Skip to main content Accessibility help
×
Home
A Mathematical Introduction to Wavelets
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 192
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This book presents a mathematical introduction to the theory of orthogonal wavelets and their uses in analysing functions and function spaces, both in one and in several variables. Starting with a detailed and self contained discussion of the general construction of one dimensional wavelets from multiresolution analysis, the book presents in detail the most important wavelets: spline wavelets, Meyer's wavelets and wavelets with compact support. It then moves to the corresponding multivariable theory and gives genuine multivariable examples. Wavelet decompositions in Lp spaces, Hardy spaces and Besov spaces are discussed and wavelet characterisations of those spaces are provided. Also included are some additional topics like periodic wavelets or wavelets not associated with a multiresolution analysis. This will be an invaluable book for those wishing to learn about the mathematical foundations of wavelets.

Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed