Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-22T09:15:12.115Z Has data issue: false hasContentIssue false

Chapter 17 - Tumors of the endocrine system

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 276 - 301
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ezzat, S., Asa, S. L., Couldwell, W. T., Barr, C. E., Dodge, W. E., Vance, M. L. et al. The prevalence of pituitary adenomas: a systematic review. Cancer 2004; 101(3): 613619.CrossRefGoogle ScholarPubMed
Fink, A., Tomlinson, G., Freeman, J. L., Rosen, I. B. and Asa, S. L. Occult micropapillary carcinoma associated with benign follicular thyroid disease and unrelated thyroid neoplasms. Mod Pathol 1996; 9(8): 816820.Google ScholarPubMed
DeLellis, R. A., Lloyd, R. V., Heitz, P. U. and Eng, C. (eds.), Pathology and Genetics of Tumours of Endocrine Organs (Lyon: IARC Press, 2004).Google Scholar
Asa, S. L. Tumors of the Pituitary Gland. AFIP Atlas of Tumor Pathology. Silverberg, S. G. (ed.), Series 4, Fascicle 15 (Silver Spring, MD: ARP Press, 2011).CrossRefGoogle Scholar
Chandrasekharappa, S. C., Guru, S. C., Manickam, P., Olufemi, S. E., Collins, F. S., Emmert-Buck, M. R. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276(5311): 404407.CrossRefGoogle ScholarPubMed
Trouillas, J., Labat-Moleur, F., Sturm, N., Kujas, M., Heymann, M.-F., Figarella-Branger, D. et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case-control study in a series of 77 patients versus 2509 non-MEN1 patients. Am J Surg Pathol 2008; 32(4): 534543.CrossRefGoogle Scholar
Zhuang, Z., Ezzat, S., Vortmeyer, A. O., Weil, R., Oldfield, E. H., Park, W. S. et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 1997; 57(24): 54465451.Google ScholarPubMed
Asa, S. L., Somers, K. and Ezzat, S. The MEN-1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 1998; 83(9): 32103212.Google ScholarPubMed
Pellegata, N. S., Quintanilla-Martinez, L., Siggelkow, H., Samson, E., Bink, K., Hofler, H. et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103(42): 1555815563.CrossRefGoogle Scholar
Lee, M. and Pellegata, N. S. Multiple endocrine neoplasia type 4. Front Horm Res 2013; 41: 6378.CrossRefGoogle ScholarPubMed
Georgitsi, M., Raitila, A., Karhu, A., van der Luijt, R. B., Aalfs, C. M., Sane, T. et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007; 92(8): 33213325.CrossRefGoogle ScholarPubMed
Agarwal, S. K., Mateo, C. M. and Marx, S. J. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009; 94(5): 18261834.CrossRefGoogle ScholarPubMed
Martucci, F., Trivellin, G. and Korbonits, M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Invest 2012; 35(11): 10031014.CrossRefGoogle ScholarPubMed
Beckers, A., Aaltonen, L. A., Daly, A. F. and Karhu, A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 2013; 34(2): 239277.CrossRefGoogle ScholarPubMed
Carney, J. A., Gordon, H., Carpenter, P. C., Shenoy, B. V. and Go, V. L. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985; 64(4): 270283.CrossRefGoogle ScholarPubMed
Kirschner, L. S., Carney, J. A., Pack, S. D., Taymans, S. E., Giatzakis, C., Cho, Y. S. et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000; 26(1): 8992.CrossRefGoogle ScholarPubMed
Xekouki, P. and Stratakis, C. A. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer 2012; 19(6): C33C40.CrossRefGoogle ScholarPubMed
Papathomas, T. G., Gaal, J., Corssmit, E. P., Oudijk, L., Korpershoek, E., Heimdal, K. et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol 2014; 170(1): 112.CrossRefGoogle ScholarPubMed
Vallar, L., Spada, A. and Giannattasio, G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987; 330: 566568.CrossRefGoogle ScholarPubMed
Landis, C. A., Masters, S. B., Spada, A., Pace, A. M., Bourne, H. R. and Vallar, L. GTPase inhibiting mutations activate the alpha-chain of Gs ans stimulate adenylate cyclase in human pituitary tumors. Nature 1989; 340: 692696.CrossRefGoogle Scholar
Asa, S. L., DiGiovanni, R., Jiang, J., Ward, M. L., Loesch, K., Yamada, S. et al. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res 2007; 67(15): 75057511.CrossRefGoogle ScholarPubMed
Bhayana, S., Booth, G. L., Asa, S. L., Kovacs, K. and Ezzat, S. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 2005; 90(11): 62906295.CrossRefGoogle ScholarPubMed
Newey, P. J., Nesbit, M. A., Rimmer, A. J., Head, R. A., Gorvin, C. M., Attar, M. et al. Whole-exome sequencing studies of nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2013; 98(4): E796800.CrossRefGoogle ScholarPubMed
Levy, A., Hall, L., Yeundall, W. A. and Lightman, S. L. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 1994; 41: 809814.CrossRefGoogle ScholarPubMed
Kawashima, S. T., Usui, T., Sano, T., Iogawa, H., Hagiwara, H., Tamanaha, T. et al. P53 gene mutation in an atypical corticotroph adenoma with Cushing's disease. Clin Endocrinol (Oxf) 2009; 70(4): 656657.CrossRefGoogle Scholar
Karga, H. J., Alexander, J. M., Hedley-Whyte, E. T., Klibanski, A. and Jameson, J. L. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 1992; 74(4): 914919.CrossRefGoogle ScholarPubMed
Pei, L., Melmed, S., Scheithauer, B., Kovacs, K. and Prager, D. H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994; 78: 842846.Google ScholarPubMed
Cai, W. Y., Alexander, J. M., Hedley-Whyte, E. T., Scheithauer, B. W., Jameson, J. L., Zervas, N. T. et al. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994; 78(1): 8993.Google ScholarPubMed
Zahedi, A., Booth, G. L., Smyth, H. S., Farrell, W. E., Clayton, R. N., Asa, S. L. et al. Distinct clonal composition of primary and metastatic adrencorticotrophic hormone-producing pituitary carcinoma. Clin Endocrinol (Oxf) 2001; 55(4): 549556.CrossRefGoogle ScholarPubMed
Hinton, D. R., Hahn, J. A., Weiss, M. H. and Couldwell, W. T. Loss of Rb expression in an ACTH-secreting pituitary carcinoma. Cancer Lett 1998; 126(2): 209214.CrossRefGoogle Scholar
Tanizaki, Y., Jin, L., Scheithauer, B. W., Kovacs, K., Roncaroli, F. and Lloyd, R. V. P53 gene mutations in pituitary carcinomas. Endocr Pathol 2007; 18(4): 217222.CrossRefGoogle ScholarPubMed
De Martino, I., Fedele, M., Palmieri, D., Visone, R., Cappabianca, P., Wierinckx, A. et al. B-RAF mutations are a rare event in pituitary adenomas. J Endocrinol Invest 2007; 30(1): RC1RC3.CrossRefGoogle ScholarPubMed
Asa, S. L., Scheithauer, B. W., Bilbao, J. M., Horvath, E., Ryan, N., Kovacs, K. et al. A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor. J Clin Endocrinol Metab 1984; 58(5): 796803.CrossRefGoogle ScholarPubMed
Stenzel-Poore, M. P., Cameron, V. A., Vaughan, J., Sawchenko, P. E. and Vale, W. Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992; 130(6): 33783386.CrossRefGoogle ScholarPubMed
