Skip to main content Accessibility help
×
Home
Materials in Mechanical Extremes
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 39
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This unified guide brings together the underlying principles, and predictable material responses, that connect metals, polymers, brittle solids and energetic materials as they respond to extreme external stresses. Previously disparate scientific principles, concepts and terminology are combined within a single theoretical framework, across different materials and scales, to provide all the tools necessary to understand, and calculate, the responses of materials and structures to extreme static and dynamic loading. Real-world examples illustrate how material behaviours produce a component response, enabling recognition – and avoidance – of the deformation mechanisms that contribute to mechanical failure. A final synoptic chapter presents a case study of extreme conditions brought about by the infamous Chicxulub impact event. Bringing together simple concepts from diverse fields into a single, accessible, rigorous text, this is an indispensable reference for all researchers and practitioners in materials science, mechanical engineering, physics, physical chemistry and geophysics.

Reviews

'… intense and highly original … suitable for all with an interest in the dynamic response of materials.'

Source: The Aeronautical Journal

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
Asay, J. R. and Shahinpoor, M. (eds.) (1993) High-Pressure Shock Compression of Solids. Shock Wave and High Pressure Phenomena. New York: Springer.
Davison, L. W., Grady, D. E. and Shahinpoor, M. (eds.) (1996) High Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. Shock Wave and High Pressure Phenomena. New York: Springer.
Davison, L. W. and Shahinpoor, M. (eds.) (1998) High-Pressure Shock Compression of Solids III. Shock Wave and High Pressure Phenomena. New York: Springer.
Davison, L. W., Horie, Y. and Shahinpoor, M. (eds.) (1997) High-Pressure Shock Compression of Solids IV: Response of Highly Porous Solids to Shock Loading. Shock Wave and High Pressure Phenomena. New York: Springer.
Davison, L. W., Horie, Y. and Sekine, T. (eds.) (2003) High-Pressure Shock Compression of Solids V: Shock Chemistry with Applications to Meteorite Impacts. Shock Wave and High Pressure Phenomena. New York: Springer.
Horie, Y., Davison, L. W. and Thadani, N. (eds.) (2003) High-Pressure Shock Compression of Solids VI: Old Paradigms and New Challenges. Shock Wave and High Pressure Phenomena. New York: Springer.
Fortov, V. E., Altshuler, L. V., Trunin, R. F. and Funtikov, A. I. (eds.) (2004) High Pressure Shock Compression VII: Shock Waves and Extreme States of Matter. Shock Wave and High Pressure Phenomena. New York: Springer.
Chhabildas, L. C., Davison, L. W. and Horie, Y. (eds.) (2005) High-Pressure Shock Compression of Solids VIII: The Science and Technology of High-Velocity Impact. Shock Wave and High Pressure Phenomena. New York: Springer.
Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D. and Jacobsen, S. D. (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies, J. Appl. Cryst., 40: 26–32.
Armstrong, R. W. and Walley, S. M. (2008) High strain rate properties of metals and alloys, Int. Mater. Rev., 53: 105–128.
Asay, J. R. and Lipkin, J. (1978) A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material, J. Appl. Phys., 49: 4242–4247.
Asay, J. R., Konrad, C. H., Hall, C. A. et al. (1999) Use of Z-pinch radiation sources for high-pressure shock wave studies, in New Models and Numerical Codes for Shock Wave Processes in Condensed Media, ed. Cameron, I. G.Aldermaston, Berkshire, UK: AWE Hunting Brae, pp. 287–297.
Asay, J. R., Ao, T., Vogler, T. J., Davis, J.-P. and GrayIII, G. T. (2009) Yield strength of tantalum for shockless compression to 18 GPa, J. Appl. Phys., 106: 073515.
ASM Metals Handbook, Vol. 8: Mechanical Testing and Evaluation (2000). Materials Park, OH: ASM International.
Bai, Y. L. and Dodd, B. (1992) Adiabatic Shear Localization. Oxford: Pergamon Press.
