Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T01:53:31.314Z Has data issue: false hasContentIssue false

Chapter 15 - Soft tissue, bone and skin tumors

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 222 - 246
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zahm, S. H. and Fraumeni, J. F. Jr. The epidemiology of soft tissue sarcoma. Semin Oncol 1997; 24(5): 504–14.Google ScholarPubMed
Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J. and Thun, M. J. Cancer statistics, 2007. CA Cancer J Clin 2007; 57(1): 4366.CrossRefGoogle Scholar
Fletcher, C. D. M., Bridge, J. A., Hogendoorn, P. C. W. and Mertens, F. (eds.), World Health Organization Classification of Tumours of Soft Tissue and Bone, 4th edn. (Lyon: IARC Press, 2013).Google Scholar
Fletcher, C. D. M. The evolving classification of soft tissue tumours – an update based on the new 2013 WHO classification. Histopathology 2014; 64(1): 211.CrossRefGoogle ScholarPubMed
Pastore, G., Peris-Bonet, R., Carli, M., Martínez-García, C., Sánchez de Toledo, J. and Steliarova-Foucher, E. Childhood soft tissue sarcomas incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer 2006; 42(13): 2136–49.Google ScholarPubMed
Nilsson, B., Bumming, P., Meis-Kindblom, J. M., Odén, A., Dortok, A., Gustavsson, B. et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era – a population-based study in western Sweden. Cancer 2005; 103(4): 821–9.CrossRefGoogle Scholar
Sultan, I., Rodriguez-Galindo, C., Saab, R., Yasir, S., Casanova, M. and Ferrari, A. Comparing children and adults with synovial sarcoma in the Surveillance, Epidemiology, and End Results program, 1983 to 2005: an analysis of 1268 patients. Cancer 2009; 115(15): 3537–47.CrossRefGoogle ScholarPubMed
Domanski, H. A., Åkerman, M., Carlén, B., Engellau, J., Gustafson, P., Jonsson, K. et al. Core-needle biopsy performed by the cytopathologist: a technique to complement fine-needle aspiration of soft tissue and bone lesions. Cancer 2005; 105(4): 229–39.CrossRefGoogle ScholarPubMed
Layfield, L. J. Cytopathology of Bone and Soft Tissue Tumors (Oxford University Press, 2002).Google Scholar
Åkerman, M. and Domanski, H. A. The cytological features of soft tissue tumours in fine needle aspiration smears classified according to histiotype, in Orell, S. R. (ed.), Monographs in Clinical Cytology. Vol. 16. The Cytology of Soft Tissue Tumours (Basel: Kargel, 2003), pp. 1784.CrossRefGoogle Scholar
Geisinger, K. and Abdul-Karim, F. W. Fine needle aspiration biopsy of soft tissue tumors, in Strauss, M. (ed.), Enzinger and Weiss's Soft Tissue Tumors, 5th edn. (St. Louis: Mosby, 2008), pp. 103–17.Google Scholar
Klijanienko, J. and Lagacé, R. Soft Tissue Tumors. A Multidisciplinary, Decisional Diagnostic Approach (Hoboken NJ: Wiley-Blackwell, 2011).CrossRefGoogle Scholar
Dei Tos, A. P. Liposarcomas: diagnostic pitfalls and new insights. Histopathology 2014; 64(1): 3852.CrossRefGoogle ScholarPubMed
Antonescu, C. R. The role of genetic testing in soft tissue sarcoma. Histopathology 2006; 48(1): 1321.CrossRefGoogle ScholarPubMed
Lazar, A., Abruzzo, L. V., Pollock, R. E., Lee, S. and Czerniak, B. Molecular diagnosis of sarcomas: chromosomal translocations in sarcomas. Arch Pathol Lab Med 2006; 130(8): 1199–207.CrossRefGoogle ScholarPubMed
Gulley, M. L. and Kaiser-Rogers, K. A. A rational approach to genetic testing for sarcoma. Diagn Mol Pathol 2009; 18(1): 110.CrossRefGoogle ScholarPubMed
Coindre, J. M., Pédeutour, F. and Aurias, A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch 2010; 456(2): 167–79.CrossRefGoogle ScholarPubMed
Dei Tos, A. P. Classification of pleomorphic sarcomas: where are we now? Histopathology 2006; 48(1): 5162.CrossRefGoogle ScholarPubMed