Karl, M., Lamberts, S. W. J., Koper, J. W., Katz, D. A., Huizenga, N. E. and Kino, T. et al. Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 1996; 108(4): 296307.Google ScholarPubMed
Lloyd, R. V. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland. An immunohistochemical study. Am J Pathol 1983; 113(2): 198206.Google ScholarPubMed
Schuff, K. G., Hentges, S. T., Kelly, M. A., Binart, N., Kelly, P. A., Iuvone, M. P. et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and-independent mechanisms. J Clin Invest 2002; 110(7): 973981.CrossRefGoogle ScholarPubMed
Scheithauer, B. W., Kovacs, K. and Randall, R. V. The pituitary gland in untreated Addison's disease. A histologic and immunocytologic study of 18 adenohypophyses. Arch Pathol Lab Med 1983; 107(9): 484487.Google ScholarPubMed
Scheithauer, B. W., Kovacs, K., Randall, R. V. and Ryan, N. Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch Pathol Lab Med 1985; 109(6): 499504.Google ScholarPubMed
Ando, S., Sarlis, N. J., Krishnan, J., Feng, X., Refetoff, S., Zhang, M. Q. et al. Aberrant alternative splicing of thyroid hormone receptor in a TSH-secreting pituitary tumor is a mechanism for hormone resistance. Mol Endocrinol 2001; 15(9): 15291538.CrossRefGoogle Scholar
Haddad, G., Penabad, J. L., Bashey, H. M., Asa, S. L., Gennarelli, T. A., Cirullo, R. et al. Expression of activin/inhibin subunit messenger ribonucleic acids by gonadotroph adenomas. J Clin Endocrinol Metab 1994; 79: 13991403.Google ScholarPubMed
Penabad, J. L., Bashey, H. M., Asa, S. L., Haddad, G., Davis, K. D., Herbst, A. B. et al. Decreased follistatin gene expression in gonadotroph adenomas. J Clin Endocrinol Metab 1996; 81: 33973403.Google ScholarPubMed
Danila, D. C., Inder, W. J., Zhang, X., Alexander, J. M., Swearingen, B., Hedley-Whyte, E. T. et al. Activin effects on neoplastic proliferation of human pituitary tumors. J Clin Endocrinol Metab 2000; 85(3): 10091015.Google ScholarPubMed
Ezzat, S., Smyth, H. S., Ramyar, L. and Asa, S. L. Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J Clin Endocrinol Metab 1995; 80: 878884.Google ScholarPubMed
Zhu, X., Asa, S. L. and Ezzat, S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008; 14(7): 19841996.CrossRefGoogle ScholarPubMed
Abbass, S. A. A., Asa, S. L. and Ezzat, S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab 1997; 82: 11601166.CrossRefGoogle ScholarPubMed
Zhu, X., Lee, K., Asa, S. L. and Ezzat, S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007; 170(5): 16181628.CrossRefGoogle ScholarPubMed
Ezzat, S., Zheng, L., Zhu, X. F., Wu, G. E. and Asa, S. L. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 2002; 109(1): 6978.CrossRefGoogle ScholarPubMed
Yu, S., Asa, S. L., Weigel, R. J. and Ezzat, S. Pituitary tumor AP-2alpha recognizes a cryptic promoter in intron 4 of fibroblast growth factor receptor 4. J Biol Chem 2003; 278(22): 1959719602.CrossRefGoogle ScholarPubMed
Ezzat, S., Zheng, L., Winer, D. and Asa, S. L. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 2006; 20(11): 29652975.CrossRefGoogle ScholarPubMed
Pei, L., Melmed, S., Scheithauer, B., Kovacs, K., Benedict, W. F. and Prager, D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 1995; 55(8): 16131616.Google ScholarPubMed
Woloschak, M., Roberts, J. L. and Post, K. D. Loss of heterozygosity at the retinoblastoma locus in human pituitary tumors. Cancer 1994; 74(2): 693696.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Woloschak, M., Yu, A., Xiao, J. and Post, K. D. Abundance and state of phosphorylation of the retinoblastoma gene product in human pituitary tumors. Int J Cancer 1996; 67(1): 1619.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Woloschak, M., Yu, A., Xiao, J. and Post, K. Frequent loss of the P16INK4a gene product in human pituitary tumors. Cancer Res 1996; 56(11): 24932496.Google ScholarPubMed
Woloschak, M., Yu, A. and Post, K. D. Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinog 1997; 19(4): 221224.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Dahia, P. L., Aguiar, R. C., Honegger, J., Fahlbush, R., Jordan, S., Lowe, D. G. et al. Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 1998; 16(1): 6976.CrossRefGoogle ScholarPubMed
Zhang, X., Sun, H., Danila, D. C., Johnson, S. R., Zhou, Y., Swearingen, B. et al. Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 2002; 87(3): 12621267.Google ScholarPubMed
Bahar, A., Bicknell, J. E., Simpson, D. J., Clayton, R. N. and Farrell, W. E. Loss of expression of the growth inhibitory gene GADD45gamma, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 2004; 23(4): 936944.CrossRefGoogle ScholarPubMed
Zhao, J., Dahle, D., Zhou, Y., Zhang, X. and Klibanski, A. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 2005; 90(4): 21792186.CrossRefGoogle ScholarPubMed
Bahar, A., Simpson, D. J., Cutty, S. J., Bicknell, J. E., Hoban, P. R., Holley, S. et al. Isolation and characterization of a novel pituitary tumor apoptosis gene. Mol Endocrinol 2004; 18(7): 18271839.CrossRefGoogle ScholarPubMed
Evans, C. O., Reddy, P., Brat, D. J., O'Neill, E. B., Craige, B., Stevens, V. L. et al. Differential expression of folate receptor in pituitary adenomas. Cancer Res 2003; 63(14): 42184224.Google ScholarPubMed
Pei, L. and Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997; 11: 433441.CrossRefGoogle ScholarPubMed
Wierinckx, A., Auger, C., Devauchelle, P., Reynaud, A., Chevallier, P., Jan, M. et al. A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer 2007; 14(3): 887900.CrossRefGoogle ScholarPubMed
Moreno, C. S., Evans, C. O., Zhan, X., Okor, M., Desiderio, D. M. and Oyesiku, N. M. Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 2005; 65(22): 1021410222.CrossRefGoogle ScholarPubMed
Hussaini, I. M., Trotter, C., Zhao, Y., Abdel-Fattah, R., Amos, S., Xiao, A. et al. Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol 2007; 170(1): 356365.CrossRefGoogle ScholarPubMed
Galland, F., Lacroix, L., Saulnier, P., Dessen, P., Meduri, G., Bernier, M. et al. Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr Relat Cancer 2010; 17(2): 361371.CrossRefGoogle ScholarPubMed
Ling, C., Pease, M., Shi, L., Punj, V., Shiroishi, M. S., Commins, D. et al. A pilot genome-scale profiling of DNA methylation in sporadic pituitary macroadenomas: association with tumor invasion and histopathological subtype. PLoS ONE 2014; 9(4): e96178.CrossRefGoogle ScholarPubMed
Zhu, X., Mao, X., Hurren, R., Schimmer, A. D., Ezzat, S. and Asa, S. L. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J Clin Endocrinol Metab 2008; 93(9): 36103617.CrossRefGoogle ScholarPubMed
