Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T13:18:38.833Z Has data issue: false hasContentIssue false

1 - Natural extremes

Published online by Cambridge University Press:  05 May 2013

Neil Bourne
Affiliation:
University of Manchester
Get access

Summary

Akrology

Extremes

The dynamic processes operating around us are often treated as transients that are not important when compared with the fixed states they precede. However, an ever-increasing knowledge base has illuminated this view of the operating physics and confirmed that extreme regimes can be accessed for engineering materials and structures. Matter is ever-changing, its form developing in a series of nested processes which complete on the timescales on which mechanisms operate; processes that occur on ever smaller timescales as length scales decrease. This book is concerned with the response that occurs when loads exceed the elastic limit. This affects behaviour in the regime beyond yield which encompasses a range of amplitudes and responses. However, it concerns condensed materials and loading, eventually taking them to a state where they bond in a different manner such that strength is not defined; this limit represents the highest amplitude of loading considered here. Nonetheless the driving forces are vast and awe-inspiring, while the different rates of change observed in operating processes are on scales that span many orders of magnitude. The following pages will highlight prime examples from the physical world and then provide a set of tools that classify mechanisms in order to analyse significant effects of these processes on the materials involved. The wide range of observations and applications create simple but powerful principles that are outlined in what follows.

Materials are central to the technologies required for future needs. Such platforms will place increasing demands on component performance in a range of extremes: stress, strain, temperature, pressure, chemical reactivity, photon or radiation flux, and electric or magnetic fields. For example, future vehicles will demand lighter-weight parts with increased strength and damage tolerance and next-generation fission reactors will require materials capable of withstanding higher temperatures and radiation fluxes. To counter security threats, defence agencies must protect their populations against terrorist attack and design critical facilities and buildings against atmospheric extremes.

Type
Chapter
Information
Materials in Mechanical Extremes
Fundamentals and Applications
, pp. 1 - 31
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benson, D. J. (1992) Computational methods in Lagrangian and Eulerian hydrocodes,Comput. Meth. Appl. Mech. Eng., 99: 235–394.CrossRefGoogle Scholar
Bailey, A. and Murray, S. G. (1989) Explosives, Propellants and Pyrotechnics. London: Brassey's.Google Scholar
Bourne, N. K. (2009) Shock and awe, Physics World, 22(1): 26–29.CrossRefGoogle Scholar
Fortov, V. E. (2011) Extreme States of Matter on Earth and in the Cosmos, Berlin: Springer.CrossRefGoogle Scholar
French, B. M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954. Houston, TX: Lunar and Planetary Institute.Google Scholar
Meyers, M. A. (1994) Dynamic Behavior of Materials. Chichester: Wiley.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Natural extremes
  • Neil Bourne
  • Book: Materials in Mechanical Extremes
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139152266.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Natural extremes
  • Neil Bourne
  • Book: Materials in Mechanical Extremes
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139152266.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Natural extremes
  • Neil Bourne
  • Book: Materials in Mechanical Extremes
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139152266.002
Available formats
×