Guillou, L. and Aurias, A. Soft tissue sarcomas with complex genomic profiles. Virchows Arch 2009; 456(2): 201–17.Google Scholar
Fletcher, C. D. M., Unni, K. K. and Mertens, F. World Health Organisation Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone (Lyon: IARC Press, 2002).Google Scholar
Fletcher, C. D. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 2006; 48(1): 312.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M. and Lagacé, R. Fine-needle aspiration in liposarcoma. Cyto-histologic correlative study including well-differentiated, myxoid, and pleomorphic variants. Diagn Cytopathol 2004; 30(5): 307–12.CrossRefGoogle Scholar
Idbaih, A., Coindre, J. M., Derré, J., Mariani, O., Terrier, P., Ranchère, D. et al. Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 2005; 85(2): 176–81.CrossRefGoogle ScholarPubMed
Mariani, O., Brennetot, C., Coindre, J. M., Gruel, N., Ganem, C., Delattre, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 2007; 11(4): 361–74.CrossRefGoogle ScholarPubMed
Chibon, F., Mariani, O., Derré, J., Mairal, A., Coindre, J. M., Guillou, L. et al. ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14-q15 and 6q23 amplifications. Gene Chromosome Canc 2004; 40(1): 32–7.CrossRefGoogle ScholarPubMed
Al-Zaid, T., Somaiah, N. and Lazar, A. J. Targeted therapies for sarcomas: new roles for the pathologist. Histopathology 2014; 64: 119–33.CrossRefGoogle ScholarPubMed
Tanas, M. R. and Goldblum, J. R. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol 2009; 16(6): 383–91.CrossRefGoogle ScholarPubMed
Dutt, A. and Beroukhim, R. Single nucleotide polymorphism array analysis of cancer. Curr Opin Oncol 2007; 19(1): 43–9.CrossRefGoogle ScholarPubMed
Chmielecki, J., Crago, A. M., Rosenberg, M., O'Connor, R., Walker, S. R., Ambrogio, L. et al. Whole-exome sequencing identifies a recurrent NAB2–STAT6 fusion in solitary fibrous tumours. Nat Genet 2013; 45(2): 131–2.CrossRefGoogle Scholar
Klijanienko, J., Caillaud, J. M., Lagacé, R. and Vielh, P. Fine-needle aspiration of leiomyosarcoma. A correlative cytohistopathological study of 96 tumors in 68 patients. Diagn Cytopathol 2003; 28: 119–25.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M., Lagacé, R. and Vielh, P. Cytohistologic correlations of 24 malignat peripheral nerve sheath tumors (MPNST) in 17 patients. The Institut Curie experience. Diagn Cytopathol 2002; 27: 103–8.Google Scholar
Klijanienko, J., Caillaud, J. M., Lagacé, R. and Vielh, P. Cytology in angiosarcoma including classic and epithelioid variants. Institut Curie's experience. Diagn Cytopathol 2003; 29: 140–5.CrossRefGoogle ScholarPubMed
Inagaki, H., Murase, T., Otsuka, T. and Eimoto, T. Detection of SYT-SSX fusion transcript in synovial sarcoma using archival cytologic specimens. Am J Clin Pathol 1999; 111(4): 528–33.CrossRefGoogle ScholarPubMed
Terry, J., Saito, T., Subramanian, S., Ruttan, C., Antonescu, C. R., Goldblum, J. R. et al. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol 2007; 31(2): 240–6.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M., Lagacé, R. and Vielh, P. Cytohistologic correlations in 56 synovial sarcomas in 36 patients. The Institut Curie experience. Diagn Cytopathol 2002; 27(2): 96102.CrossRefGoogle Scholar
Srinivasan, R., Gautam, U. and Gupta, S. Synovial sarcoma: diagnosis on fine-needle aspiration by morphology and molecular analysis. Cancer 2009; 117(2): 128–36.Google ScholarPubMed
Liu, K., Layfield, L. J., Coogan, A. C., Ballo, M. S., Bentz, J. S. and Dodge, R. K. Diagnostic accuracy in fine-needle aspiration of soft tissue and bone lesions. Influence of clinical history and experience. Am J Clin Pathol 1999; 111(5): 632–40.CrossRefGoogle ScholarPubMed