Ezzat, S., Mader, R., Yu, S., Ning, T., Poussier, P. and Asa, S. L. Ikaros integrates endocrine and immune system development. J Clin Invest 2005; 115(4): 10211029.CrossRefGoogle ScholarPubMed
Ezzat, S., Mader, R., Fischer, S., Yu, S., Ackerley, C. and Asa, S. L. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic-pituitary-mediated somatic growth. Proc Natl Acad Sci USA 2006; 103(7): 22142219.CrossRefGoogle ScholarPubMed
Ezzat, S., Yu, S. and Asa, S. L. The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol Endocrinol 2005; 19(4): 10041011.CrossRefGoogle ScholarPubMed
Ezzat, S., Yu, S. and Asa, S. L. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5’ fibroblast growth factor receptor-4 promoter. Am J Pathol 2003; 163(3): 11771184.CrossRefGoogle ScholarPubMed
Loeper, S., Asa, S. L. and Ezzat, S. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008; 68(10): 37153723.CrossRefGoogle ScholarPubMed
Ezzat, S., Zhu, X., Loeper, S., Fischer, S. and Asa, S. L. Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 2006; 20(11): 29762986.CrossRefGoogle ScholarPubMed
Dorman, K., Shen, Z., Yang, C., Ezzat, S. and Asa, S. L. CtBP1 interacts with ikaros and modulates pituitary tumor cell survival and response to hypoxia. Mol Endocrinol 2012; 26(3): 447457.CrossRefGoogle ScholarPubMed
Fedele, M., Battista, S., Kenyon, L., Baldassarre, G., Fidanza, V., Klein-Szanto, A. J. et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002; 21(20): 31903198.CrossRefGoogle Scholar
Fedele, M., Pentimalli, F., Baldassarre, G., Battista, S., Klein-Szanto, A. J. P., Kenyon, L. et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005; 24(21): 34273435.CrossRefGoogle ScholarPubMed
Fedele, M., Visone, R., De Martino, I., Troncone, G., Palmieri, D., Battista, S. et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell 2006; 9(6): 459471.CrossRefGoogle ScholarPubMed
De Martino, I., Visone, R., Wierinckx, A., Palmieri, D., Ferraro, A., Cappabianca, P. et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 2009; 69(5): 18441850.CrossRefGoogle ScholarPubMed
Finelli, P., Pierantoni, G. M., Giardino, D., Losa, M., Rodeschini, O., Fedele, M. et al. The High Mobility Group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 2002; 62(8): 23982405.Google ScholarPubMed
Evans, C. O., Moreno, C. S., Zhan, X., McCabe, M. T., Vertino, P. M., Desiderio, D. M. et al. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 2008; 11(3): 231245.CrossRefGoogle ScholarPubMed
Qian, Z. R., Asa, S. L., Siomi, H., Siomi, M. C., Yoshimoto, K., Yamada, S. et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 2009; 22(3): 431441.CrossRefGoogle ScholarPubMed
D'Angelo, D., Palmieri, D., Mussnich, P., Roche, M., Wierinckx, A., Raverot, G. et al. Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 2012; 97(7): E11281138.CrossRefGoogle ScholarPubMed
Tateno, T., Asa, S. L., Zheng, L., Mayr, T., Ullrich, A. and Ezzat, S. The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet 2011; 7(12): e1002400.CrossRefGoogle ScholarPubMed
Nakano-Tateno, T., Tateno, T., Hlaing, M. M., Zheng, L., Yoshimoto, K., Yamada, S. et al. FGFR4 polymorphic variants modulate phenotypic features of Cushing disease. Mol Endocrinol 2014; 28(4): 525533.CrossRefGoogle ScholarPubMed
Kondo, T., Ezzat, S. and Asa, S. L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006; 6(4): 292306.CrossRefGoogle ScholarPubMed
Robbins, J. and Schneider, A. B. Thyroid cancer following exposure to radioactive iodine. Rev Endocr Metab Disord 2000; 1(3): 197203.CrossRefGoogle ScholarPubMed
Williams, D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene 2008; 27(Suppl 2): S918.CrossRefGoogle ScholarPubMed
Khan, A., Smellie, J., Nutting, C., Harrington, K. and Newbold, K. Familial nonmedullary thyroid cancer: a review of the genetics. Thyroid 2010; 20(7): 795801.CrossRefGoogle ScholarPubMed
Mulligan, L. M., Kwok, J. B. J., Healey, C. S., Elsdon, M. J., Eng, C., Gardner, E. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363(6428): 458460.CrossRefGoogle ScholarPubMed
Drexhage, H. A., Bottazzo, G. F., Bitensky, L., Chayen, J. and Doniach, D. Evidence for thyroid growth-stimulating immunoglobulin in some goitrous thyroid diseases. Lancet 1980; 2: 287292.CrossRefGoogle Scholar
Van der Gaag, R. D., Drexhage, H. A., Wiersinga, W. M., Brown, R. S., Docter, R., Bottazzo, G. F. et al. Further studies on thyroid growth-stimulating immunoglobulins in euthyroid nonendemic goiter. J Clin Endocrinol Metab 1985; 60(5): 972979.CrossRefGoogle ScholarPubMed
Apel, R. L., Ezzat, S., Bapat, B. V., Pan, N., LiVolsi, V. A. and Asa, S. L. Clonality of thyroid nodules in sporadic goiter. Diag Mol Pathol 1995; 4: 113121.CrossRefGoogle ScholarPubMed
Aeschimann, S., Kopp, P. A., Kimura, E. T., Zbaeren, J., Tobler, A., Fey, M. F. et al. Morphological and functional polymorphism within clonal thyroid nodules. J Clin Endocrinol Metab 1993; 77: 846851.Google ScholarPubMed
Kopp, P., Kimura, E. T., Aeschimann, S., Oestreicher, M., Tobler, A., Fey, M. F. et al. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J Clin Endocrinol Metab 1994; 79: 134139.Google ScholarPubMed
Boerner, S. L. and Asa, S. L. Biopsy Interpretation of the Thyroid (Philadelphia, PA: Lippincott Williams & Wilkins, 2009).Google Scholar
Mete, O. and Asa, S. L. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012; 19(6): 363373.CrossRefGoogle ScholarPubMed
Parma, J., Duprez, L., van Sande, J., Cochaux, P., Gervy, C., Mockel, J. et al. Somatic mutations in the thyrotropin recptor gene cause hyperfunctioning thyroid adenomas. Nature 1993; 365: 649651.CrossRefGoogle Scholar
van Sande, J., Parma, J., Tonacchera, M., Swillens, S., Dumont, J. and Vassart, G. Genetic basis of endocrine disease. Somatic and germline mutations of the TSH receptor gene in thyroid disease. J Clin Endocrinol Metab 1995; 80: 25772585.Google Scholar
Holzapfel, H. P., Fuhrer, D., Wonerow, P., Weinland, G., Scherbaum, W. A. and Paschke, R. Identification of constitutively activating somatic thyrotropin receptor mutations in a subset of toxic multinodular goiters. J Clin Endocrinol Metab 1997; 82(12): 42294233.CrossRefGoogle Scholar
Parma, J., Duprez, L., Van Sandem, H., Hermans, J., Rocmans, P., Van Vliet, G. et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thryoid adenomas. J Clin Endocrinol Metab 1997; 82(8): 26952701.Google Scholar
Krohn, D., Fuhrer, D., Holzapfel, H. and Paschke, R. Clonal origin of toxic thyroid nodules with constitutively activating thyrotropin receptor mutations. J Clin Endocrinol Metab 1998; 83: 180184.CrossRefGoogle ScholarPubMed