Bailey, A. and Murray, S. G. (1989) Explosives, Propellants and Pyrotechnics. London: Brassey's.
Bell, J. F. (1973) The experimental foundations of solid mechanics, in Encyclopedia of Physics, Vol. VIa. Berlin: Springer Verlag.
Benson, D. J. (1992) Computational methods in Lagrangian and Eulerian hydrocodes,Comput. Meth. Appl. Mech. Eng., 99: 235–394.
Berthelot, M. and Vieille, P. (1882) Sur la vitesse de propagation des phenomenes explosifs dans les gaz, C. R. Acad. Sci. Paris, 94: 101–108.
Berthelot, M. (1883) Sur la force des matières explosives d'après la thermochimie. Gauthier-Villars.
Barker, L. M. and Hollenbach, R. E. (1970) Shock-wave studies of PMMA, fused silica, and sapphire, J. Appl. Phys., 41: 4208–4226.
Bourne, N. K. (2001a) On the laser ignition and initiation of explosives,Proc. R. Soc. Lond. A., 457(2010): 1401–1426.
Bourne, N. K. (2001b) The onset of damage in shocked alumina,Proc. R. Soc. Lond. A., 457(2013): 2189–2205.
Bourne, N. K. (2004) Gas gun for dynamic loading of explosives, Rev. Sci. Instrum., 75(1): 1–6.
Bourne, N. K. (2005a) On the impact and penetration of soda-lime glass,Int. J. Imp. Engng., 32: 65–79.
Bourne, N. K. (2005b) On impacting liquid jets and drops onto polymethylmethacrylate targets, Proc. R. Soc. Lond. A., 461: 1129–1145.
Bourne, N. K. (2005c) The shock response of float-glass laminates,J. Appl. Phys., 98(6), 063515.
Bourne, N. K. (2006a) Impact on alumina. I. Response at the mesoscale, Proc. R. Soc. Lond. A, 462(2074): 3061–3080.
Bourne, N. K. (2006b) Impact on alumina. II. Linking the mesoscale to the continuum, Proc. R. Soc. Lond. A., 462(2075): 3213–3231.
Bourne, N. K. (2008). The relation of failure under 1D shock to the ballistic performance of brittle materials,Int. J. Imp. Engng., 35: 674–683.
Bourne, N. K. (2009) Shock and awe, Physics World, 22(1): 26–29.
Bourne, N. K. (2011) Materials’ physics in extremes: akrology, Metall. Mater. Trans. A., 42: 2975–2984.
Bourne, N. K. and Field, J. E. (1999) On the impact and penetration of transparent targets, Proc. R. Soc. Lond. A., 455: 4169–4179.
Bourne, N. K. and GrayIII, G. T. (2005a) Computational design of recovery experiments for ductile metals, Proc. R. Soc. Lond. A., 460: 3297–3312.
Bourne, N. K. and GrayIII, G. T. (2005b) Soft-recovery of shocked polymers and composites, J. Phys D. Appl. Phys., 38: 3690–3694.
Bourne, N. K. and Millett, J. C. F. (2000) Shock-induced interfacial failure in glass laminates, Proc. R. Soc. Lond. A., 456(2003): 2673–2688.
Bourne, N. K. and Millett, J. C. F. (2001) Decay of the elastic precursor in a filled glass, J. Appl. Phys., 89(10): 5368–5371.
Bourne, N. K. and Milne, A. M. (2004) Shock to detonation transition in a plastic bonded explosive,J. Appl. Phys., 95(5): 2379–2385.
Bourne, N. K., Rosenberg, Z. and Field, J. E. (1995) High-speed photography of compressive failure waves in glasses, J. Appl. Phys., 78(6): 3736–3739.
Bourne, N. K., Millett, J. C. F., Rosenberg, Z. and Murray, N. H. (1998) On the shock induced failure of brittle solids, J. Mech. Phys. Solids, 46(10): 1887–1908.