Molenaar, W. M., DeJong, B., Buist, J., Idenburg, V. J., Seruca, R., Vos, A. M. et al. Chromosomal analysis and the classification of soft tissue sarcomas. Lab Invest 1989; 60(2): 266–74.Google ScholarPubMed
Saboorian, M. H., Ashfaq, R., Vandersteenhoven, J. J. and Schneider, N. R. Cytogenetics as an adjunct in establishing a definitive diagnosis of synovial sarcome by fine-needle aspiration. Cancer 1997; 81(3): 187–92.3.0.CO;2-O>CrossRefGoogle Scholar
Ryan, M. R., Stastny, J. F. and Wakely, P. E. The cytopathology of synovial sarcoma. A study of six cases, with emphasis on architecture and histopathologic correlation. Cancer (Cancer Cytopathol) 1998; 84(1): 42–9.Google ScholarPubMed
Nilsson, G., Wang, M., Wejde, J., Kanter, L., Karlén, J., Tani, E. et al. Reverse transcriptase polymerase chain reaction on fine needle aspirates for rapid detection of translocations in synovial sarcoma. Acta Cytol 1998; 42(6): 1317–24.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M. and Lagacé, R. Fine-needle aspiration of primary and recurrent dermatofibrosarcoma protuberans. Diagn Cytopathol 2004; 30(4): 261–5.CrossRefGoogle ScholarPubMed
Evans, H. L., Khurana, K. K., Kemp, B. L. and Ayala, A. G. Heterologous elements in the dedifferentiated component of dedifferentiated liposarcoma. Am J Surg Pathol 1994; 18(11): 1150–7.CrossRefGoogle ScholarPubMed
Panagopoulos, I., Storlazzi, C. T., Fletcher, C. D., Fletcher, J. A., Nascimento, A., Domanski, H. A. et al. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Gene Chromosome Canc 2004; 40(3): 218–28.CrossRefGoogle ScholarPubMed
Matsuyama, A., , Hisaoka, M., , Shimajiri, S., Hayashi, T., Imamura, T., Ishida, T. et al. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol 2006; 30(9): 1077–84.Google ScholarPubMed
Périgny, M., , Dion, N., , Couture, C., and Lagacé, R. Low grade fibromyxoid sarcoma: a clinico-pathologic analysis of 7 cases. Ann Pathol 2006; 26(6): 419–25.CrossRefGoogle ScholarPubMed
Guillou, L., Benhattar, J., Gengler, C., Gallagher, G., Ranchère-Vince, D., Collin, F. et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol 2007; 31(9): 1387–402.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M., Lagacé, R. and Vielh, P. Comparative fine-needle aspiration and pathologic study in malignant fibrous histiocytoma. Cytodiagnostic features of 95 tumors in 71 patients. Diagn Cytopathol 2003; 29(6): 320–6.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M. and Lagacé, R. Fine-needle aspiration in primary and recurrent benign fibrous histiocytoma (classic, myxoid and angiomatoid variants). Diagn Cytopathol 2004; 31(6): 387–91.CrossRefGoogle Scholar
Derré, J., , Lagacé, R., , Nicolas, A., Mairal, A., Chibon, F., Coindre, J. M. et al. Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 2001; 81(2): 211–15.CrossRefGoogle ScholarPubMed
Sabah, M., Cummins, R., Leader, M. and Kay, E. Leiomyosarcoma and malignant fibrous histiocytoma share similar allelic imbalance pattern at 9p. Virchows Arch 2005; 446(3): 251–8.CrossRefGoogle ScholarPubMed
Idbaih, A., Coindre, J. M., Derré, J., Mariani, O., Terrier, P., Ranchère, D. et al. Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 2005; 85(2): 176–81.CrossRefGoogle ScholarPubMed
Coindre, J. M., Mariani, O., Chibon, F., Mairal, A., De Saint Aubain Somerhausen, N., Favre-Guillevin, E. et al. Most malignant fibrous histiocytomas developed in the retroperitoneum are dedifferentiated liposarcomas: a review of 25 cases initially diagnosed as malignant fibrous histiocytoma. Mod Pathol 2003; 16(3): 256–62.CrossRefGoogle ScholarPubMed
Coindre, J. M., Hostein, I., Maire, G., Derré, J., Guillou, L., Leroux, A. et al. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol 2004; 203(3): 822–30.CrossRefGoogle Scholar
Hallor, K. H., Mertens, F., Jin, Y., Meis-Kindblom, J. M., Kindblom, L. G., Behrendtz, M. et al. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Gene Chromosome Canc 2005; 44(1): 97102.CrossRefGoogle ScholarPubMed
Antonescu, C. R., Dal Cin, P., Nafa, K., Teot, L. A., Surti, U., Fletcher, C. D. et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Gene Chromosome Canc 2007; 46(12): 1051–60.CrossRefGoogle ScholarPubMed
Kilpatrick, S. E., Ward, W. G. and Bos, G. D. The value of fine-needle aspiration biopsy in the differential diagnosis of adult myxoid sarcoma. Cancer 2000; 90(3): 167–77.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Fletcher, C. D., Akerman, M., Dal Cin, P., de Wever, I., Mandahl, N., Mertens, F. et al. Correlation between clinicopathological features and karyotype in lipomatous tumors: a report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol 1996; 148(2): 623–30.Google ScholarPubMed
Kilpatrick, S. E., Doyon, J., Choong, P. F., Sim, F. H. and Nascimento, A. G. The clinicopathologic spectrum of myxoid and round cell liposarcoma. A study of 95 cases. Cancer 1996; 77(8): 1450–8.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Weiss, S. W. and Goldblum, J. R. Liposarcoma, in Strauss, M. (ed.), Enzinger and Weiss's Soft Tissue Tumors, 5th edn. (St. Louis: Mosby, 2008), pp. 477517.Google Scholar
Colin, P., Lagacé, R., Caillaud, J. M., Sastre-Garau, X. and Klijanienko, J. Fine-needle aspiration in myxofibrosarcoma. Experience of Institut Curie. Diagn Cytopathol 2010; 38(5): 343–6.CrossRefGoogle ScholarPubMed
Dardick, I., Lagacé, R., Carlier, M. T. and Jung, R. C. Chordoid sarcoma (extraskeletal myxoid chondrosarcoma). Virchows Arch 1983; 399(1): 6178.CrossRefGoogle ScholarPubMed
Sciot, R., Dal Cin, P., Fletcher, C., Samson, I., Smith, M., De Vos, R. et al. t(9;22)(q22–31;q11–12) is a consistent marker of extraskeletal myxoid chondrosarcoma: evaluation of three cases. Mod Pathol 1995; 8(7): 765–8.Google Scholar
Huvos, A. G. Myxoid chondrosarcoma, in Mitchel, J. (ed.), Bone Tumors. Diagnosis, Treatment and Prognosis, 2nd edn. (Philadelphia, PA: W. B. Saunders, 1991), pp. 366–7.Google Scholar
Oliveira, A. M., Sebo, T. J., McGrory, J. E., Gaffey, T. A., Rock, M. G. and Nascimento, A. G. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod Pathol 2000; 13(8): 900–8.CrossRefGoogle ScholarPubMed
Meis-Kindblom, J. M., Bergh, P., Gunterberg, B. and Kindblom, L. J. Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol 1999; 23(6): 636–50.CrossRefGoogle ScholarPubMed
Hornick, J. L., Dal Cin, P. and Fletcher, C. D. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol 2009; 33(4): 542–50.CrossRefGoogle ScholarPubMed
Fletcher, C. D., Berman, J. J., Corless, C., Gorstein, F., Lasota, J., Longley, B. J. et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 2002; 33(5): 459–65.CrossRefGoogle ScholarPubMed
Chritopherson, W. M., Foote, F. W. Jr. and Steward, F. W. Alveolar soft-part sarcoma: structurally characteristic tumors of uncertain histogenesis. Cancer 1952; 5(1): 100–11.Google Scholar
Ladanyi, M., Lui, M. Y., Antonescu, C. R., Krause-Boehm, A., Meindl, A., Argani, P. et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene ASPL, a novel gene 17q25. Oncogene 2001; 20(1): 4857.CrossRefGoogle Scholar
Sandberg, A. and Bridge, J. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: alveolar soft part sarcoma. Cancer Genet Cytogenet 2002; 136(1): 19.CrossRefGoogle ScholarPubMed
Portera, C. A. Jr., Ho, V., Patel, S. R., Hunt, K. K., Feig, B. W., Respondek, P. M. et al. Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer 2001; 91(3): 585–91.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Kayton, M. L., Meyers, P., Wexler, L. H., Gerald, W. L. and LaQuaglia, M. P. Clinical presentation, treatment, and outcome of alveolar soft part sarcoma in children, adolescents, and young adults. J Pediatr Surg 2006; 41(1): 187–93.CrossRefGoogle ScholarPubMed
Kawai, A., Hosono, A., Nakayama, R., Matsumine, A., Matsumoto, S., Ueda, T. et al. Clear cell sarcoma of tendons and aponeuroses: a study of 75 patients. Cancer 2007; 109(1): 109–16.CrossRefGoogle ScholarPubMed
Antonescu, C. R., Tschernyavsky, S. J., Woodruff, J. M., Jungbluth, A. A., Brennan, M. F. and Ladanyi, M. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn 2002; 4(1): 4452.CrossRefGoogle ScholarPubMed
Panagopoulos, I., Mertens, F., Dêbiec-Rychter, M., Isaksson, M., Limon, J., Kardas, I. et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer 2002; 99(4): 560–7.CrossRefGoogle ScholarPubMed
Langezaal, S. M., Graadt van Roggen, J. F., Cleton-Jansen, A. M., Baelde, J. J. and Hogendoorn, P. C. Malignant melanoma is genetically distinct from clear cell sarcoma of tendons and aponeurosis (malignant melanoma of soft parts). Br J Cancer 2001; 84(4): 535–8.CrossRefGoogle ScholarPubMed
Fletcher, C. D. Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 1992; 16(3): 213–28.CrossRefGoogle ScholarPubMed
Mertens, F., Fletcher, C. D., Dal Cin, P., De Wever, I., Mandahl, N., Mitelman, F. et al. Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Chromosomes and Morphology. Gene Chromosome Canc 1998; 22(1): 1625.3.0.CO;2-A>CrossRefGoogle Scholar
Idbaih, A., Coindre, J. M., Derré, J., Mariani, O., Terrier, P., Ranchère, D. et al. Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 2005; 85(2): 176–81.CrossRefGoogle ScholarPubMed
Chibon, F., , Mairal, A., , Fréneaux, P., Terrier, P., Coindre, J. M., Sastre, X. et al. The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 2000; 60(22): 6339–45.Google ScholarPubMed
Derré, J., Lagacé, R., Nicolas, A., Mairal, A., Chibon, F., Coindre, J. M. et al. Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 2001; 81(2): 211–15.CrossRefGoogle ScholarPubMed
Turc-Carel, C., Lizard-Nacol, S., Justrabo, E., Favrot, M., Philip, T. and Tabone, E. Consistent chromosomal translocation in alveolar rhabdomyosarcoma. Cancer Genet Cytogenet 1986; 19(3–4): 361–2.CrossRefGoogle ScholarPubMed
Barr, F. G. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 2001; 20(40): 5736–46.CrossRefGoogle ScholarPubMed
Klijanienko, J., Caillaud, J. M., Orbach, D., Brisse, H., Lagacé, R., Vielh, P. et al. Cyto-histological correlations in primary, recurrent and metastatic rhabdomyosarcoma: the institut Curie's experience. Diagn Cytopathol 2007; 35(8): 482–7.Google ScholarPubMed
Besnard-Guérin, C., , Newsham, I., , Winqvist, R. and Cavenee, W. K. A common region of loss of heterozygosity in Wilms’ tumor and rhabdomyosarcoma distal to be D11S988 locus on chromosome 11p15. Hum Genet 1996; 97(2): 163–70.CrossRefGoogle ScholarPubMed
Klijanienko, J., Couturier, J., Bourdeaut, F., Fréneaux, P., Ballet, S., Brisse, H. et al. Fine-needle aspiration as a diagnostic technique in 50 cases of primary Ewing sarcoma/peripheral neuroectodermal tumor (ES/PNET). Institut Curie's experience. Diagn Cytopathol 2012; 40(1): 1925.CrossRefGoogle ScholarPubMed
Thomson, T., Klijanienko, J., Couturier, J., Brisse, H., Pierron, G., Freneaux, P. et al. Fine needle aspiration in rhabdoïd tumor. Institut Curie's experience, Cancer Cytopathol 2011; 119(1): 4957.CrossRefGoogle Scholar
Fisher, H.P., Thomsen, H., Altmannsberger, M. and Bertram, U. Malignant rhabdoïd tumour of the kidney expressing neurofilament proteins. Immunohistochemical findings and histogenetic aspects. Pathol Res Pract 1989; 184: 541–7.Google Scholar
Peter, M., Gilbert, E. and Delattre, O. A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors. Lab Invest 2001; 81(6): 905–12.CrossRefGoogle ScholarPubMed
Weiss, S. W. and Goldblum, J. R. Rhabdomyosarcoma, in Strauss, M. (ed.), Enzinger and Weiss's Soft Tissue Tumors, 5th edn. (St. Louis: Mosby, 2008), pp. 595633.Google Scholar
Fisher, C. The diversity of soft tissue tumors with EWSR1 gene rearrangements: a review. Histopathology 2014; 64(1): 134–50.CrossRefGoogle ScholarPubMed
Biegel, J. A., Conard, K. and Brooks, J. J. Translocation (11;22)(p13;q12): primary change in intra-abdominal desmoplastic small round cell tumor. Gene Chromosome Canc 1993; 7(2): 119–21.CrossRefGoogle Scholar
Sawyer, J. R., Tryka, A. F. and Lewis, J. M. A novel reciprocal chromosome translocation t(11;22)(p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol 1992; 16(4): 411–16.CrossRefGoogle Scholar
Ladanyi, M. and Gerald, W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994; 54(11): 2837–40.Google ScholarPubMed
Klijanienko, J., Colin, P., Couturier, J., Lagacé, R., Fréneaux, P., Pierron, G. et al. Fine-needle aspiration in desmoplastic small round cell tumor: a report of 10 new tumors in 8 patients with clinicopathological and molecular correlations with review of the literature. Cancer Cytopathol 2014; 122(5): 386–93.CrossRefGoogle ScholarPubMed
Sciot, R., Dal Cin, P., Fletcher, C., Samson, I., Smith, M., De Vos, R. et al. t(9;22)(q22–31;q11–12) is a consistent marker of extraskeletal myxoid chondrosarcoma: evaluation of three cases. Mod Pathol 1995; 8(7): 765–8.Google Scholar
Gerami, P., Gannon, B. and Murphy, M. J. Melanocytic neoplasms I: molecular diagnosis, in Murphy, M. J. (ed.), Molecular Diagnostics in Dermatology and Dermatopathology (New York: Springer, 2011), pp. 73103.CrossRefGoogle Scholar
Tsao, H., Atkins, M. B. and Sober, A. J. Management of cutaneous melanoma. New Engl J Med 2004; 351(10): 9981012.CrossRefGoogle ScholarPubMed
Sullivan, R. J. and Flaherty, K. MAP kinase signaling and inhibition in melanoma. Oncogene 2013; 32(19): 2373–9.CrossRefGoogle ScholarPubMed
Solus, J. F. and Kraft, S. Ras, RAF, and MAP kinase in melanoma. Adv Anat Pathol 2013; 20(4): 217–26.CrossRefGoogle ScholarPubMed
Curtin, J. A., Fridlyand, J., Kageshita, T., Patel, H. N., Busam, K. J., Kutzner, H. et al. Distinct sets of genetic alterations in melanoma. New Engl J Med 2005; 353(20): 2135–47.CrossRefGoogle ScholarPubMed
Hocker, T. and Tsao, H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat 2007; 28(6): 578–88.CrossRefGoogle ScholarPubMed
Grossmann, A. H., Grossman, K. F. and Wallander, M. L. Molecular testing in malignant melanoma. Diagn Cytopathol 2012; 40(6): 503–10.CrossRefGoogle ScholarPubMed
Elaba, Z., Phelps, A. and Murphy, M. J. Molecular diagnostic strategies: a role in the practice of dermatology. Int J Dermatol 2012; 51(11): 1292–302.CrossRefGoogle ScholarPubMed
Kuwamoto, S. Recent advances in the biology of Merkel cell carcinoma. Hum Pathol 2011; 42(8): 1063–77.CrossRefGoogle ScholarPubMed
Houben, R., Schrama, D. and Becker, J. Molecular pathogenesis of Merkel cell carcinoma. Exp Dermatol 2009; 18(3): 193–8.CrossRefGoogle ScholarPubMed
Feng, H., Shuda, M., Chang, Y. and Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008; 319(5866): 1096–100.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×