory at Work. Heldermann, Berlin, 1991, pp. 21-34.
Herrlich, H. and M., Husek. Galois connections categorically. J. Pure Appl. Algebra, 68:165-180, 1990.
Herrlich, H., G., Salicrup, and G.E., Strecker. Factorizations, denseness, separation, and relatively compact objects. Topology Appl., 27:157-169, 1987.
Hochster, M.Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43-60, 1969.
Höhle, U.M-valued sets and sheaves over integral commutative CL-monoids. In S.E., Rod-abaugh, E.P., Klement, and U., Höhle, eds., Applications of Category Theory to Fuzzy Subsets. Theory and Decision Library vol. 14. Kluwer, Dordrecht, 1992, pp. 33-72.
Höhle, U.Many-Valued Topology and its Applications. Kluwer, Boston, 2001.
Hoffmann, R.-E.Die kategorielle Auffassung der Initial- und Finaltopologie. Ph.D. thesis, Ruhr-Universität, Bochum, 1972.
Hoffmann, R.-E.Projective sober spaces. In Structure of Topological Categories, Math.-Arbeitspapiere, vol. 18. University of Bremen, Bremen, 1979, pp. 109-153.
Hoffmann, R.-E.Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. B., Bernaschewski and R.-E., Hoffmann, eds., Proc. Conf. Continuous Lattices, Bremen, 1979. Lecture Notes in Mathematics 871. Berlin, Springer, 1981, pp. 61-96.
Hofmann, D.An algebraic description of regular epimorphisms in topology. J. Pure Appl. Algebra, 199:71-86, 2005.
Hofmann, D.Exponentiation forunitary structures. Topology Appl., 153:3180-3202, 2006.
Hofmann, D.Topological theories and closed objects. Adv. Math., 215:789-824, 2007.
Hofmann, D. and C.D., Reis. Probabilistic metric spaces as enriched categories. Fuzzy Set. Syst., 210:1-21, 2013.
Hofmann, D. and W., Tholen. Kleisli compositions for topological spaces. Topology Appl., 153:2952-2961, 2006.
Hofmann, D. and W., Tholen. Lax algebra meets topology. Topology Appl., 159:2434-2452, 2012.
Hofmann, D. and P., Waszkiewicz. Approximation in quantale-enriched categories. Topology Appl., 158:963-977, 2011.
Huber, P.J.Homotopy theory in general categories. Math. Ann., 144:361-385, 1961.
Isbell, J.R.Six theorems about injective metric spaces. Comment. Math. Helv., 39:65-76, 1964.
Isbell, J.R.Atomless parts of spaces. Math. Scand., 31:5-32, 1972.
Isbell, J.R.General function spaces, products and continuous lattices. Math. Proc. Camb. Philos. Soc., 100:193-205, 1986.
Jäger, G.A one-point compactification for lattice-valued convergence spaces. Fuzzy Set. Syst., 190:21-31, 2012.
James, I.M.Fibrewise Topology.Cambridge University Press, Cambridge, 1989.
Janelidze, G.Categorical Galois theory: revision and some recent developments. In K., Deneckeet al., eds., Galois Connections and Applications. Mathematics and its Applications (Dordrecht) 565. Kluwer, Dordrecht, 2004, pp. 139-171.
Jayewardene, R. and O., Wyler. Categories of relations and functional relations. Appl. Categ. Structures, 9:279-305, 2000.
Johnstone, P.T.Topos Theory.Academic Press, London, 1977.
Johnstone, P.T.On a topological topos. Proc. London Math. Soc. (3), 38:237-271, 1979.
Johnstone, P.T.Stone Spaces.Cambridge University Press, Cambridge, 1982.
Johnstone, P.T.Sketches of an Elephant: A Topos Theory Compendium 1.Clarendon, New York, 2002a.
Johnstone, P.T.Sketches of an Elephant: A Topos Theory Compendium 2.Clarendon, New York, 2002b.
Jung, A.Stably compact spaces and the probabilistic powerspace construction. Electron. Notes Theoret Comput. Sci., 87:5-20, 2004.
Kamnitzer, S.H.Protoreflections, Relational Algebras and Topology. Ph.D. thesis, University of Cape Town, Cape Town, 1974a.
Kamnitzer, S.H.Topological aspects of relational algebras. Math. Colloq. Univ. Cape Town, 9:23-59, 1974b.
Kelley, J.L.Convergence in topology. Duke Math. J., 17:277-283, 1950.
Kelly, G.M.Basic Concepts of Enriched Category Theory.Cambridge University Press, Cambridge, 1982. Republished as Repr. Theory Appl. Categ.10 (2005).
Kelly, G.M.A note on relations relative to a factorization system. In Proc. Int. Conf. Category Theory, Como, Italy, 1990. Lecture Notes in Mathematics 1488. Springer, Berlin, 1991, pp. 249-261.
Kent, D.C. and W.K., Min. Neighborhood spaces. Int. J. Math. Math. Sci., 32:387-399, 2002.
Kent, D.C. and G.D., Richardson. Open and proper maps between convergence spaces. Czech. Math. J., 23:15-23, 1973.
Klein, A.Relations in categories. Illinois J. Math., 14:536-550, 1970.
Kock, A.Monads for which structures are adjointto units. J. Pure Appl. Algebra, 104:41-59, 1995.
Kopperman, R.All topologies come from generalized metrics. Amer. Math. Month., 95:89-97, 1988.
Kostanek, M. and P., Waszkiewicz. The formal ball model for Q-categories. Math. Structures Comput. Sci., 21:41-64, 2011.
Kowalsky, H.-J.Beiträge zur topologischen Algebra. Math. Nachr., 11:143-185, 1954a.
Kowalsky, H.-J.Limesräume und Komplettierung. Math. Nachr., 12:301-340, 1954b.
Kreyszig, E.Interaction between general topology and functional analysis. In Handbook of the History of General Topology, vol. 1. Kluwer, Dordrecht, 1997, pp. 357-390.
Kruml, D. and J., Paseka. Algebraic and categorical aspects of quantales. In M., Hazewinkel, ed., Handbook of Algebra, vol. 5. Elsevier, Amsterdam, 2008, pp. 323-362.
Kuratowski, C.Évaluation de la classe borélienne ou projective d'un ensemble de points à l'aide des symboles logiques. Fundam. Math., 17:249-272, 1931.
Lack, S. and R., Street. The formal theory of monads, II. J. Pure Appl. Algebra, 175:243-265, 2002.
Lambek, J.Deductive systems and categories, II. Standard constructions and closed categories. In Proc. Conf. Category Theory, Homology Theory and their Applications, Battelle Memorial Institute Seattle Research Center, 1968. Lecture Notes in Mathematics 86. Springer, Berlin, 1969, pp. 76-122.
Lawson, J.The duality of continuous posets. Houston J. Math., 5:357-386, 1979.
Lawson, J.The round ideal completion via sobrification. Topology Proc., 22:261-274, 1997.
Lawson, J.Stably compact spaces. Math. Structures Comput. Sci., 21:125-169, 2011.
Lawvere, F.W.The category of categories as a foundation for mathematics. In Proc. Conf. Categorical Algebra, Springer, New York, 1966, pp. 1-20.
Lawvere, F.W.Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano, 43:135-166, 1973. Republished as Repr. Theory Appl. Categ.1 (2002).
Lawvere, F.W. and R., Rosebrugh. Sets for Mathematics.Cambridge University Press, Cambridge, 2003.
Lowen R., Kuratowski'smeasure of noncompactness revisited. Quart. J. Math. Oxford Ser. 2, 39:235-254, 1988.
Lowen, R.Approach spaces: a common supercategory of TOP and MET. Math. Nachr., 141:183-226, 1989.
Lowen, R.Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad.Oxford University Press, Oxford, 1997.
Lowen, R.A survey of some categorical aspects of approach theory. In H., Herrlich and H.-E., Porst, eds., Categorical Methods in Algebra and Topology.University of Bremen, Bremen, 2000, pp. 267-277.
Lowen, R.Index Calculus: Approach Theory at Work.Springer, Berlin, 2013.
Lowen, R. and M., Sioen. A note on separation in AP. Appl. Gen. Topol., 4:475-486, 2003.
Lowen, R., C. Van, Olmen, and T., Vroegrijk. Functional ideals and topological theories. Houston J. Math., 34:1065-1089, 2008.
Lowen, R. and C., Verbeeck. Local compactness in approach spaces I. Int. J. Math. Math. Sci., 21:429-438, 1998.
Lowen, R. and C., Verbeeck. Local compactness in approach spaces, II. Int. J. Math. Math. Sci., 2:109-117, 2003.
Lowen, R. and T., Vroegrijk. A new lax algebraic characterization of approach spaces. Quad. Mat., 22:199-232, 2008.