Krohn, K., Fuhrer, D., Bayer, Y., Eszlinger, M., Brauer, V., Neumann, S. et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 2005; 26(4): 504524.CrossRefGoogle ScholarPubMed
Bahn, R. S., Burch, H. B., Cooper, D. S., Garber, J. R., Greenlee, M. C., Klein, I. et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract 2011; 17(3): 456520.CrossRefGoogle ScholarPubMed
Nikiforova, M. N. and Nikiforov, Y. E. Molecular diagnostics and predictors in thyroid cancer. Thyroid 2009; 19(12): 13511361.CrossRefGoogle ScholarPubMed
Nikiforov, Y. E. and Nikiforova, M. N. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7(10): 569580.CrossRefGoogle ScholarPubMed
Hamatani, K., Mukai, M., Takahashi, K., Hayashi, Y., Nakachi, K. and Kusunoki, Y. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors. Thyroid 2012; 22(11): 11531159.CrossRefGoogle ScholarPubMed
Leeman-Neill, R. J., Kelly, L. M., Liu, P., Brenner, A. V., Little, M. P., Bogdanova, T. I. et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014; 120(6): 799807.CrossRefGoogle ScholarPubMed
Xing, M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 2010; 321(1): 8693.CrossRefGoogle ScholarPubMed
Cheng, S., Serra, S., Mercado, M., Ezzat, S. and Asa, S. L. A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res 2011; 17(8): 23852394.CrossRefGoogle ScholarPubMed
Cameselle-Teijeiro, J. and Chan, J. K. Cribiform-morular variant of papillary carcinoma: a distinct variant representing the sporadic counterpart of familial adenomatous polyposis-associated with thyroid carcinoma. Mod Pathol 1999; 12(4): 400411.Google Scholar
Xu, B., Yoshimoto, K., Miyauchi, A., Kuma, S., Mizusawa, N., Hirokawa, M. et al. Cribriform-morular variant of papillary thyroid carcinoma: a pathological and molecular genetic study with evidence of frequent somatic mutations in exon 3 of the beta-catenin gene. J Pathol 2003; 199(1): 5867.CrossRefGoogle ScholarPubMed
Kuma, S., Hirokawa, M., Xu, B., Miyauchi, A., Kukudo, K. and Sano, T. Cribriform-morular variant of papillary thyroid carcinoma. Report of a case showing morules with peculiar nuclear clearing. Acta Cytol 2004; 48(3): 431436.CrossRefGoogle ScholarPubMed
Ito, Y., Miyauchi, A., Ishikawa, H., Hirokawa, M., Kudo, T., Tomoda, C. et al. Our experience of treatment of cribriform morular variant of papillary thyroid carcinoma; difference in clinicopathological features of FAP-associated and sporadic patients. Endocr J 2011; 58(8): 685689.CrossRefGoogle ScholarPubMed
Winer, D. A., Winer, S., Rotstein, L., Asa, S. L. and Mete, O. Villous papillary thyroid carcinoma: a variant associated with marfan syndrome. Endocr Pathol 2012; 23(4): 254259.CrossRefGoogle ScholarPubMed
Nikiforova, M. N., Kimura, E. T., Gandhi, M., Biddinger, P. W., Knauf, J. A., Basolo, F. et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003; 88(11): 53995404.CrossRefGoogle ScholarPubMed
Zhu, Z., Gandhi, M., Nikiforova, M. N., Fischer, A. H. and Nikiforov, Y. E. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 2003; 120(1): 7177.CrossRefGoogle ScholarPubMed
Trovisco, V., Vieira De Castro, I., Soares, P., Máximo, V., Silva, P., Magalhães, J. et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 2004; 202(2): 247251.CrossRefGoogle ScholarPubMed
Trovisco, V., Soares, P., Preto, A., de Castro, I. V., Lima, J., Castro, P. et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch 2005; 446(6): 589595.CrossRefGoogle Scholar
Adeniran, A. J., Zhu, Z., Gandhi, M., Steward, D. L., Fidler, J. P., Giordano, T. J. et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 2006; 30(2): 216222.CrossRefGoogle ScholarPubMed
Sobrinho-Simoes, M., Maximo, V., Rocha, A. S., Trovisco, V., Castro, P., Preto, A. et al. Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am 2008; 37(2): 333362, viii.CrossRefGoogle ScholarPubMed
Fukahori, M., Yoshida, A., Hayashi, H., Yoshihara, M., Matsukuma, S., Sakuma, Y. et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid 2012; 22(7): 683689.CrossRefGoogle Scholar
Gupta, N., Dasyam, A. K., Carty, S. E., Nikiforova, M. N., Ohori, N. P., Armstrong, M. et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metab 2013; 98(5): E914922.CrossRefGoogle ScholarPubMed
Virk, R. K., Van Dyke, A. L., Finkelstein, A., Prasad, A., Gibson, J., Hui, P. et al. BRAFV600E mutation in papillary thyroid microcarcinoma: a genotype-phenotype correlation. Mod Pathol 2013; 26(1): 6270.CrossRefGoogle ScholarPubMed
The Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014; 159(3): 676690.CrossRefGoogle Scholar
Asa, S. L. and Mete, O. Thyroid neoplasms of follicular cell derivation: a simplified approach. Semin Diagn Pathol 2013; 30(3): 178185.CrossRefGoogle ScholarPubMed
Zipkin, P. Hyalinahniliche collagene kugeln als produkte epitelialer zellen in malignen strumen. Virchows Arch 1905; 182: 374406.CrossRefGoogle Scholar
Masson, P. Cancers thyroidiens a polarite alternative. Bull Cancer 1922; 11: 350355.Google Scholar
Ward, J. V., Murray, D., Horvath, E., Kovacs, K. and Bauman, A. Hyaline cell tumor of the thyroid with massive accumulation of cytoplasmic microfilaments. Lab Invest 1982; 46(Abstract 88A).Google Scholar
Carney, J. A., Ryan, J. and Goellner, J. R. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 1987; 11: 583591.CrossRefGoogle ScholarPubMed
Bronner, M. P., LiVolsi, V. A. and Jennings, T. A. PLAT: paraganglioma-like adenomas of the thyroid. Surg Pathol 1988; 1: 383389.Google Scholar
Sambade, C., Franssila, K., Cameselle-Teijeiro, J., Nesland, J. and Sobrinho-Simoes, M. Hyalinizing trabecular adenoma: a misnomer for a peculiar tumor of the thyroid gland. Endocr Pathol 1991; 2: 8391.CrossRefGoogle ScholarPubMed
Molberg, K. and Albores-Saavedra, J. Hyalinizing trabecular carcinoma of the thyroid gland. Hum Pathol 1994; 25(2): 192197.CrossRefGoogle ScholarPubMed
McCluggage, W. G. and Sloan, J. M. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology 1996; 28(4): 357362.CrossRefGoogle Scholar
Cheung, C. C., Boerner, S. L., MacMillan, C. M., Ramyar, L. and Asa, S. L. Hyalinizing trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 2000; 24(12): 16221626.CrossRefGoogle ScholarPubMed
Papotti, M., Volante, M., Giuliano, A., Fassina, A., Fusco, A., Bussolati, G. et al. RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol 2000; 24(12): 16151621.CrossRefGoogle ScholarPubMed
Li, M., Carcangiu, M. L. and Rosai, J. Abnormal intracellular and extracellular distribution of base membrane material in papillary carcinoma and hyalinizing trabecular tumors of the thyroid: implication for deregulation secretory pathways. Hum Pathol 1997; 28: 13661372.CrossRefGoogle Scholar