Bourne, N. K., Millett, J. C. F. and Field, J. E. (1999) On the strength of shocked glasses, Proc. R. Soc. Lond. A, 455(1984): 1275–1282.
Bourne, N. K., Rosenberg, Z. and Field, J. E. (1999) Failure zones in polycrystalline aluminas, Proc. R. Soc. Lond. A., 455(1984): 1267–1274.
Bourne, N. K., Millett, J. C. F., Chen, M., McCauley, J. W. and Dandekar, D. P. (2007) On the Hugoniot elastic limit in polycrystalline alumina, J. Appl. Phys., 102: 073514.
Bourne, N. K., Millett, J. C. F., Brown, E. N and GrayIII, G. T. (2007) The effect of halogenation on the shock properties of semi-crystalline thermo-plastics, J. Appl. Phys., 102: 063510.
Bourne, N. K., GrayIII, G. T. and Millett, J. C. F. (2009) On the shock response of cubic metals, J. Appl. Phys., 106(9): 091301.
Bourne, N. K., Millett, J. C. F. and GrayIII, G. T. (2009) On the shock compression of polycrystalline metals. J. Mat. Sci. 44(13): 3319–3343.
Bowden, F. P. and Tabor, D. (1950/2001) The Friction and Lubrication of Solids. Oxford: Oxford University Press. Originally published 1950, revised edition 2001.
Bowden, F. P. and Yoffe, A. D. (1952/1985) Initiation and Growth of Explosion in Liquids and Solids. Cambridge: Cambridge University Press. Originally published 1952, revised edition 1985.
Brannon, R. M., Wells, J. M. and Strack, O. E. (2007) Validating theories for brittle damage, Metal. Mater. Trans. A, 38: 2861–2868.
Bridgman, P. W. (1914) Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7): 1344–1363.
Bridgman, P. W. (1952) The Physics of High Pressure. Bell and Sons, reprint.
Bringa, E. M., Rosolankova, K., Rudd, R. E. et al. (2006), Shock deformation of face-centred-cubic metals on subnanosecond timescales, Nature Materials, 5: 805–809.
Bushman, A. V., Lomonosov, I. V. and Khishchenko, K. V. (2002) Rusbank Shock Wave Database, .
Calladine, C. R. and English, R. W. (1984) Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure, Int. J. Mech. Sci., 26: 689–701.
Cao, B. Y., Meyers, M. A., Lassila, D. H. et al. (2005) Effect of shock compression method on the defect substructure in monocrystalline copper, Mat. Sci. and Eng A., 409: 270–281.
Carter, W. J. and Marsh, S. P. (1995; republished by J.N. Fritz and S.A. Sheffield from a report put together in 1977), Hugoniot Equation of State of Polymers. Los Alamos, NM: Los Alamos National Laboratory.
Cerreta, E. K., GrayIII, G. T., Hixson, R. S., Rigg, P. A. and Brown, D. W. (2005) The influence of interstitial oxygen and peak pressure on the shock loading behavior of zirconium, Acta Materialia, 53: 1751–1758.
Chapman, D.L. (1899) On the rate of explosion in gases,Philos. Mag., series 5, 47: 90–104.
Chen, M. W., McCauley, J. W., Dandekar, D. P. and Bourne, N. K. (2006) Dynamic plasticity and failure of high-purity alumina under shock loading, Nature Mater., 5: 614–618.
Cheny, J.-M. and Walters, K. (1999) Rheological influences on the splashing experiment, J. Non-Newtonian Fluid Mech., 86: 185–210.
Chree, C. (1889) The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications, Trans. Cambridge Philos. Soc. Math. Phys. Sci. 14: 250.
Cochran, S. and Banner, D. (1977) Spall studies in uranium, J. Appl. Phys., 48: 2729–2737.
Collins, G. S., Melosh, H. J. and Marcus, R. A. (2005) Earth Impact Effects Program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteorit. Planet. Sci., 40: 817.