Lucyshyn-Wright, R.B.B.Monoidal domain-theoretic topology. Master's thesis, York University, Toronto, 2009.
Lucyshyn-Wright, R.B.B.Domains occur among spaces as strict algebras among lax. Math. Structures Comput. Sci., 21:647-670, 2011.
MacLane, S.Natural associativity and commutativity. Rice Univ. Studies, 49:28-46, 1963.
Mac Lane, S.One universe as a foundation for category theory. In Reports of the Midwest Category Seminar III, Lecture Notes in Mathematics 106. Springer, Berlin, 1969, pp. 192-200.
Mac Lane, S.Categories for the Working Mathematician.Springer, New York, 1971; 2nd edn. 1998.
Mac Lane, S. and I., Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory.Springer, New York, 1994.
MacDonald, J. and M., Sobral. Aspects of monads. In C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004, pp. 213-268.
Machado, A.Espaces d'Antoine et pseudo-topologies. Cah. Topol. Géom. Différ. Catég., 14:309-327, 1973.
Machner, J.T-algebras of the monad L-Fuzz. Czech. Math. J., 35(110):515-528, 1985.
McShane, E.J.Partialorderings and Moore-Smith limits. Am. Math. Mon., 59:1-11, 1952.
Mahmoudi, M., C., Schubert, and W., Tholen. Universality of coproducts in categories of lax algebras. Appl. Categ. Structures, 14:243-249, 2006.
Manes, E.G.A Triple Miscellany. Ph.D. thesis, Wesleyan University, Middletown, 1967.
Manes, E.G.Atriple theoretic construction of compactalgebras. In Sem. Triples and Categorical Homology Theory, ETH, Zurich, 1966/67. Lecture Notes in Mathematics 80. Springer, Berlin, 1969, pp. 91-118.
Manes, E.G.Compact Hausdorff objects. Gen. Topology Appl., 4:341-360, 1974.
Manes, E.G.Algebraic Theories. Springer, New York, 1976.
Manes, E.G.Taut monads and T0-spaces. Theor. Comp. Sci., 275:79-109, 2002.
Manes, E.G.Taut monads, dynamical logic and determinism. Electron. Notes Theoret. Comput. Sci., 173:241-262, 2007.
Manes, E.G.Monads in topology. Topology Appl., 157:961-989, 2010.
Manes, E.G. and P., Mulry. Monad compositions, I: General constructions and recursive distributive laws. Theory Appl. Categ., 18:172-208, 2007.
Marmolejo, F., R., Rosebrugh, and R., Wood. A basic distributive law. J. Pure Appl. Algebra, 168:209-226, 2002.
Marny, T.On epireflective subcategories of topological categories. Gen. Topology Appl., 10:175-181, 1979.
Meisen, J.Relations in regular categories. In Symp. Localized Group Theory Homotopy Theory and Related Topics, Battelle Memorial Institute Seattle Research Center. Lecture Notes in Mathematics 418. Springer, Berlin, 1974, pp. 196-202.
Menger, K.Statistical metrics. Proc. Nat. Acad. Sci. USA, 28:535-537, 1942.
Möbus, A. (E, M)-Relationalalgebren und -Objekte. In Nordwestdeutsches Kate-gorien seminar 1977. Universität Bielefeld, Bielefeld, 1978, pp. 163-194.
Möbus, A.Relational-Algebren. Ph.D. thesis, Universität Düsseldorf, Düsseldorf, 1981.
Möbus, A.Wallman compactification of T4-relational algebras and Mal'cev monads. In D., Pumpliin and W., Tholen, eds., Seminarberichte, vol. 16. Fernuniversität, Hagen, 1982, pp. 111-132.
Möbus, A.Alexandrov compactification of relational algebras. Arch. Math. (Basel), 40:526-537, 1983.
Moore, E.H.Definition of limit in general integral analysis. Nat. Acad. Proc., 1:628-632, 1915.
Moore, E.H. and H.L., Smith. A general theory of limits. Amer. J. Math., 44: 102-121, 1922.
Mrówka, S.Compactness and productspaces. Colloq. Math., 7:19-22, 1959.
Nachbin, L.Sur les espaces topologiques ordonnés. C.R. Acad. Sci. Paris, 226:381-382, 1948.
Nachbin, L.Topologia e Ordem.University of Chicago Press, Chicago, IL, 1950. English translation: Topology and Order, Van Nostrand, Princeton, NJ, 1965.