Boerner, S. L. and Asa, S. L. Hyalinizing trabecular tumor of the thyroid gland: much ado about nothing? Am J Clin Pathol 2004; 122(4): 495496.CrossRefGoogle ScholarPubMed
Carcangiu, M. L., Zampi, G. and Rosai, J. Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans’ “wuchernde Struma.” Am J Surg Pathol 1984; 8(9): 655668.CrossRefGoogle ScholarPubMed
Garcia-Rostan, G., Camp, R. L., Herrero, A., Carcangiu, M. L., Rimm, D. L. and Tallini, G. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 2001; 158(3): 987996.CrossRefGoogle ScholarPubMed
Garcia-Rostan, G., Zhao, H., Camp, R. L., Pollan, M., Herrero, A., Pardo, J. et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 2003; 21(17): 32263235.CrossRefGoogle ScholarPubMed
Costa, A. M., Herrero, A., Fresno, M. F., Heymann, J., Alvarez, J. A., Cameselle-Teijeiro, J. et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2008; 68(4): 618634.CrossRefGoogle ScholarPubMed
Volante, M., Rapa, I., Gandhi, M., Bussolati, G., Giachino, D., Papotti, M. et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 2009; 94(12): 47354741.CrossRefGoogle ScholarPubMed
Nikiforova, M. N., Wald, A. I., Roy, S., Durso, M. B. and Nikiforov, Y. E. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab 2013; 98(11): E18521860.CrossRefGoogle ScholarPubMed
Smallridge, R. C., Ain, K. B., Asa, S. L., Bible, K. C., Brierley, J. D., Burman, K. D. et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012; 22(11): 11041139.CrossRefGoogle ScholarPubMed
Hofstra, R. M. W., Landsvater, R. M., Ceccherini, I., Stulp, R. P., Stelwagen, T., Luo, Y. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994; 367: 375376.CrossRefGoogle ScholarPubMed
Wells, S. A. Jr., Asa, S. L., Dralle, H., Elisei, R., Evans, D. B., Gagel, R. F. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid; in press.Google Scholar
Marsh, D. J., Robinson, B. G., Andrew, S., Richardson, A. L., Pojer, R., Schnitzler, M. et al. A rapid screening method for the detection of mutations in the RET proto-oncogene in multiple endocrine neoplasia type 2A and familial medullary thyroid carcinoma families. Genomics 1994; 23: 477479.CrossRefGoogle ScholarPubMed
Castellone, M. D. and Santoro, M. Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin North Am 2008; 37(2): 363–74, viii.CrossRefGoogle ScholarPubMed
Jimenez, C., Hu, M. I. and Gagel, R. F. Management of medullary thyroid carcinoma. Endocrinol Metab Clin North Am 2008; 37(2): 481496.CrossRefGoogle ScholarPubMed
Kloos, R. T., Eng, C., Evans, D. B., Francis, G. L., Gagel, R. F., Gharib, H. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009; 19(6): 565612.CrossRefGoogle ScholarPubMed
Mete, O. and Asa, S. L. Precursor lesions of endocrine system neoplasms. Pathol 2013; 45(3): 316330.Google ScholarPubMed
Agrawal, N., Jiao, Y., Sausen, M., Leary, R., Bettegowda, C., Roberts, N. J. et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98(2): E364369.CrossRefGoogle ScholarPubMed
Arnold, A., Staunton, C. E., Kim, H. G., Gaz, R. D. and Kronenberg, H. M. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. New Engl J Med 1988; 318(11): 658662.CrossRefGoogle ScholarPubMed
Arnold, A. and Kim, H. G. Clonal loss of one chromosome 11 in a parathyroid adenoma. J Clin Endocrinol Metab 1989; 69(3): 496499.CrossRefGoogle Scholar
Alvelos, M. I., Vinagre, J., Fonseca, E., Barbosa, E., Teixeira-Gomes, J., Sobrinho-Simoes, M. et al. MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. Eur J Endocrinol 2013; 168(2): 119128.CrossRefGoogle ScholarPubMed
Arnold, A., Kim, H. G., Gaz, R. D., Eddy, R. L., Fukushima, Y., Byers, M. G. et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 1989; 83(6): 20342040.CrossRefGoogle Scholar
Arnold, A. Molecular mechanisms of parathyroid neoplasia. Endocrinol Metab Clin North Am 1994; 23(1): 93107.CrossRefGoogle ScholarPubMed
Schulte, K. M. and Talat, N. Diagnosis and management of parathyroid cancer. Nat Rev Endocrinol 2012; 8(10): 612622.CrossRefGoogle ScholarPubMed
Erovic, B. M., Goldstein, D. P., Kim, D., Mete, O., Brierley, J., Tsang, R. et al. Parathyroid cancer: outcome analysis of 16 patients treated at the Princess Margaret Hospital. Head Neck 2013; 35(1): 3539.CrossRefGoogle ScholarPubMed
Cryns, V. L., Thor, A., Zu, H.-J., Hu, S.-X., Wierman, M. E., Vickery, A. L. Jr. et al. Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. New Engl J Med 1994; 330: 757761.CrossRefGoogle ScholarPubMed
Erickson, L. A., Jin, L., Wollan, P., Thompson, G. B., van Heerden, J. A. and Lloyd, R. V. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol 1999; 23(3): 288295.CrossRefGoogle ScholarPubMed
Cryns, V. L., Rubio, M.-P., Thor, A. D., Louis, D. N. and Arnold, A. p53 abnormalities in human parathyroid carcinoma. J Clin Endocrinol Metab 1994; 78: 13201324.Google ScholarPubMed
Bergero, N., De Pompa, R., Sacerdote, C., Gasparri, G., Volante, M., Bussolati, G. et al. Galectin-3 expression in parathyroid carcinoma: immunohistochemical study of 26 cases. Hum Pathol 2005; 36(8): 908914.CrossRefGoogle ScholarPubMed
Erovic, B. M., Harris, L., Jamali, M., Goldstein, D. P., Irish, J. C., Asa, S. L. et al. Biomarkers of parathyroid carcinoma. Endocr Pathol 2012; 23(4): 221231.CrossRefGoogle ScholarPubMed
Abbona, G. C., Papotti, M., Gasparri, G. and Bussolati, G. Proliferative activity in parathyroid tumors as detected by Ki-67 immunostaining. Hum Pathol 1995; 26(2): 135138.CrossRefGoogle ScholarPubMed
Shattuck, T. M., Valimaki, S., Obara, T., Gaz, R. D., Clark, O. H., Shoback, D. et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. New Engl J Med 2003; 349(18): 17221729.CrossRefGoogle ScholarPubMed
Gill, A. J., Clarkson, A., Gimm, O., Keil, J., Dralle, H., Howell, V. M. et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 2006; 30(9): 11401149.CrossRefGoogle ScholarPubMed
Sidhu, S., Marsh, D. J., Theodosopoulos, G., Philips, J., Bambach, C. P., Campbell, P. et al. Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 2002; 87(7): 34673474.CrossRefGoogle ScholarPubMed
Russell, A. J., Sibbald, J., Haak, H., Keith, W. N. and McNicol, A. M. Increasing genome instability in adrenocortical carcinoma progression with involvement of chromosomes 3, 9 and X at the adenoma stage. Br J Cancer 1999; 81(4): 684689.CrossRefGoogle Scholar
Beuschlein, F., Fassnacht, M., Assie, G., Calebiro, D., Stratakis, C. A., Osswald, A. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. New Engl J Med 2014; 370(11): 10191028.CrossRefGoogle ScholarPubMed
