Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-21T01:04:28.093Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 May 2013

Neil Bourne
Affiliation:
University of Manchester
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Materials in Mechanical Extremes
Fundamentals and Applications
, pp. 515 - 523
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asay, J. R. and Shahinpoor, M. (eds.) (1993) High-Pressure Shock Compression of Solids. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Davison, L. W., Grady, D. E. and Shahinpoor, M. (eds.) (1996) High Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Davison, L. W. and Shahinpoor, M. (eds.) (1998) High-Pressure Shock Compression of Solids III. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Davison, L. W., Horie, Y. and Shahinpoor, M. (eds.) (1997) High-Pressure Shock Compression of Solids IV: Response of Highly Porous Solids to Shock Loading. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Davison, L. W., Horie, Y. and Sekine, T. (eds.) (2003) High-Pressure Shock Compression of Solids V: Shock Chemistry with Applications to Meteorite Impacts. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Horie, Y., Davison, L. W. and Thadani, N. (eds.) (2003) High-Pressure Shock Compression of Solids VI: Old Paradigms and New Challenges. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Fortov, V. E., Altshuler, L. V., Trunin, R. F. and Funtikov, A. I. (eds.) (2004) High Pressure Shock Compression VII: Shock Waves and Extreme States of Matter. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Chhabildas, L. C., Davison, L. W. and Horie, Y. (eds.) (2005) High-Pressure Shock Compression of Solids VIII: The Science and Technology of High-Velocity Impact. Shock Wave and High Pressure Phenomena. New York: Springer.CrossRefGoogle Scholar
Angel, R. J., Bujak, M., Zhao, J., Gatta, G. D. and Jacobsen, S. D. (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies, J. Appl. Cryst., 40: 26–32.CrossRefGoogle Scholar
Armstrong, R. W. and Walley, S. M. (2008) High strain rate properties of metals and alloys, Int. Mater. Rev., 53: 105–128.CrossRefGoogle Scholar
Asay, J. R. and Lipkin, J. (1978) A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material, J. Appl. Phys., 49: 4242–4247.CrossRefGoogle Scholar
Asay, J. R., Konrad, C. H., Hall, C. A. et al. (1999) Use of Z-pinch radiation sources for high-pressure shock wave studies, in New Models and Numerical Codes for Shock Wave Processes in Condensed Media, ed. Cameron, I. G.Aldermaston, Berkshire, UK: AWE Hunting Brae, pp. 287–297.Google Scholar
Asay, J. R., Ao, T., Vogler, T. J., Davis, J.-P. and GrayIII, G. T. (2009) Yield strength of tantalum for shockless compression to 18 GPa, J. Appl. Phys., 106: 073515.CrossRefGoogle Scholar
ASM Metals Handbook, Vol. 8: Mechanical Testing and Evaluation (2000). Materials Park, OH: ASM International.
Bai, Y. L. and Dodd, B. (1992) Adiabatic Shear Localization. Oxford: Pergamon Press.Google Scholar
Bailey, A. and Murray, S. G. (1989) Explosives, Propellants and Pyrotechnics. London: Brassey's.Google Scholar
Bell, J. F. (1973) The experimental foundations of solid mechanics, in Encyclopedia of Physics, Vol. VIa. Berlin: Springer Verlag.Google Scholar
Benson, D. J. (1992) Computational methods in Lagrangian and Eulerian hydrocodes,Comput. Meth. Appl. Mech. Eng., 99: 235–394.CrossRefGoogle Scholar
Berthelot, M. and Vieille, P. (1882) Sur la vitesse de propagation des phenomenes explosifs dans les gaz, C. R. Acad. Sci. Paris, 94: 101–108.Google Scholar
Berthelot, M. (1883) Sur la force des matières explosives d'après la thermochimie. Gauthier-Villars.