Niefield, S.Cartesianness: topological spaces, uniform spaces, and affine schemes. J. Pure Appl. Algebra, 23:147-167, 1982.
Pasynkov, B.A.Partial topological products. Trans. Mosc. Math. Soc., 13: 153-271, 1965.
Pedicchio, M.C. and W., Tholen. Multiplicative structures over sup-lattices. Arch. Math. (Brno), 25:107-114, 1989.
Pedicchio, M.C. and R.J., Wood. Groupoidal completely distributive lattices. J. Pure Appl. Algebra, 143:339-350, 1999.
Penon, J.Objets séparés ou compacts dans une catégorie. C.R. Acad. Sci. Paris Sér. A, 274:384-387, 1972.
Penon, J.Quasi-topos. C.R. Acad. Sci. Paris Sér. A, 276:237-240, 1973.
Perry, R.J.Completely regular relational algebras. Cahiers Topologie Géom. Différentielle, 17:125-133, 1976.
Picado, J., A., Pultr, and A., Tozzi. Locales. In M.C., Pedicchio and W., Tholen, eds., Categorical Foundations. Cambridge University Press, Cambridge, 2004, pp. 49-101.
Pisani, C.Convergence in exponentiable spaces. Theory Appl. Categ., 5:148-162, 1999.
Ramaley, J.F. and O., Wyler. Cauchy spaces, I, structure and uniformization theorems. Math. Ann., 187:175-186, 1970.
Reis, C.D.Topologia via Categorias Enriquecidas. Ph.D. thesis, University of Aveiro, Aveiro, 2013.
Reitermann, J. and W., Tholen. Effective descent maps of topological spaces. Topology Appl., 57:53-69, 1994.
Riesz, F.Stetigkeitsbegriff und abstrakte Mengenlehre. In Atti del IV Congresso Intern. dei Matem., Bologna, vol. 2, 1908, pp. 18-24.
Robeys, K.T.Extensions of Products of Metric Spaces. Ph.D. thesis, University of Antwerp, Antwerp, 1992.
Rosebrugh, R. and R., Wood. Boundedness and complete distributivity. Appl. Categ. Structures, 9:437-456, 2001.
Rosebrugh, R. and R.J., Wood. Distributive laws and factorization. J. Pure Appl. Algebra, 175:327-353, 2002.
Rosenthal, K.I.Quantales and their Applications. Addison Wesley Longman, Harlow, 1990.
Rosenthal, K.I.The Theory of Quantaloids. Addison Wesley Longman, Harlow, 1996.
Rutten, J.J.M.M.Weighted colimits and formal balls in generalized metric spaces. Topology Appl., 89:179-202, 1998.
Schubert, C.Lax Algebras – A Scenic Approach. Ph.D. thesis, Universität Bremen, Bremen, 2006.
Schubert, C. and G.J., Seal. Extensions in the theory of lax algebra. Theory Appl. Categ., 21:118-151, 2008.
Schubert, H.Categories.Springer, New York, 1972.
Schweizer, B. and A., Sklar. Probabilistic Metric Spaces.North-Holland, New York, 1983.
Scott, D.Continuous lattices. In Conf. Toposes, Algebraic Geometry and Logic, Dalhousie, Halifax N.S., 1971. Lecture Notes in Mathematics 274. Springer, Berlin, 1972, pp. 97-136.
Seal, G.J.Canonical and op-canonical lax algebras. Theory Appl. Categ., 14:221-243, 2005.
Seal, G.J.A Kleisli-based approach to lax algebras. Appl. Categ. Structures, 17:75-89, 2009.
Seal, G.J.Order-adjointmonads and injective objects. J. Pure Appl. Algebra, 214:778-796, 2010.
Seal, G.J.On the monadic nature of categories of ordered sets. Cah. Topol. Géom. Différ. Catég., 52:163-187, 2011.
Smyth, M.B.Effectively given domains. Theoret. Comput. Sci., 5:257-274, 1977/1978.
Solovyov, S.A.On the category Q-mod. Algebra Universalis, 58:35-58, 2008.
Solovyov, S.A.On a lax-algebraic characterization of closed maps, Appl. Categ. Structures, 2013, in press; DOI: 10.1007/s 10485-013-9334-7.
Šostak, A.P.Fuzzy functions and an extension of the category L-Top of Chang-Goguen L-topological spaces. In Proc. Ninth Prague Topological Symp., 2001, pp. 271-294. Contributed papers available at www.emis.de/procedings/TopoSym2001/00.htm.
Šostak, A.P.Fuzzy functions as morphisms in an extension of the category of Hutton L-uniform spaces. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci., 57:121-127, 2003.
Stone, M.H.Applications of the theory of Boolean rings to generaltopology. Trans. Amer. Math. Soc., 41:375-481, 1937.
Street, R.The formal theory of monads. J. Pure Appl. Algebra, 2:149-168, 1972.
Street, R.Fibrations and Yoneda's lemma in a 2-category. In Proc. Category Sem., Sydney, 1972/73. Lecture Notes in Mathematics 420. Springer, Berlin, 1974, pp. 104-133.
Street, R.Categorical structures. In M., Hazewinkel, ed., Handbook of Algebra, vol. 1. Elsevier, Amsterdam, pp. 529-577. 1996.
Streicher, T.Fibred categories à la Jean Bénabou. Lecture notes. Available at http://www.mathematik.tu-darmstadt.de/〜st:reiche:r/FIBR/FibLec.pdf, 1998-2012.
Stubbe, I.Categorical structures enriched in a quantaloid: categories, distributors and functors. Theory Appl. Categ., 14:1-45, 2005.
Stubbe, I.Categorical structures enriched in a quantaloid: tensored and cotensored categories. Theory Appl. Categ., 16:283-306, 2006.
Stubbe, I.Q-modules are Q-suplattices. Theory Appl. Categ., 19:50-60, 2007.
Tarski, A.Une contribution à la théorie de la mesure. Fundam. Math., 15:42-50, 1930.
Thampuran, D.V.Extended topology: filters and convergence I. Math. Ann., 158:57-68, 1965.
Tholen, W.On Wyler's tautlift theorem. Gen. Topology Appl., 8:197-206, 1978.
Tholen, W.Semitopological functors I. J. Pure Appl. Algebra, 15:53-73, 1979.
Tholen, W.Factorizations, localizations, and the orthogonal subcategory problem. Math. Nachr., 114:63-85, 1983.
Tholen, W.A categorical guide to separation, compactness and perfectness. Homology, Homotopy Appl., 1:147-161, 1999.
Tholen, W.Ordered topological structures. Topology Appl., 156:2148-2157, 2009.
Trnková, V.Relational automata in a category and their languages. In Proc. Int. Conf. Fundamental Computing Theory, Poznan-Kornik, 1977. Lecture Notes in Computer Science 56. Springer, Berlin, 1977, pp. 340-355.
Tukey, J.W.Convergence and Uniformity in Topology.Princeton University Press, Princeton, NJ, 1940.
Tychonoff, A.N.Über die topologische Erweiterung von Räumen. Math. Ann., 102:544-561, 1930.
van Breugel, F.An introduction to metric semantics: operational and denotational models for programming and specification languages. Theoret. Comput. Sci., 258:1-98, 2001.
VanOlmen, C.A study of the interaction between frame theory and approach theory. Ph.D. thesis, University of Antwerp, 2005.
Van Olmen, C. and S., Verwulgen. A finite axiom scheme for approach frames. Bull. Belg. Math. Soc. Simon Stevin, 17:899-908, 2010.
Vietoris, L.Bereiche zweiter Ordnung. Monatsh. Math. Phys., 32:258-280, 1922.
Wagner, K.R.Solving recursive domain equations with enriched categories. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 1994.
Waszkiewicz, P.On domain theory over Girard quantales. Fund. Inform., 92:169-192, 2009.
Wood, R.J.Ordered sets via adjunctions. In C., Pedicchio and W., Tholen, eds., Categorical Foundations.Cambridge University Press, Cambridge, 2004, pp. 5-47.
Wyler, O.On the categories of general topology and topological algebra. Arch. Math. (Basel), 22:7-17, 1971.
Wyler, O.Are there topoi in topology? In Proc. Conf. Categorical Topology, Mannheim, 1975. Lecture Notes in Mathematics 540. Springer, Berlin, 1976, pp. 699-719.
Wyler, O.Algebraic theories of continuous lattices. In Continous Lattices. Lecture Notes in Mathematics 871. Springer, Berlin, 1981, pp. 390-413.
Wyler, O.Lectures Notes on Topoi and Quasitopoi.World Scientific, Singapore, 1991.
Wyler, O.Convergence axioms for topology. Ann. NY Acad. Sci., 806:465-475, 1995.
Zhang, D.Tower extensions of topological constructs. Comment. Math. Univ. Carolinae, 41:41-51, 2000.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed