Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-23T06:43:32.691Z Has data issue: false hasContentIssue false

4 - Tools to monitor response

Published online by Cambridge University Press:  05 May 2013

Neil Bourne
Affiliation:
University of Manchester
Get access

Summary

What do you need to measure?

The platforms described in the previous chapter access a range of states via a number of thermodynamic loading paths taken by a material as it deforms. Some load to the elastic limit, some up to the finis extremis where electronic bonding changes its nature, and some beyond that. What follows will concern loading from the elastic limit to the point at which ambient descriptions of strength cease to apply. A few of the loading paths necessary to define an equation of state for a material are shown in the schematic of Figure 4.1. There are a range of outputs which may be sensed to give insight into the response of materials under load. Experiments should aim to map their states beyond the yield point statically and dynamically. In the first case they induce an ideal stress state to define operating mechanisms represented in suitable models, which are later tested against other loading down more complex paths. Thus shock experiments map out Hugoniot curves but can also yield information that allows one to deduce compression isotherms and isentropes. Isotherms are generally measured using static compression experiments at some fixed temperature in the diamond anvil cell (DAC). To briefly recap, the isentrope generally lies between the isotherm and Hugoniot curves and is in fact tangent to the Hugoniot at the common starting state. Although shock experiments generally yield only a final PV state on the Hugoniot, an ideal isentropic compression experiment (ICE) yields a continuous locus of points along a different loading path. Although not precisely following the isentrope, it is certainly possible to load more slowly and avoid the adiabatic conditions of shock, and so this is better dubbed shockless loading. To record this data demands sensors capable of acquiring pressure, density and temperature as a function of time, which requires sub-nanosecond data collection under the fastest loadings. To measure deviatoric quantities entails measures of the stress state in the target which is itself directional. Thus a series of accurate, time-resolved sensors has been developed to make such measurements in these experiments. Another means of recording the data is to use a quantitative imaging technique (such as X-rays) to deduce state parameters from the flow. Imaging itself allows the visualisation of geometries changing under load whist offering non-invasive measurements of flow parameters.

Type
Chapter
Information
Materials in Mechanical Extremes
Fundamentals and Applications
, pp. 166 - 213
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, J. F. (1973) The experimental foundations of solid mechanics, in Encyclopedia of Physics, Vol. VIa. Berlin: Springer Verlag.Google Scholar
Cooper, P. W. (1997) Explosives Engineering. New York: Wiley.Google Scholar
Meyers, M. A. (1994) Dynamic Behavior of Materials. New York: Wiley.CrossRefGoogle Scholar
Zukas, J. (1990) High Velocity Impact Dynamics. New York: Wiley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×