Barker, L. M. and Hollenbach, R. E. (1970) Shock-wave studies of PMMA, fused silica, and sapphire, J. Appl. Phys., 41: 4208–4226.CrossRefGoogle Scholar
Bourne, N. K. (2001a) On the laser ignition and initiation of explosives,Proc. R. Soc. Lond. A., 457(2010): 1401–1426.CrossRefGoogle Scholar
Bourne, N. K. (2001b) The onset of damage in shocked alumina,Proc. R. Soc. Lond. A., 457(2013): 2189–2205.CrossRefGoogle Scholar
Bourne, N. K. (2004) Gas gun for dynamic loading of explosives, Rev. Sci. Instrum., 75(1): 1–6.CrossRefGoogle Scholar
Bourne, N. K. (2005a) On the impact and penetration of soda-lime glass,Int. J. Imp. Engng., 32: 65–79.CrossRefGoogle Scholar
Bourne, N. K. (2005b) On impacting liquid jets and drops onto polymethylmethacrylate targets, Proc. R. Soc. Lond. A., 461: 1129–1145.CrossRefGoogle Scholar
Bourne, N. K. (2005c) The shock response of float-glass laminates,J. Appl. Phys., 98(6), 063515.CrossRefGoogle Scholar
Bourne, N. K. (2006a) Impact on alumina. I. Response at the mesoscale, Proc. R. Soc. Lond. A, 462(2074): 3061–3080.CrossRefGoogle Scholar
Bourne, N. K. (2006b) Impact on alumina. II. Linking the mesoscale to the continuum, Proc. R. Soc. Lond. A., 462(2075): 3213–3231.CrossRefGoogle Scholar
Bourne, N. K. (2008). The relation of failure under 1D shock to the ballistic performance of brittle materials,Int. J. Imp. Engng., 35: 674–683.CrossRefGoogle Scholar
Bourne, N. K. (2009) Shock and awe, Physics World, 22(1): 26–29.CrossRefGoogle Scholar
Bourne, N. K. (2011) Materials’ physics in extremes: akrology, Metall. Mater. Trans. A., 42: 2975–2984.CrossRefGoogle Scholar
Bourne, N. K. and Field, J. E. (1999) On the impact and penetration of transparent targets, Proc. R. Soc. Lond. A., 455: 4169–4179.CrossRefGoogle Scholar
Bourne, N. K. and GrayIII, G. T. (2005a) Computational design of recovery experiments for ductile metals, Proc. R. Soc. Lond. A., 460: 3297–3312.CrossRefGoogle Scholar
Bourne, N. K. and GrayIII, G. T. (2005b) Soft-recovery of shocked polymers and composites, J. Phys D. Appl. Phys., 38: 3690–3694.CrossRefGoogle Scholar
Bourne, N. K. and Millett, J. C. F. (2000) Shock-induced interfacial failure in glass laminates, Proc. R. Soc. Lond. A., 456(2003): 2673–2688.CrossRefGoogle Scholar
Bourne, N. K. and Millett, J. C. F. (2001) Decay of the elastic precursor in a filled glass, J. Appl. Phys., 89(10): 5368–5371.CrossRefGoogle Scholar
Bourne, N. K. and Milne, A. M. (2004) Shock to detonation transition in a plastic bonded explosive,J. Appl. Phys., 95(5): 2379–2385.CrossRefGoogle Scholar
Bourne, N. K., Rosenberg, Z. and Field, J. E. (1995) High-speed photography of compressive failure waves in glasses, J. Appl. Phys., 78(6): 3736–3739.CrossRefGoogle Scholar
Bourne, N. K., Millett, J. C. F., Rosenberg, Z. and Murray, N. H. (1998) On the shock induced failure of brittle solids, J. Mech. Phys. Solids, 46(10): 1887–1908.CrossRefGoogle Scholar
Bourne, N. K., Millett, J. C. F. and Field, J. E. (1999) On the strength of shocked glasses, Proc. R. Soc. Lond. A, 455(1984): 1275–1282.CrossRefGoogle Scholar
Bourne, N. K., Rosenberg, Z. and Field, J. E. (1999) Failure zones in polycrystalline aluminas, Proc. R. Soc. Lond. A., 455(1984): 1267–1274.CrossRefGoogle Scholar
Bourne, N. K., Millett, J. C. F., Chen, M., McCauley, J. W. and Dandekar, D. P. (2007) On the Hugoniot elastic limit in polycrystalline alumina, J. Appl. Phys., 102: 073514.CrossRefGoogle Scholar
Bourne, N. K., Millett, J. C. F., Brown, E. N and GrayIII, G. T. (2007) The effect of halogenation on the shock properties of semi-crystalline thermo-plastics, J. Appl. Phys., 102: 063510.CrossRefGoogle Scholar
Bourne, N. K., GrayIII, G. T. and Millett, J. C. F. (2009) On the shock response of cubic metals, J. Appl. Phys., 106(9): 091301.CrossRefGoogle Scholar
Bourne, N. K., Millett, J. C. F. and GrayIII, G. T. (2009) On the shock compression of polycrystalline metals. J. Mat. Sci. 44(13): 3319–3343.CrossRefGoogle Scholar
Bowden, F. P. and Tabor, D. (1950/2001) The Friction and Lubrication of Solids. Oxford: Oxford University Press. Originally published 1950, revised edition 2001.Google Scholar
Bowden, F. P. and Yoffe, A. D. (1952/1985) Initiation and Growth of Explosion in Liquids and Solids. Cambridge: Cambridge University Press. Originally published 1952, revised edition 1985.Google Scholar
Brannon, R. M., Wells, J. M. and Strack, O. E. (2007) Validating theories for brittle damage, Metal. Mater. Trans. A, 38: 2861–2868.CrossRefGoogle Scholar
Bridgman, P. W. (1914) Two new modifications of phosphorus, J. Am. Chem. Soc. 36(7): 1344–1363.CrossRefGoogle Scholar
Bridgman, P. W. (1952) The Physics of High Pressure. Bell and Sons, reprint.Google Scholar
Bringa, E. M., Rosolankova, K., Rudd, R. E. et al. (2006), Shock deformation of face-centred-cubic metals on subnanosecond timescales, Nature Materials, 5: 805–809.CrossRefGoogle ScholarPubMed
Bushman, A. V., Lomonosov, I. V. and Khishchenko, K. V. (2002) Rusbank Shock Wave Database, .
Calladine, C. R. and English, R. W. (1984) Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure, Int. J. Mech. Sci., 26: 689–701.CrossRefGoogle Scholar
Cao, B. Y., Meyers, M. A., Lassila, D. H. et al. (2005) Effect of shock compression method on the defect substructure in monocrystalline copper, Mat. Sci. and Eng A., 409: 270–281.CrossRefGoogle Scholar
Carter, W. J. and Marsh, S. P. (1995; republished by J.N. Fritz and S.A. Sheffield from a report put together in 1977), Hugoniot Equation of State of Polymers. Los Alamos, NM: Los Alamos National Laboratory.CrossRefGoogle Scholar
Cerreta, E. K., GrayIII, G. T., Hixson, R. S., Rigg, P. A. and Brown, D. W. (2005) The influence of interstitial oxygen and peak pressure on the shock loading behavior of zirconium, Acta Materialia, 53: 1751–1758.CrossRefGoogle Scholar
Chapman, D.L. (1899) On the rate of explosion in gases,Philos. Mag., series 5, 47: 90–104.CrossRefGoogle Scholar
Chen, M. W., McCauley, J. W., Dandekar, D. P. and Bourne, N. K. (2006) Dynamic plasticity and failure of high-purity alumina under shock loading, Nature Mater., 5: 614–618.CrossRefGoogle ScholarPubMed
Cheny, J.-M. and Walters, K. (1999) Rheological influences on the splashing experiment, J. Non-Newtonian Fluid Mech., 86: 185–210.CrossRefGoogle Scholar
Chree, C. (1889) The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications, Trans. Cambridge Philos. Soc. Math. Phys. Sci. 14: 250.Google Scholar
Cochran, S. and Banner, D. (1977) Spall studies in uranium, J. Appl. Phys., 48: 2729–2737.CrossRefGoogle Scholar
Collins, G. S., Melosh, H. J. and Marcus, R. A. (2005) Earth Impact Effects Program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteorit. Planet. Sci., 40: 817.CrossRefGoogle Scholar
Collins, G. W., Da Silva, L. B., Celliers, P. et al. (1998) Measurements of the equation of state of deuterium at the fluid insulator–metal transition, Science, 281: 1178–1181.CrossRefGoogle ScholarPubMed
Cooper, P. W. (1997) Explosives Engineering. New York: Wiley.Google Scholar
Courant, R. and Friedrichs, K. O. (1948) Supersonic Flow and Shock Waves. New York: Interscience.Google Scholar
Cox, B. N., Gao, H., Gross, D. and Rittel, D. (2005) Modern topics and challenges in dynamic fracture, J. Mech. Phys. Solids, 53: 565–596.CrossRefGoogle Scholar
Curran, D. R., Seaman, L. and Shockey, D. A. (1977) Dynamic failure in solids, Phys. Today, 30: 46.CrossRefGoogle Scholar
Curran, D. R., Seaman, L. and Shockey, D. A. (1987) Dynamic Failure of Solids. Amsterdam: North-Holland.Google Scholar
Da Silva, L. B., Celliers, P., Collins, G.W. et al. (1997) Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar), Phys. Rev. Lett., 78: 483–486CrossRefGoogle Scholar
Dai, L. H. and Bai, Y. L. (2008) Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Imp. Eng., 35: 704–716CrossRefGoogle Scholar
Davis, W. C. (1987) The detonation of explosives, Sci. Am., 256(5): 106.CrossRefGoogle Scholar
Davison, L. and Graham, R. A. (1979) Shock compression of solids, Phys. Rep., 55(4): 255–379.CrossRefGoogle Scholar
DeCarli, P. S. and Jamieson, J. C. (1961) Formation of diamond by explosive shock, Science, 133: 1821–1822.CrossRefGoogle ScholarPubMed
Döring, W. (1943) Über Detonationsvorgang in Gasen (On the detonation process in gases), Annalen der Physik, 43: 421–436.CrossRefGoogle Scholar
Dolan, D. H. and Gupta, Y. M. (2004) Nanosecond freezing of water under multiple shock wave compression: optical transmission and imaging measurements, J. Chem. Phys., 121: 9050–9057.CrossRefGoogle ScholarPubMed
Dremin, A. N. and Adadurov, G. A. (1964) Behaviour of a glass at dynamic loading, Fiz. Tverd. Tela, 6(6): 1757–1764.Google Scholar
Duffy, J., Campbell, J. D. and Hawley, R. H. (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum, J. Appl. Mech., 38(1): 83–92.CrossRefGoogle Scholar
Duffy, T. S. (2005) Synchrotron facilities and the study of the Earth's deep interior, Rep. Prog. Phys., 68: 1811–1859.CrossRefGoogle Scholar
Duffy, T. S. (2007) Strength of materials under static loading in the diamond anvil cell, in Shock Compression of Condensed Matter 2007, eds. Furnish, M. D., et al. Melville, NY: American Institute of Physics, pp. 639–644.Google Scholar
Duffy, T. S., Shen, G., Shu, J., Mao, H.-K., Hamley, R. J. and Singh, A. K. (1999) Elasticity, shear strength, and equation of state of molybdenum and gold from X-ray diffraction under nonhydrostatic compression to 24 GPa, J. Appl. Phys., 86: 6729–6736.CrossRefGoogle Scholar
Duvall, G. E. and Graham, R. A. (1977) Phase transitions under shock-wave loading, Rev. Mod. Phys., 49(3): 523–580.CrossRefGoogle Scholar
Esposito, A. P., Farber, D. L., Reaugh, J. E. and Zaug, J. M. (2003) Reaction propagation rates in HMX at high pressure, Propell. Explos. Pyrot., 28: 83–88.CrossRefGoogle Scholar
Fickett, W. and Davis, W. C. (2000) Detonation: Theory and Experiment. Mineola, NY: Courier Dover Publications. Reprint, originally published 1979.Google Scholar
Field, J. E., Bourne, N. K., Palmer, S. J. P. and Walley, S. M. (1992) Hot-spot ignition mechanisms for explosives and propellants, Phil. Trans. R. Soc. Lond. A, 339: 269–283.CrossRefGoogle Scholar
Follansbee, P. S., Regazzoni, G. and Kocks, U.F. (1984) The transition in drag-controlled deformation in copper at high strain rates, Inst. Phys. Conf. Ser., 70: 71–80.Google Scholar
Fortov, V. E. (2011) Extreme States of Matter on Earth and in the Cosmos. Berlin: Springer.CrossRefGoogle Scholar
Frank-Kamenetskii, D. A. (1969) Diffusion and Heat Transfer in Chemical Kinetics, 2nd edn., translated by J. P. Appleton. New York: Plenum Press.Google Scholar
Freund, L. B. (1990) Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
French, B. M. (1998) Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution No. 954. Houston, TX: Lunar and Planetary Institute.Google Scholar
Gama, B. A., Lopatnikov, S. L., GillespieJr., J. W. (2004) Hopkinson bar experimental technique: a critical review, Appl. Mech. Rev., 57(4), 223–250.CrossRefGoogle Scholar
Germann, T. C., Tanguy, D., Holian, B. L., Lomdahl, P.S., Mareschal, M. and Ravelo, R. (2004) Dislocation structure behind a shock front in fcc perfect crystals: Atomistic simulation results. Metall. Mater. Trans. A, 35: 2609–2615.CrossRefGoogle Scholar
Gibbons, R. V. and Ahrens, T. J. (1971) Shock metamorphism of silicate glasses. J. Geophys. Res., 76, p. 5489–5498.CrossRefGoogle Scholar
Grady, D. E. (1997) Shock-wave compression of brittle solids, Mech. Mater., 29: 181–203.CrossRefGoogle Scholar
Grady, D. E. (2006) Fragmentation of Rings and Shells: The Legacy of N.F. Mott. New York: Springer.Google Scholar
Grady, D. E. (2007) The shock wave profile, in Shock Compression of Condensed Matter 2007, eds Furnish, M. D., Elert, M., Chau, R., Holmes, N. C. and Nguyen, J.Melville, NY: American Institute of Physics, pp. 3–11.Google Scholar
Grady, D. E. (2010) Structured shock waves and fourth power law, J. Appl. Phys., 107: 013506.CrossRefGoogle Scholar
Grady, D. E. and Kipp, M. E. (1993) Dynamic fracture and fragmentation, in High-Pressure Shock Compression of Solids, eds. Asay, J. R. and Shahinpoor, M.. New York: Springer-Verlag, pp. 265–322.CrossRefGoogle Scholar
GrayIII, G. T. (2000a) Classic split-Hopkinson pressure bar testing, in ASM Handbook, Vol. 8: Mechanical Testing and Evaluation. Materials Park, OH: ASM International, pp. 462–476.Google Scholar
GrayIII, G. T. (2000b) Shock wave testing of ductile materials, in ASM Handbook, Vol. 8: Mechanical Testing and Evaluation. Materials Park, OH: ASM International, pp. 530–538.Google Scholar
Griffith, A. A. (1921) The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. London A, 221: 163–198.CrossRefGoogle Scholar
Gupta, Y. M., Winey, J. M., Trivedi, P. B. et al. (2009) Large elastic wave amplitude and attenuation in shocked pure aluminium,J. Appl. Phys., 105: 036107.CrossRefGoogle Scholar
Gurney, R. (1943) The initial velocities of fragments from bombs, shells and grenades. Report no. 405, Ballistic Research Laboratory, Aberdeen, MD, AII-36218.
Harding, J., Wood, E. O. and Campbell, J. D. (1960) Tensile testing of materials at impact rates of strain, J. Mech. Engng Sci., 2, 88–96.CrossRefGoogle Scholar
Hayes, D. B., (1974) Polymorphic phase transformation rates in shock-loaded potassium chloride, J. Appl. Phys., 45: 1208–1217.CrossRefGoogle Scholar
Hermann, W. (1969) Constitutive equation for the dynamic compaction of ductile porous materials, J. Appl. Phys., 40: 2490–2499.CrossRefGoogle Scholar
Hill, R. (1963) Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11: 357–372.CrossRefGoogle Scholar
Hoge, G. and Mukherjee, A. K. (1977) The temperature and strain rate dependence of the flow stress of tantalum, J. Mater. Sci., 12: 1666–1672.CrossRefGoogle Scholar
Holian, B. L. (1988) Modeling shock wave deformation via molecular dynamics, Phys. Rev. A, 37: 2562–2568.CrossRefGoogle ScholarPubMed
Holtkamp, D. B., Clark, D. A., Ferm, E. N. et al. (2004) A survey of high explosive-induced damage and spall in selected metals using proton radiography, in Proceedings of the Conference of the American Physical Society on Shock Compression of Condensed Matter, Portland, OR, 20–25 July 2003. Melville, NY: American Institute of Physics, pp. 477–482.Google Scholar
Honeycombe, R. W. K. (1984) The Plastic Deformation of Metals, 2nd edition. London: Edward Arnold.Google Scholar
Hopkinson, B. (1914) A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Proc. R. Soc. Lond. A., 89(612): 411–413.CrossRefGoogle Scholar
Hu, J., Zhou, X., Dai, C., Tan, H. and Li, J. (2008) Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements, J. Appl. Phys., 104: 083520.CrossRefGoogle Scholar
Hugoniot, P-H. (1887a) Mémoire sur la propagation du mouvement dans un fluide indéfini, J. Math. Pures Appl. (4th series), 3: 477–492 and 4: 153–168.Google Scholar
Hugoniot, P-H. (1887b) Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits (première partie), J. l’École Polytech., 57: 3–97.Google Scholar
Hugoniot, P-H. (1889) Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits (deuxième partie), J. l’École Polytech., 58: 1–125.Google Scholar
Inglis, C. E. (1913) Stresses in a plate due to the presence of cracks and sharp corners, Proc. Inst. Naval Arch., 55: 219–241.Google Scholar
Irwin, G. R. (1985) Fracture mechanics, in ASM Metals Handbook, Vol. 8: Mechanical Testing and Evaluation (2000). Materials Park, OH: ASM International, pp. 439–458.Google Scholar
James, H. R. and Lambourn, B. D. (2001) A continuum-based reaction growth model for the shock initiation of explosives, Propell. Explos. Pyrot., 26: 246–256.3.0.CO;2-1>CrossRefGoogle Scholar
Jenniskens, P., Shaddad, M. H., Numan, D. et al. (2009) The impact and recovery of asteroid 2008 TC3, Nature, 458: 485–488.CrossRefGoogle Scholar
Jouguet, E. (1906) Sur la propagation des réactions chimiques dans les gaz: les ondes de choc, J. Math. Pures Appli. (6ème Sér.), 2: 5–86.Google Scholar
Jouguet, E. (1917) Mécanique des Explosifs. Paris, France: Octave Doin.Google Scholar
Kalantar, D.H., Remington, B.A., Chandler, E.A. et al. (1999) High pressure solid state experiments on the Nova laser, Int. J. Impact Engng., 23: 409–420.CrossRefGoogle Scholar
Kanel, G. I., Rasorenov, S. V., Fortov, V. E. and Abasehov, M. M. (1991) The fracture of glass under high pressure impulsive loading, High. Press. Res., 6: 225–232.Google Scholar
Kelly, A. (1973) Strong Solids, 2nd edition. Oxford: Clarendon Press.Google Scholar
Knudson, M. D., Hanson, D. L., Bailey, J. E., Hall, C. A., Asay, J. R. and Anderson, W. W. (2001) Phys. Rev. Lett., 87: 225501.CrossRef
Koller, D. D., Hixson, R. S., GrayIII, G. T. et al. (2006) Explosively driven shock induced damage in OFHC Cu, in Shock Compression of Condensed Matter 2006, eds. Furnish, M. D., Elert, M. L., Russell, T. P. and White, C. T.Melville, NY: American Institute of Physics, pp. 599–602.Google Scholar
Kolsky, H. (1953) Stress Waves in Solids. Oxford: Clarendon Press.Google Scholar
LankfordJr., J. (2005) The role of dynamic material properties in the performance of ceramic armour, Int. J. Appl. Ceram. Tech., 1(3): 205–210.CrossRefGoogle Scholar
Lawn, B. R. (1993) Fracture of Brittle Solids, 2nd edition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lee, E. L. and Tarver, C. M. (1980) A phenomenological model of shock initiation in heterogeneous explosives, Phys. Fluids, 23: 2362.CrossRefGoogle Scholar
Luebcke, P. E., Dickson, P. M. and Field, J. E. (1995) An experimental study of the deflagration-to-detonation transition in granular secondary explosives, Proc. R. Soc. A., 448: 439–448.CrossRefGoogle Scholar
MacLeod, S. G.,Tegner, B. E., Cynn, H. et al. (2012) Experimental and theoretical study of Ti-6Al-4V to 220 GPa, Phys. Rev. B, 85: 224202.CrossRefGoogle Scholar
Mader, C. L. (1979) Numerical Modeling of Explosives and Propellants. London: CRC Press, reprint.Google Scholar
Mallard, E. and Le Chatelier, H. (1881) On the propagation velocity of burning in gaseous explosive mixtures, C. R. Acad. Sci. Paris, 93: 145–148.Google Scholar
Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Marchand, A. and Duffy, J. (1988) An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36: 251–283.CrossRefGoogle Scholar
Marsh, S. P. (1980) LASL Shock Hugoniot Data. Berkeley, CA: University of California Press.Google Scholar
McClintock, F. A. and Walsh, J. B. (1962), Friction on Griffith cracks in rocks under pressure, Proc. 4th Natl. Congr. Appl. Mech., Berkeley, CA, pp. 1015–1021.Google Scholar
Merzkirch, W. (1993) Flow Visualization. London: Academic Press.Google Scholar
Meyers, M. A. (1994) Dynamic Behavior of Materials. Chichester: Wiley.CrossRefGoogle Scholar
Meyers, M. A., Aimone, C. T. (1983) Dynamic fracture (spalling) of metals, Prog. Mater. Sci.: 1–96.
Millett, J. C. F., Bourne, N. K. and Rosenberg, Z. (1998) Observations of the Hugoniot curves for glasses as measured by embedded stress gauges, J. Appl. Phys., 84(2): 739–741.CrossRefGoogle Scholar
Millett, J. C. F., Bourne, N. K. and Stevens, G. S. (2006) Taylor impact of polyether ether ketone, Int. J. Impact Eng., 32(7): 1086–1094.CrossRefGoogle Scholar
Millett, J. C. F., Whiteman, G. and Bourne, N. K. (2009) Lateral stress and shear strength behind the shock front in three face centered cubic metals, J. Appl. Phys., 105: 033515.CrossRefGoogle Scholar
Millett, J. C. F., Bourne, N. K., Park, N. T., Whiteman, G. and GrayIII, G. T. (2011) On the behaviour of body-centred cubic metals to one-dimensional shock loading,J. Mater. Sci., 46: 3899–3906.CrossRefGoogle Scholar
Mills, N. J. (1993) Plastics: Microstructure and Engineering Applications. London: Edward Arnold.Google Scholar
Minshall, S. (1955) Phys. Rev. 98: 271.
Mott, N. F. (1947) Fragmentation of shell cases, Proc. Royal Soc., A189: 300–305.CrossRefGoogle Scholar
Murray, N. H., Bourne, N. K. and Rosenberg, Z. (1998) The dynamic compressive strength of aluminas, J. Appl. Phys., 84(9): 4866–4871.CrossRefGoogle Scholar
Nesterenko, V. F. and Bondar, M. P. (1994) Localization of deformation in collapse of a thick walled cylinder, Combus. Explos. Shock Waves, 30(4): 500–509.CrossRefGoogle Scholar
Neumann, J., von (1942) Theory of Detonation Waves, Office of Scientific Research and Development, Report 549, Ballistic Research Laboratory File No. X-122. Aberdeen Proving Ground, Maryland.Google Scholar
Odeshi, A. G., Bassim, M. N. and Al-Ameeri, S. (2006) Adiabatic shear bands in a high-strength low alloy steel, Mater. Sci. Engng. A, 419: 69–75.CrossRefGoogle Scholar
Orowan, E. (1934) Zur Kristallplastizität III, Z. Phys., 89: 634–659.CrossRefGoogle Scholar
Pierazzo, E. and Melosh, H. J. (2000) Understanding oblique impacts from experiments, observations and modelling, Annu. Rev. Earth Planet. Sci., 28: 141–167.CrossRefGoogle Scholar
Pochhammer, L. (1876) Uber die fortpflanzungsgeschwindigkeiten kleiner schwingungen in einem unbegrenzten isotropen kreiscylinder, J. Fur. Reine and Angewandte Math. (Crelle), 81: 324–336.Google Scholar
Popolato, A. (1972) in Behaviour and Utilisation of Explosives in Engineering Design, ed. Henderson, R. L.. Albuquerque, NM: ASME.Google Scholar
Powell, J. L. (1998) Night Comes to the Cretaceous: Dinosaur Extinction and the Transformation of Modern Geology. New York: W.H. Freeman.Google Scholar
Raftenberg, M. N. (2001) A shear banding model for penetration calculations, Int. J. Imp. Engng., 25(2): 123–146.CrossRefGoogle Scholar
Rankine, W. J. M. (1870) On the thermodynamic theory of waves of finite longitudinal disturbances,Phil. Trans. R. Soc. Lond., 160: 277–288.CrossRefGoogle Scholar
Rayleigh, J. W. S. (1877) The Theory of Sound. London: Macmillan and Co.Google Scholar
Reddy, T. Y. and Reid, S. R. (1980) Phenomena associated with the crushing of metal tubes between rigid plates,Int. J. Solids Struct., 16(6): 545–562.CrossRefGoogle Scholar
Reiner, M. (1964) The Deborah Number, Phys. Today, 17(1): 62.CrossRefGoogle Scholar
Remington, B. A., Bazan, G., Bringa, E. M. et al. (2006) Material dynamics under extreme conditions of pressure and strain rate, Mat. Sci. Tech., 22: 474–488.CrossRefGoogle Scholar
Rivas, J. M., Zurek, A. K., Thissell, W. R., Tonks, D. L. and Hixson, R. S. (2000) Quantitative description of damage evolution in ductile fracture of tantalum, Metal. Mater. Trans. A, 31: 845–851.CrossRefGoogle Scholar
Romanchenko, V. I. and Stepanov, G. V. (1980) Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum, and steel, J. Appl. Mech. Tech. Phys., 21: 555–561.CrossRefGoogle Scholar
Rosenberg, Z. and Dekel, E. (2012) Terminal Ballistics. London: Springer.CrossRefGoogle Scholar
Seigel, A. E. (1965) The Theory of High Speed Guns, AGARDograph 91, May.
Schön, E. (2004). Asa-Tors hammare, Gudar och jättar i tro och tradition. Värnamo: Fält & Hässler.Google Scholar
Smallman, R. E. and Bishop, R. J. (1999) Modern Physical Metallurgy and Materials Engineering, 6th edition. Oxford: Butterworth-Heinemann.Google Scholar
Stokes, Sir, George Gabriel (1851) On the alleged necessity for a new general equation in hydrodynamics, Philos. Mag., I: 157–160, 393–394.Google Scholar
Swegle, J. W. and Grady, D. E. (1985) Shock viscosity and the prediction of shock wave rise times, J. Appl. Phys., 58: 692.CrossRefGoogle Scholar
Taylor, J. W. and Rice, M. H. (1963) Decay of the elastic precursor wave in Armco iron, J. Appl. Phys, 34: 364–371.CrossRefGoogle Scholar
van Thiel, M. (1966) Compendium of Shock Wave Data (2 vols plus suppl.). Livermore, CA: Lawrence Radiation Laboratory.Google Scholar
Wadsworth, G. (2007) Basic Research Needs for Materials under Extreme Environments. Office of Science, US Department of Energy, available at .Google Scholar
Walley, S. M. (2007) Shear localization: a historical review, Metall. Mater. Trans. A, 38(11): 2629–2654.CrossRefGoogle Scholar
Walley, S. M., Field, J. E., Pope, P. H. and Safford, N. A. (1989) A study of the rapid deformation behaviour of a range of polymers, Phil. Trans. R. Soc. Lond. A., 328: 1–33.CrossRefGoogle Scholar
Weir, S. T., Mitchell, A. C. and Nellis, W. J. (1996) Metallization of fluid molecular hydrogen, Phys. Rev. Lett. 76: 1860.CrossRefGoogle ScholarPubMed
Whitley, V. H., McGrane, S. D., Eakins, D. E., Bolme, C. A., Moore, D. S. and Bingert, J. F. (2011) The elastic-plastic response of aluminum films to ultrafast laser-generated shocks, J. Appl. Phys., 109: 013505.CrossRefGoogle Scholar
Worthington, A. M. and Cole, R. S. (1897) Impact with a liquid surface studied by the aid of instantaneous photography, Phil. Trans. R. Soc. A., 189: 137–148.CrossRefGoogle Scholar
Worthington, A. M. and Cole, R. S. (1900) Impact with a liquid surface studied by the aid of instantaneous photography; paper II, Phil. Trans. R. Soc. A., 194: 175–199.CrossRefGoogle Scholar
Wright, T. W. (2002) The Physics and Mathematics of Adiabatic Shear Bands. Cambridge: Cambridge University Press.Google Scholar
Xue, Q. and GrayIII, G. T. (2006) Development of adiabatic shear bands in annealed 316L stainless steel: part I. Correlation between evolving microstructure and mechanical behaviour, Metall. Mater. Trans. A., 37(8): 2435–2446.CrossRefGoogle Scholar
Xue, Q., Nesterenko, V. F. and Meyers, M. A. (2003) Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing, Int. J. Impact Engng., 28: 257–280.CrossRefGoogle Scholar
Zeldovitch, Y. B. (1940) On the theory of the propagation of detonation in gaseous systems, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (JETP), 10: 542–568.Google Scholar
Zeldovitch, Y. B. and Raizer, Y. P. (2002) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola, NY: Dover, reprint.Google Scholar
Zener, C. and Hollomon, J. H. (1944) Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15: 22–32.CrossRefGoogle Scholar
Zerilli, F. J. and Armstrong, R. W. (2007) A constitutive equation for the dynamic deformation behavior of polymers, J. Mater. Sci. 42: 4562–4574.CrossRefGoogle Scholar
Zukas, J. (1990) High Velocity Impact Dynamics. New York: Wiley.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Neil Bourne
  • Book: Materials in Mechanical Extremes
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139152266.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Neil Bourne
  • Book: Materials in Mechanical Extremes
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139152266.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Neil Bourne
  • Book: Materials in Mechanical Extremes
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139152266.015
Available formats
×