Collins, G. W., Da Silva, L. B., Celliers, P. et al. (1998) Measurements of the equation of state of deuterium at the fluid insulator–metal transition, Science, 281: 1178–1181.
Cooper, P. W. (1997) Explosives Engineering. New York: Wiley.
Courant, R. and Friedrichs, K. O. (1948) Supersonic Flow and Shock Waves. New York: Interscience.
Cox, B. N., Gao, H., Gross, D. and Rittel, D. (2005) Modern topics and challenges in dynamic fracture, J. Mech. Phys. Solids, 53: 565–596.
Curran, D. R., Seaman, L. and Shockey, D. A. (1977) Dynamic failure in solids, Phys. Today, 30: 46.
Curran, D. R., Seaman, L. and Shockey, D. A. (1987) Dynamic Failure of Solids. Amsterdam: North-Holland.
Da Silva, L. B., Celliers, P., Collins, G.W. et al. (1997) Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar), Phys. Rev. Lett., 78: 483–486
Dai, L. H. and Bai, Y. L. (2008) Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Imp. Eng., 35: 704–716
Davis, W. C. (1987) The detonation of explosives, Sci. Am., 256(5): 106.
Davison, L. and Graham, R. A. (1979) Shock compression of solids, Phys. Rep., 55(4): 255–379.
DeCarli, P. S. and Jamieson, J. C. (1961) Formation of diamond by explosive shock, Science, 133: 1821–1822.
Döring, W. (1943) Über Detonationsvorgang in Gasen (On the detonation process in gases), Annalen der Physik, 43: 421–436.
Dolan, D. H. and Gupta, Y. M. (2004) Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements, J. Chem. Phys., 121: 9050–9057.
Dremin, A. N. and Adadurov, G. A. (1964) Behaviour of a glass at dynamic loading, Fiz. Tverd. Tela, 6(6): 1757–1764.
Duffy, J., Campbell, J. D. and Hawley, R. H. (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum, J. Appl. Mech., 38(1): 83–92.
Duffy, T. S. (2005) Synchrotron facilities and the study of the Earth's deep interior, Rep. Prog. Phys., 68: 1811–1859.
Duffy, T. S. (2007) Strength of materials under static loading in the diamond anvil cell, in Shock Compression of Condensed Matter 2007, eds. Furnish, M. D., et al. Melville, NY: American Institute of Physics, pp. 639–644.
Duffy, T. S., Shen, G., Shu, J., Mao, H.-K., Hamley, R. J. and Singh, A. K. (1999) Elasticity, shear strength, and equation of state of molybdenum and gold from X-ray diffraction under nonhydrostatic compression to 24 GPa, J. Appl. Phys., 86: 6729–6736.
Duvall, G. E. and Graham, R. A. (1977) Phase transitions under shock-wave loading, Rev. Mod. Phys., 49(3): 523–580.
Esposito, A. P., Farber, D. L., Reaugh, J. E. and Zaug, J. M. (2003) Reaction propagation rates in HMX at high pressure, Propell. Explos. Pyrot., 28: 83–88.
Fickett, W. and Davis, W. C. (2000) Detonation: Theory and Experiment. Mineola, NY: Courier Dover Publications. Reprint, originally published 1979.
Field, J. E., Bourne, N. K., Palmer, S. J. P. and Walley, S. M. (1992) Hot-spot ignition mechanisms for explosives and propellants, Phil. Trans. R. Soc. Lond. A, 339: 269–283.
Follansbee, P. S., Regazzoni, G. and Kocks, U.F. (1984) The transition in drag-controlled deformation in copper at high strain rates, Inst. Phys. Conf. Ser., 70: 71–80.
Fortov, V. E. (2011) Extreme States of Matter on Earth and in the Cosmos. Berlin: Springer.
Frank-Kamenetskii, D. A. (1969) Diffusion and Heat Transfer in Chemical Kinetics, 2nd edn., translated by J. P. Appleton. New York: Plenum Press.
Freund, L. B. (1990) Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge: Cambridge University Press.
French, B. M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954. Houston, TX: Lunar and Planetary Institute.
Gama, B. A., Lopatnikov, S. L., GillespieJr., J. W. (2004) Hopkinson bar experimental technique: a critical review, Appl. Mech. Rev., 57(4), 223–250.
Germann, T. C., Tanguy, D., Holian, B. L., Lomdahl, P.S., Mareschal, M. and Ravelo, R. (2004) Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results. Metall. Mater. Trans. A, 35: 2609–2615.
Gibbons, R. V. and Ahrens, T. J. (1971) Shock metamorphism of silicate glasses. J. Geophys. Res., 76, p. 5489–5498.
Grady, D. E. (1997) Shock-wave compression of brittle solids, Mech. Mater., 29: 181–203.
Grady, D. E. (2006) Fragmentation of Rings and Shells: The Legacy of N.F. Mott. New York: Springer.
Grady, D. E. (2007) The shock wave profile, in Shock Compression of Condensed Matter 2007, eds Furnish, M. D., Elert, M., Chau, R., Holmes, N. C. and Nguyen, J.Melville, NY: American Institute of Physics, pp. 3–11.
Grady, D. E. (2010) Structured shock waves and fourth power law, J. Appl. Phys., 107: 013506.
Grady, D. E. and Kipp, M. E. (1993) Dynamic fracture and fragmentation, in High-Pressure Shock Compression of Solids, eds. Asay, J. R. and Shahinpoor, M.. New York: Springer-Verlag, pp. 265–322.
GrayIII, G. T. (2000a) Classic split-Hopkinson pressure bar testing, in ASM Handbook, Vol. 8: Mechanical Testing and Evaluation. Materials Park, OH: ASM International, pp. 462–476.
GrayIII, G. T. (2000b) Shock wave testing of ductile materials, in ASM Handbook, Vol. 8: Mechanical Testing and Evaluation. Materials Park, OH: ASM International, pp. 530–538.
Griffith, A. A. (1921) The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London A, 221: 163–198.
Gupta, Y. M., Winey, J. M., Trivedi, P. B. et al. (2009) Large elastic wave amplitude and attenuation in shocked pure aluminium,J. Appl. Phys., 105: 036107.
Gurney, R. (1943) The initial velocities of fragments from bombs, shells and grenades. Report no. 405, Ballistic Research Laboratory, Aberdeen, MD, AII-36218.
Harding, J., Wood, E. O. and Campbell, J. D. (1960) Tensile testing of materials at impact rates of strain, J. Mech. Engng Sci., 2, 88–96.
Hayes, D. B., (1974) Polymorphic phase transformation rates in shock-loaded potassium chloride, J. Appl. Phys., 45: 1208–1217.
Hermann, W. (1969) Constitutive equation for the dynamic compaction of ductile porous materials, J. Appl. Phys., 40: 2490–2499.
Hill, R. (1963) Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11: 357–372.
Hoge, G. and Mukherjee, A. K. (1977) The temperature and strain rate dependence of the flow stress of tantalum, J. Mater. Sci., 12: 1666–1672.
Holian, B. L. (1988) Modeling shock wave deformation via molecular dynamics, Phys. Rev. A, 37: 2562–2568.
Holtkamp, D. B., Clark, D. A., Ferm, E. N. et al. (2004) A survey of high explosive-induced damage and spall in selected metals using proton radiography, in Proceedings of the Conference of the American Physical Society on Shock Compression of Condensed Matter, Portland, OR, 20–25 July 2003. Melville, NY: American Institute of Physics, pp. 477–482.
Honeycombe, R. W. K. (1984) The Plastic Deformation of Metals, 2nd edition. London: Edward Arnold.
Hopkinson, B. (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Proc. R. Soc. Lond. A., 89(612): 411–413.
Hu, J., Zhou, X., Dai, C., Tan, H. and Li, J. (2008) Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements, J. Appl. Phys., 104: 083520.
Hugoniot, P-H. (1887a) Mémoire sur la propagation du mouvement dans un fluide indéfini, J. Math. Pures Appl. (4th series), 3: 477–492 and 4: 153–168.
Hugoniot, P-H. (1887b) Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits (première partie), J. l’École Polytech., 57: 3–97.
Hugoniot, P-H. (1889) Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits (deuxième partie), J. l’École Polytech., 58: 1–125.
Inglis, C. E. (1913) Stresses in a plate due to the presence of cracks and sharp corners, Proc. Inst. Naval Arch., 55: 219–241.
Irwin, G. R. (1985) Fracture mechanics, in ASM Metals Handbook, Vol. 8: Mechanical Testing and Evaluation (2000). Materials Park, OH: ASM International, pp. 439–458.
James, H. R. and Lambourn, B. D. (2001) A continuum-based reaction growth model for the shock initiation of explosives, Propell. Explos. Pyrot., 26: 246–256.
Jenniskens, P., Shaddad, M. H., Numan, D. et al. (2009) The impact and recovery of asteroid 2008 TC3, Nature, 458: 485–488.
Jouguet, E. (1906) Sur la propagation des réactions chimiques dans les gaz: les ondes de choc, J. Math. Pures Appli. (6ème Sér.), 2: 5–86.
Jouguet, E. (1917) Mécanique des Explosifs. Paris, France: Octave Doin.
Kalantar, D.H., Remington, B.A., Chandler, E.A. et al. (1999) High pressure solid state experiments on the Nova laser, Int. J. Impact Engng., 23: 409–420.
Kanel, G. I., Rasorenov, S. V., Fortov, V. E. and Abasehov, M. M. (1991) The fracture of glass under high pressure impulsive loading, High. Press. Res., 6: 225–232.
Kelly, A. (1973) Strong Solids, 2nd edition. Oxford: Clarendon Press.
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A., Asay, J. R. and Anderson, W. W. (2001) Phys. Rev. Lett., 87: 225501.
Koller, D. D., Hixson, R. S., GrayIII, G. T. et al. (2006) Explosively driven shock induced damage in OFHC Cu, in Shock Compression of Condensed Matter 2006, eds. Furnish, M. D., Elert, M. L., Russell, T. P. and White, C. T.Melville, NY: American Institute of Physics, pp. 599–602.
Kolsky, H. (1953) Stress Waves in Solids. Oxford: Clarendon Press.
LankfordJr., J. (2005) The role of dynamic material properties in the performance of ceramic armour, Int. J. Appl. Ceram. Tech., 1(3): 205–210.
Lawn, B. R. (1993) Fracture of Brittle Solids, 2nd edition. Cambridge: Cambridge University Press.
Lee, E. L. and Tarver, C. M. (1980) A phenomenological model of shock initiation in heterogeneous explosives, Phys. Fluids, 23: 2362.
Luebcke, P. E., Dickson, P. M. and Field, J. E. (1995) An experimental study of the deflagration-to-detonation transition in granular secondary explosives, Proc. R. Soc. A., 448: 439–448.
MacLeod, S. G.,Tegner, B. E., Cynn, H. et al. (2012) Experimental and theoretical study of Ti-6Al-4V to 220 GPa, Phys. Rev. B, 85: 224202.
Mader, C. L. (1979) Numerical Modeling of Explosives and Propellants. London: CRC Press, reprint.
Mallard, E. and Le Chatelier, H. (1881) On the propagation velocity of burning in gaseous explosive mixtures, C. R. Acad. Sci. Paris, 93: 145–148.
Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, NJ: Prentice-Hall.
Marchand, A. and Duffy, J. (1988) An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36: 251–283.
Marsh, S. P. (1980) LASL Shock Hugoniot Data. Berkeley, CA: University of California Press.
McClintock, F. A. and Walsh, J. B. (1962), Friction on Griffith cracks in rocks under pressure, Proc. 4th Natl. Congr. Appl. Mech., Berkeley, CA, pp. 1015–1021.
Merzkirch, W. (1993) Flow Visualization. London: Academic Press.
Meyers, M. A. (1994) Dynamic Behavior of Materials. Chichester: Wiley.
Meyers, M. A., Aimone, C. T. (1983) Dynamic fracture (spalling) of metals, Prog. Mater. Sci.: 1–96.
Millett, J. C. F., Bourne, N. K. and Rosenberg, Z. (1998) Observations of the Hugoniot curves for glasses as measured by embedded stress gauges, J. Appl. Phys., 84(2): 739–741.
Millett, J. C. F., Bourne, N. K. and Stevens, G. S. (2006) Taylor impact of polyether ether ketone, Int. J. Impact Eng., 32(7): 1086–1094.
Millett, J. C. F., Whiteman, G. and Bourne, N. K. (2009) Lateral stress and shear strength behind the shock front in three face centered cubic metals, J. Appl. Phys., 105: 033515.
Millett, J. C. F., Bourne, N. K., Park, N. T., Whiteman, G. and GrayIII, G. T. (2011) On the behaviour of body-centred cubic metals to one-dimensional shock loading,J. Mater. Sci., 46: 3899–3906.
Mills, N. J. (1993) Plastics: Microstructure and Engineering Applications. London: Edward Arnold.
Minshall, S. (1955) Phys. Rev. 98: 271.
Mott, N. F. (1947) Fragmentation of shell cases, Proc. Royal Soc., A189: 300–305.
Murray, N. H., Bourne, N. K. and Rosenberg, Z. (1998) The dynamic compressive strength of aluminas, J. Appl. Phys., 84(9): 4866–4871.
Nesterenko, V. F. and Bondar, M. P. (1994) Localization of deformation in collapse of a thick walled cylinder, Combus. Explos. Shock Waves, 30(4): 500–509.
Neumann, J., von (1942) Theory of Detonation Waves, Office of Scientific Research and Development, Report 549, Ballistic Research Laboratory File No. X-122. Aberdeen Proving Ground, Maryland.
Odeshi, A. G., Bassim, M. N. and Al-Ameeri, S. (2006) Adiabatic shear bands in a high-strength low alloy steel, Mater. Sci. Engng. A, 419: 69–75.
Orowan, E. (1934) Zur Kristallplastizität III, Z. Phys., 89: 634–659.
Pierazzo, E. and Melosh, H. J. (2000) Understanding oblique impacts from experiments, observations and modelling, Annu. Rev. Earth Planet. Sci., 28: 141–167.
Pochhammer, L. (1876) Uber die fortpflanzungsgeschwindigkeiten kleiner schwingungen in einem unbegrenzten isotropen kreiscylinder, J. Fur. Reine and Angewandte Math. (Crelle), 81: 324–336.
Popolato, A. (1972) in Behaviour and Utilisation of Explosives in Engineering Design, ed. Henderson, R. L.. Albuquerque, NM: ASME.
Powell, J. L. (1998) Night Comes to the Cretaceous: Dinosaur Extinction and the Transformation of Modern Geology. New York: W.H. Freeman.
Raftenberg, M. N. (2001) A shear banding model for penetration calculations, Int. J. Imp. Engng., 25(2): 123–146.
Rankine, W. J. M. (1870) On the thermodynamic theory of waves of finite longitudinal disturbances,Phil. Trans. R. Soc. Lond., 160: 277–288.
Rayleigh, J. W. S. (1877) The Theory of Sound. London: Macmillan and Co.
Reddy, T. Y. and Reid, S. R. (1980) Phenomena associated with the crushing of metal tubes between rigid plates,Int. J. Solids Struct., 16(6): 545–562.
Reiner, M. (1964) The Deborah Number, Phys. Today, 17(1): 62.
Remington, B. A., Bazan, G., Bringa, E. M. et al. (2006) Material dynamics under extreme conditions of pressure and strain rate, Mat. Sci. Tech., 22: 474–488.
Rivas, J. M., Zurek, A. K., Thissell, W. R., Tonks, D. L. and Hixson, R. S. (2000) Quantitative description of damage evolution in ductile fracture of tantalum, Metal. Mater. Trans. A, 31: 845–851.
Romanchenko, V. I. and Stepanov, G. V. (1980) Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel, J. Appl. Mech. Tech. Phys., 21: 555–561.
Rosenberg, Z. and Dekel, E. (2012) Terminal Ballistics. London: Springer.
Seigel, A. E. (1965) The Theory of High Speed Guns, AGARDograph 91, May.
Schön, E. (2004). Asa-Tors hammare, Gudar och jättar i tro och tradition. Värnamo: Fält & Hässler.
Smallman, R. E. and Bishop, R. J. (1999) Modern Physical Metallurgy and Materials Engineering, 6th edition. Oxford: Butterworth-Heinemann.
Stokes, Sir, George Gabriel (1851) On the alleged necessity for a new general equation in hydrodynamics, Philos. Mag., I: 157–160, 393–394.
Swegle, J. W. and Grady, D. E. (1985) Shock viscosity and the prediction of shock wave rise times, J. Appl. Phys., 58: 692.
Taylor, J. W. and Rice, M. H. (1963) Decay of the elastic precursor wave in Armco iron, J. Appl. Phys, 34: 364–371.
van Thiel, M. (1966) Compendium of Shock Wave Data (2 vols plus suppl.). Livermore, CA: Lawrence Radiation Laboratory.
Wadsworth, G. (2007) Basic Research Needs for Materials under Extreme Environments. Office of Science, US Department of Energy, available at .
Walley, S. M. (2007) Shear localization: a historical review, Metall. Mater. Trans. A, 38(11): 2629–2654.
Walley, S. M., Field, J. E., Pope, P. H. and Safford, N. A. (1989) A study of the rapid deformation behaviour of a range of polymers, Phil. Trans. R. Soc. Lond. A., 328: 1–33.
Weir, S. T., Mitchell, A. C. and Nellis, W. J. (1996) Metallization of fluid molecular hydrogen, Phys. Rev. Lett. 76: 1860.
Whitley, V. H., McGrane, S. D., Eakins, D. E., Bolme, C. A., Moore, D. S. and Bingert, J. F. (2011) The elastic-plastic response of aluminum films to ultrafast laser-generated shocks, J. Appl. Phys., 109: 013505.
Worthington, A. M. and Cole, R. S. (1897) Impact with a liquid surface studied by the aid of instantaneous photography, Phil. Trans. R. Soc. A., 189: 137–148.
Worthington, A. M. and Cole, R. S. (1900) Impact with a liquid surface studied by the aid of instantaneous photography; paper II, Phil. Trans. R. Soc. A., 194: 175–199.
Wright, T. W. (2002) The Physics and Mathematics of Adiabatic Shear Bands. Cambridge: Cambridge University Press.
Xue, Q. and GrayIII, G. T. (2006) Development of adiabatic shear bands in annealed 316L stainless steel: part I. Correlation between evolving microstructure and mechanical behaviour, Metall. Mater. Trans. A., 37(8): 2435–2446.
Xue, Q., Nesterenko, V. F. and Meyers, M. A. (2003) Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing, Int. J. Impact Engng., 28: 257–280.
Zeldovitch, Y. B. (1940) On the theory of the propagation of detonation in gaseous systems, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (JETP), 10: 542–568.
Zeldovitch, Y. B. and Raizer, Y. P. (2002) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola, NY: Dover, reprint.
Zener, C. and Hollomon, J. H. (1944) Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15: 22–32.
Zerilli, F. J. and Armstrong, R. W. (2007) A constitutive equation for the dynamic deformation behavior of polymers, J. Mater. Sci. 42: 4562–4574.
Zukas, J. (1990) High Velocity Impact Dynamics. New York: Wiley.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.