Latronico, A. C. Role of ACTH receptor in adrenocortical tumor formation. Braz J Med Biol Res 2000; 33(10): 12491252.CrossRefGoogle ScholarPubMed
Assié, G., Libé, R., Espiard, S., Rizk-Rabin, M., Guimier, A. Luscap, W. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing?s syndrome. N Engl J Med 2013; 369(22): 21052114.CrossRefGoogle ScholarPubMed
Chui, M. H., Ozbey, N. C., Ezzat, S., Kapran, Y., Erbil, Y. and Asa, S. L. Case report: adrenal LH/hCG receptor overexpression and gene amplification causing pregnancy-induced Cushing's syndrome. Endocr Pathol 2009; 20(4): 256261.CrossRefGoogle ScholarPubMed
Funder, J. W. The genetic basis of primary aldosteronism. Curr Hypertens Rep 2012; 14(2): 120124.CrossRefGoogle ScholarPubMed
Beuschlein, F., Boulkroun, S., Osswald, A., Wieland, T., Nielsen, H. N., Lichtenauer, U. D. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013; 45(4): 440442.CrossRefGoogle ScholarPubMed
Williams, T. A., Monticone, S., Schack, V. R., Stindl, J., Burrello, J., Buffolo, F. et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 2014; 63(1): 188195.CrossRefGoogle ScholarPubMed
Azizan, E. A., Poulsen, H., Tuluc, P., Zhou, J., Clausen, M. V., Lieb, A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013; 45(9): 10551060.CrossRefGoogle ScholarPubMed
Scholl, U. I., Goh, G., Stolting, G., de Oliveira, R. C., Choi, M., Overton, J. D. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45(9): 10501054.CrossRefGoogle ScholarPubMed
Berthon, A., Drelon, C., Ragazzon, B., Tissier, F., Amar, L., Samson-Couterie, B. et al. WNT/beta-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2014; 23(4): 889905.CrossRefGoogle ScholarPubMed
Waldmann, J., Bartsch, D. K., Kann, P. H., Fendrich, V., Rothmund, M. and Langer, P. Adrenal involvement in multiple endocrine neoplasia type 1: results of 7 years prospective screening. Langenbecks Arch Surg 2007; 392(4): 437443.CrossRefGoogle ScholarPubMed
Groussin, L., Cazabat, L., Rene-Corail, F., Jullian, E. and Bertherat, J. Adrenal pathophysiology: lessons from the Carney complex. Horm Res 2005; 64(3): 132139.Google ScholarPubMed
Libe, R. and Bertherat, J. Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur J Endocrinol 2005; 153(4): 477487.CrossRefGoogle ScholarPubMed
Carney, J. A., Young, W. F. and Stratakis, C. A. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome. Am J Surg Pathol 2011; 35(9): 13111326.CrossRefGoogle ScholarPubMed
Velazquez-Fernandez, D., Caramuta, S., Ozata, D. M., Akcakaya, P., Xie, H., Hoog, A. et al. MicroRNA expression patterns associated with hyperfunctioning and non-hyperfunctioning phenotypes in adrenocortical adenomas. Eur J Endocrinol 2014; 170(4): 583591.CrossRefGoogle ScholarPubMed
Li, F. P., Fraumeni, J. F. Jr., Mulvihill, J. J., Blattner, W. A., Dreyfus, M. G., Tucker, M. A. et al. A cancer family syndrome in twenty-four kindreds. Cancer Res 1988; 48(18): 53585362.Google ScholarPubMed
Sameshima, Y., Tsunematsu, Y., Watanabe, S., Tsukamoto, T., Kawa-ha, K., Hirata, Y. et al. Detection of novel germ-line p53 mutations in diverse-cancer-prone families identified by selecting patients with childhood adrenocortical carcinoma. J Natl Cancer Inst 1992; 84(9): 703707.CrossRefGoogle ScholarPubMed
Henry, I., Jeanpierre, M., Couillin, P., Barichard, F., Serre, J. L., Journel, H. et al. Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum Genet 1989; 81(3): 273277.CrossRefGoogle ScholarPubMed
Choufani, S., Shuman, C. and Weksberg, R. Molecular findings in Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2013; 163C(2): 131140.CrossRefGoogle ScholarPubMed
Raymond, V. M., Everett, J. N., Furtado, L. V., Gustafson, S. L., Jungbluth, C. R., Gruber, S. B. et al. Adrenocortical carcinoma is a Lynch syndrome-associated cancer. J Clin Oncol 2013; 31(24): 30123018.CrossRefGoogle ScholarPubMed
Else, T. Association of adrenocortical carcinoma with familial cancer susceptibility syndromes. Mol Cell Endocrinol 2012; 351(1): 6670.CrossRefGoogle ScholarPubMed
Haase, M., Anlauf, M., Schott, M., Schinner, S., Kaminsky, E., Scherbaum, W. A. et al. A new mutation in the menin gene causes the multiple endocrine neoplasia type 1 syndrome with adrenocortical carcinoma. Endocrine 2011; 39(2): 153159.CrossRefGoogle ScholarPubMed
Morin, E., Mete, O., Wasserman, J. D., Joshua, A. M., Asa, S. L. and Ezzat, S. Carney complex with adrenal cortical carcinoma. J Clin Endocrinol Metab 2012; 97(2): E202206.CrossRefGoogle ScholarPubMed
Anselmo, J., Medeiros, S., Carneiro, V., Greene, E., Levy, I., Nesterova, M. et al. A large family with Carney complex caused by the S147G PRKAR1A mutation shows a unique spectrum of disease including adrenocortical cancer. J Clin Endocrinol Metab 2012; 97(2): 351359.CrossRefGoogle Scholar
Ohgaki, H., Kleihues, P. and Heitz, P. U. p53 mutations in sporadic adrenocortical tumors. Int J Cancer 1993; 54(3): 408410.CrossRefGoogle ScholarPubMed
Reincke, M., Karl, M., Travis, W. H., Mastorakos, G., Allolio, B., Linehan, H. M. et al. p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 1994; 78(3): 790794.Google ScholarPubMed
Ilvesmaki, V., Kahri, A. I., Miettinen, P. J. and Voutilainen, R. Insulin-like growth factors (IGFs) and their receptors in adrenal tumors: high IGF-II expression in functional adrenocortical carcinomas. J Clin Endocrinol Metab 1993; 77(3): 852858.Google ScholarPubMed
Gicquel, C., Raffin-Sanson, M. L., Gaston, V., Bertagna, X., Plouin, P. F., Schlumberger, M. et al. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab 1997; 82(8): 25592565.Google Scholar
Tissier, F., Cavard, C., Groussin, L., Perlemoine, K., Fumey, G., Hagnere, A. M. et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 2005; 65(17): 76227627.CrossRefGoogle ScholarPubMed
Giordano, T. J., Thomas, D. G., Kuick, R., Lizyness, M., Misek, D. E., Smith, A. L. et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 2003; 162(2): 521531.CrossRefGoogle ScholarPubMed
de Fraipont, F., El Atifi, M., Cherradi, N., Le Moigne, G., Defaye, G., Houlgatte, R. et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 2005; 90(3): 18191829.CrossRefGoogle ScholarPubMed
Gicquel, C., Bertagna, X., Gaston, V., Coste, J., Louvel, A., Baudin, E. et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 2001; 61(18): 67626767.Google Scholar
Assié, G., Letouzé, E., Fassnacht, M., Jouinot, A., Luscap, W., Barreau, O. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 2014; 46(6): 607612.CrossRefGoogle ScholarPubMed
Amar, L., Bertherat, J., Baudin, E., Ajzenberg, C., Bressac-de Paillerets, B., Chabre, O. et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005; 23(34): 88128818.CrossRefGoogle ScholarPubMed
Burnichon, N., Vescovo, L., Amar, L., Libé, R., de Reynies, A., Venisse, A. et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet 2011; 20(20): 39743985.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Huynh, T. T., Pacak, K., Elkahloun, A., Morris, J. C., Bratslavsky, G. et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer 2004; 11(4): 897911.CrossRefGoogle ScholarPubMed
Dahia, P. L., Ross, K. N., Wright, M. E., Hayashida, C. Y., Santagata, S., Barontini, M. et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005; 1(1): 7280.CrossRefGoogle ScholarPubMed
Lopez-Jimenez, E., Gomez-Lopez, G., Leandro-Garcia, L. J., Munoz, I., Schiavi, F., Montero-Conde, C. et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 2010; 24(12): 23822391.CrossRefGoogle ScholarPubMed
Eisenhofer, G., Lenders, J. W., Timmers, H., Mannelli, M., Grebe, S. K., Hofbauer, L. C. et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem 2011; 57(3): 411420.CrossRefGoogle ScholarPubMed
Neumann, S., Schuchardt, K., Reske, A., Reske, A., Emmrich, P. and Paschke, R. Lack of correlation for sodium iodide symporter mRNA and protein expression and analysis of sodium iodide symporter promoter methylation in benign cold thyroid nodules. Thyroid 2004; 14(2): 99111.CrossRefGoogle ScholarPubMed
King, K. S., Prodanov, T., Kantorovich, V., Fojo, T., Hewitt, J. K., Zacharin, M. et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J Clin Oncol 2011; 29(31): 41374142.CrossRefGoogle ScholarPubMed
Ricketts, C., Woodward, E. R., Killick, P., Morris, M. R., Astuti, D., Latif, F. et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 2008; 100(17): 12601262.CrossRefGoogle ScholarPubMed
Pasini, B., McWhinney, S. R., Bei, T., Matyakhina, L., Stergiopoulos, S., Muchow, M. et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008; 16(1): 7988.CrossRefGoogle ScholarPubMed
Lee, J., Wang, J., Torbenson, M., Lu, Y., Liu, Q. Z. and Li, S. Loss of SDHB and NF1 genes in a malignant phyllodes tumor of the breast as detected by oligo-array comparative genomic hybridization. Cancer Genet Cytogenet 2010; 196(2): 179183.CrossRefGoogle Scholar
Burnichon, N., Rohmer, V., Amar, L., Herman, P., Leboulleux, S., Darrouzet, V. et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 2009; 94(8): 28172827.CrossRefGoogle Scholar
Millar, A. C., Mete, O., Cusimano, R. J., Fremes, S. E., Keshavjee, S., Morgan, C. D. et al. Functional cardiac paraganglioma associated with a rare SDHC mutation. Endocr Pathol 2014; 25(3): 315320.CrossRefGoogle ScholarPubMed
Baysal, B. E. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Biochim Biophys Acta 2013; 1827(5): 573577.CrossRefGoogle ScholarPubMed
Hao, H. X., Khalimonchuk, O., Schraders, M., Dephoure, N., Bayley, J. P., Kunst, H. et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009; 325(5944): 11391142.CrossRefGoogle ScholarPubMed
Kunst, H. P., Rutten, M. H., de Monnink, J. P., Hoefsloot, L. H., Timmers, H. J., Marres, H. A. et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 2011; 17(2): 247254.CrossRefGoogle ScholarPubMed
Mulligan, L. M. and Ponder, B. A. J. Genetic basis of endocrine disease. Multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 1995; 80: 19891995.Google ScholarPubMed
Zinnamosca, L., Petramala, L., Cotesta, D., Marinelli, C., Schina, M., Cianci, R. et al. Neurofibromatosis type 1 (NF1) and pheochromocytoma: prevalence, clinical and cardiovascular aspects. Arch Dermatol Res 2011; 303(5): 317325.CrossRefGoogle ScholarPubMed
Qin, Y., Yao, L., King, E. E., Buddavarapu, K., Lenci, R. E., Chocron, E. S. et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 2010; 42(3): 229233.CrossRefGoogle ScholarPubMed
Yao, L., Schiavi, F., Cascon, A., Qin, Y., Inglada-Pérez, L., King, E. E. et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010; 304(23): 26112619.CrossRefGoogle ScholarPubMed
Comino-Mendez, I., Gracia-Aznarez, F. J., Schiavi, F., Landa, I., Leandro-García, L. J., Letón, R. et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011; 43(7): 663667.CrossRefGoogle ScholarPubMed
Peczkowska, M., Kowalska, A., Sygut, J., Waligórski, D., Malinoc, A., Janaszek-Sitkowska, H. et al. Testing new susceptibility genes in the cohort of apparently sporadic phaeochromocytoma/paraganglioma patients with clinical characteristics of hereditary syndromes. Clin Endocrinol (Oxf) 2013; 79(6): 817823.CrossRefGoogle ScholarPubMed
Toledo, R. A., Qin, Y., Srikantan, S., Morales, N. P., Li, Q., Deng, Y. et al. In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. Endocr Relat Cancer 2013; 20(3): 349359.CrossRefGoogle ScholarPubMed
Ladroue, C., Carcenac, R., Leporrier, M., Gad, S., Le Hello, C., Galateau-Salle, F. et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. New Engl J Med 2008; 359(25): 26852692.CrossRefGoogle ScholarPubMed
Castro-Vega, L. J., Buffet, A., de Cubas, A. A., Cascón, A., Menara, M., Khalifa, E. et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 2014; 23(9): 24402446.CrossRefGoogle ScholarPubMed
Crona, J., Delgado, V. A., Maharjan, R., Stålberg, P., Granberg, D., Hellman, P. et al. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab 2013; 98(7): E12661271.CrossRefGoogle ScholarPubMed
Swarts, D. R., Ramaekers, F. C. and Speel, E. J. Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 2012; 1826(2): 255271.Google ScholarPubMed
Viard-Leveugle, I., Veyrenc, S., French, L. E., Brambilla, C. and Brambilla, E. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma. J Pathol 2003; 201(2): 268277.CrossRefGoogle ScholarPubMed
Onuki, N., Wistuba, I. I., Travis, W. D., Virmani, A. K., Yashima, K., Brambilla, E. et al. Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 1999; 85(3): 600607.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Peifer, M., Fernandez-Cuesta, L., Sos, M. L., George, J., Seidel, D., Kasper, L. H. et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 2012; 44(10): 11041110.CrossRefGoogle ScholarPubMed
Iwakawa, R., Takenaka, M., Kohno, T., Shimada, Y., Totoki, Y., Shibata, T. et al. Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer. Gene Chromosome Canc 2013; 52(9): 802816.CrossRefGoogle ScholarPubMed
Toyooka, S., Toyooka, K. O., Maruyama, R., Virmani, A. K., Girard, L., Miyajima, K. et al. DNA methylation profiles of lung tumors. Mol Cancer Ther 2001; 1(1): 6167.Google ScholarPubMed
Wistuba, I. I., Gazdar, A. F. and Minna, J. D. Molecular genetics of small cell lung carcinoma. Semin Oncol 2001; 28(2 Suppl 4): 313.CrossRefGoogle ScholarPubMed
Marchetti, A., Felicioni, L., Pelosi, G., Del Grammastro, M., Fumagalli, C., Sciarrotta, M. et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum Mutat 2008; 29(5): 609616.CrossRefGoogle ScholarPubMed
Fernandez-Cuesta, L., Peifer, M., Lu, X., Sun, R., Ozretić, L., Seidel, D. et al. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun 2014; 5: 3518.CrossRefGoogle ScholarPubMed
Coe, B. P., Lee, E. H., Chi, B., et al. Gain of a region on 7p22.3, containing MAD1L1, is the most frequent event in small-cell lung cancer cell lines. Gene Chromosome Canc 2006; 45(1): 1119.CrossRefGoogle ScholarPubMed
Pelosi, G., Papotti, M., Rindi, G. and Scarpa, A. Unraveling Tumor Grading and Genomic Landscape in Lung Neuroendocrine Tumors. Endocr Pathol 2014; 25(2): 151164.CrossRefGoogle ScholarPubMed
Teh, B. T. Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med 1998; 243(6): 501504.CrossRefGoogle ScholarPubMed
Strobel, P., Zettl, A., Shilo, K., Chuang, W. Y., Nicholson, A. G., Matsuno, Y. et al. Tumor genetics and survival of thymic neuroendocrine neoplasms: a multi-institutional clinicopathologic study. Gene Chromosome Canc 2014; 53(9): 738749.CrossRefGoogle ScholarPubMed
Liu, R. X., Wang, W. Q., Ye, L., Bi, Y. F., Fang, H., Cui, B. et al. p21-activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocrine 2010; 38(1): 3847.CrossRefGoogle ScholarPubMed
Ye, L., Li, X., Kong, X., Wang, W., Bi, Y., Hu, L. et al. Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol 2005; 185(2): 337343.CrossRefGoogle ScholarPubMed
Asa, S. L. Pancreatic endocrine tumors. Mod Pathol 2011; 24(Suppl 2): S66S77.CrossRefGoogle ScholarPubMed
Thakker, R. V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386(1–2): 215.CrossRefGoogle ScholarPubMed
Karamurzin, Y., Zeng, Z., Stadler, Z. K., Zhang, L., Ouansafi, I., Al-Ahmadie, H. A. et al. Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Hum Pathol 2012; 43(10): 16771687.CrossRefGoogle ScholarPubMed
Zhou, C., Dhall, D., Nissen, N. N., Chen, C. R. and Yu, R. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 2009; 38(8): 941946.CrossRefGoogle ScholarPubMed
Henopp, T., Anlauf, M., Schmitt, A., Schlenger, R., Zalatnai, A., Couvelard, A. et al. Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas. J Clin Endocrinol Metab 2009; 94(1): 213217.CrossRefGoogle ScholarPubMed
Kloppel, G., Anlauf, M., Perren, A. and Sipos, B. Hyperplasia to neoplasia sequence of duodenal and pancreatic neuroendocrine diseases and pseudohyperplasia of the PP-cells in the pancreas. Endocr Pathol 2014; 25(2): 181185.CrossRefGoogle ScholarPubMed
Oberg, K. The genetics of neuroendocrine tumors. Semin Oncol 2013; 40(1): 3744.CrossRefGoogle ScholarPubMed
Chung, D. C., Smith, A. P., Louis, D. N., Graeme-Cook, F., Warshaw, A. L. and Arnold, A. A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. J Clin Invest 1997; 100(2): 404410.CrossRefGoogle ScholarPubMed
Jiao, Y., Shi, C., Edil, B. H., de Wilde, R. F., Klimstra, D. S., Maitra, A. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331(6021): 11991203.CrossRefGoogle ScholarPubMed
Marinoni, I., Kurrer, A. S., Vassella, E., Dettmer, M., Rudolph, T., Banz, V. et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 2014; 146(2): 453460.CrossRefGoogle ScholarPubMed
Serra, S., Zheng, L., Hassan, M., Phan, A. T., Woodhouse, L., Yao, J. C. et al. The FGFR4-G388R single nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res 2012; 72(22): 19.CrossRefGoogle ScholarPubMed
Reid, M. D., Balci, S., Saka, B. and Adsay, N. V. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol 2014; 25(1): 6579.CrossRefGoogle ScholarPubMed
Agathanggelou, A., Bieche, I., Ahmed-Choudhury, J., Nicke, B., Dammann, R., Baksh, S. et al. Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma. Cancer Res 2003; 63(17): 53445351.Google ScholarPubMed
House, M. G., Herman, J. G., Guo, M. Z., Hooker, C. M., Schulick, R. D., Lillemoe, K. D. et al. Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms. Ann Surg 2003; 238(3): 423431.CrossRefGoogle ScholarPubMed
Liu, L., Broaddus, R. R., Yao, J. C., Xie, S., White, J. A., Wu, T. T. et al. Epigenetic alterations in neuroendocrine tumors: methylation of RAS-association domain family 1, isoform A and p16 genes are associated with metastasis. Mod Pathol 2005; 18(12): 16321640.CrossRefGoogle ScholarPubMed
Bordi, C. Neuroendocrine pathology of the stomach: the Parma contribution. Endocr Pathol 2014; 25(2): 171180.CrossRefGoogle ScholarPubMed
D'Adda, T., Candidus, S., Denk, H., Bordi, C. and Hofler, H. Gastric neuroendocrine neoplasms: tumour clonality and malignancy-associated large X-chromosomal deletions. J Pathol 1999; 189(3): 394401.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Pizzi, S., D'Adda, T., Azzoni, C., Rindi, G., Grigolato, P., Pasquali, C. et al. Malignancy-associated allelic losses on the X-chromosome in foregut but not in midgut endocrine tumours. J Pathol 2002; 196(4): 401407.CrossRefGoogle ScholarPubMed
Higham, A. D., Bishop, L. A., Dimaline, R., Blackmore, C. G., Dobbins, A. C., Varro, A. et al. Mutations of RegIalpha are associated with enterochromaffin-like cell tumor development in patients with hypergastrinemia. Gastroenterology 1999; 116(6): 13101318.CrossRefGoogle ScholarPubMed
Gucer, H., Szentgyorgyi, E., Ezzat, S., Asa, S. L. and Mete, O. Inhibin-expressing clear cell neuroendocrine tumor of the ampulla: an unusual presentation of von Hippel-Lindau disease. Virchows Arch 2013; 463(4): 593597.CrossRefGoogle ScholarPubMed
Banck, M. S. and Beutler, A. S. Advances in small bowel neuroendocrine neoplasia. Curr Opin Gastroenterol 2014; 30(2): 163167.CrossRefGoogle ScholarPubMed
Bottarelli, L., Azzoni, C., Pizzi, S., D'Adda, T., Silini, E. M., Bordi, C. et al. Adenomatous polyposis coli gene involvement in ileal enterochromaffin cell neuroendocrine neoplasms. Hum Pathol 2013; 44(12): 27362742.CrossRefGoogle ScholarPubMed
Zhang, H. Y., Rumilla, K. M., Jin, L., Nakamura, N., Stilling, G. A., Ruebel, K. H. et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine 2006; 30(3): 299306.CrossRefGoogle ScholarPubMed
Banck, M. S., Kanwar, R., Kulkarni, A. A., Boora, G. K., Metge, F., Kipp, B. R. et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 2013; 123(6): 25022508.CrossRefGoogle ScholarPubMed
Francis, J. M., Kiezun, A., Ramos, A. H., Serra, S., Pedamallu, C. S., Qian, Z. R. et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 2013; 45(12): 14831486.CrossRefGoogle ScholarPubMed
Li, S. C., Essaghir, A., Martijn, C., Lloyd, R. V., Demoulin, J. B., Oberg, K. et al. Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Mod Pathol 2013; 26(5): 685696.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×