Skip to main content Accessibility help
Manifolds, Tensors, and Forms
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Providing a succinct yet comprehensive treatment of the essentials of modern differential geometry and topology, this book's clear prose and informal style make it accessible to advanced undergraduate and graduate students in mathematics and the physical sciences. The text covers the basics of multilinear algebra, differentiation and integration on manifolds, Lie groups and Lie algebras, homotopy and de Rham cohomology, homology, vector bundles, Riemannian and pseudo-Riemannian geometry, and degree theory. It also features over 250 detailed exercises, and a variety of applications revealing fundamental connections to classical mechanics, electromagnetism (including circuit theory), general relativity and gauge theory. Solutions to the problems are available for instructors at

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


[1] R., Abraham and J. E., Marsden, Foundations of Mechanics, 2nd edn, updated 1985 printing (Addison-Wesley, Reading, 1978).
[2] C., Adams, The Knot Book (W. H. Freeman, New York, 1994).
[3] W., Ambrose and I. M., Singer, A theorem on holonomy, Trans. AMS, 75, (1953), 428–443.
[4] G., Andrews, R., Askey, and R., Roy, Special Functions (Cambridge University Press, Cambridge, 1999).
[5] T., Apostol, Calculus, Vol. 2, 2nd edn (Wiley, New York, 1969).
[6] M. F., Atiyah and R., Bott, The Yang-Mills equations over Riemann surfaces, Proc. Roy. Soc. A, 308, (1982), 523–615.
[7] J., Baez and J., Muniain, Gauge Fields, Knots, and Gravity (World Scientific, Singapore, 1994).
[8] P., Bamberg and S., Sternberg, A Course in Mathematics for Students of Physics,Vol. 2 (Cambridge University Press, Cambridge, 1990).
[9] N., Biggs, Algebraic Graph Theory (Cambridge University Press, Cambridge, 1993).
[10] R., Bishop and R., Crittenden, Geometry of Manifolds (American Mathematical Society, Providence, 1964).
[11] W., Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry (Academic Press, New York, 1975).
[12] R., Bott and L., Tu, Differential Forms in Algebraic Topology (Springer, New York, 1982).
[13] S. S., Cairnes, Triangulation of the manifold of class one, Bull. Amer. Math. Soc. 41, (1935), 549–552.
[14] A., Candel and L., Conlon, Foliations I (American Mathematical Society, Providence, 2000).
[15] R., Carter, G., Segal, and I., Macdonald, Lectures on Lie Groups and Lie Algebras, London Mathematical Society Student Texts Vol. 32 (Cambridge University Press, Cambridge, 1995).
[16] S. S., Chern, “A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds”, Ann. Math., 45:4, (1944), 747–752. Reprinted in Shing Shen Chern Selected Papers (Springer-Verlag, New York, 1978).
[17] S. S., Chern, “Pseudo-Riemannian geometry and the Gauss-Bonnet formula”, An. da Acad. Brasileira de Ciencias, 35:1, (1963), 17–26. Reprinted in Shing Shen Chern Selected Papers (Springer-Verlag, New York, 1978).
[18] S. S., Chern, Vector bundles with a connection, in Global Differential Geometry, Studies in Mathematics Vol. 27, ed. S. S., Chern (Mathematical Association of America, Washington DC, 1989).
[19] S. S., Chern, W. H., Chen, and K.S., Lam, Lectures on Differential Geometry (World Scientific, Singapore, 2000).
[20] L., Conlon, Differentiable Manifolds, 2nd edn (Birkhauser, Boston, 2001).
[21] G., de Rham, Variétés Différentiables, Formes, Courants, Formes Harmoniques (Herman, Paris, 1955).
[22] M. P. do, Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Englewood Cliffs, 1976).
[23] M. P. do, Carmo, Riemannian Geometry (Birkhauser, Boston, 1992).
[24] A., Duval, C., Klivans, and J., Martin, “Simplicial matrix-tree theorems”, Trans. Amer. Math. Soc., 361:11, (2009), 6073–6114.
[25] H., Flanders, Differential Forms with Applications to the Physical Sciences (Dover, New York, 1989).
[26] G., Francis and J., Weeks, “Conway's ZIP proof”, Amer. Math. Mon. 106:5, (1999), 393–399.
[27] T., Frankel, The Geometry of Physics, 3rd edn (Cambridge University Press, Cambridge, 2012).
[28] F., Gantmacher, The Theory of Matrices, Vol. 1 (Chelsea, New York, 1959).
[29] S., Goldberg, Curvature and Homology (Dover, New York, 1982).
[30] A., Granas and J., Dugundji, Fixed Point Theory (Springer-Verlag, New York, 2003).
[31] W., Greub, Linear Algebra, 4th edn (Springer-Verlag, New York, 1981).
[32] P., Gross and R., Kotiuga, Electromagnetic Theory and Computation: A Topological Approach (Cambridge University Press, Cambridge, 2004).
[33] V., Guillemin and A., Pollack, Differential Topology (Prentice Hall, Englewood Cliffs NJ, 1974).
[34] B., Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Springer, New York, 2003).
[35] F., Harary, Graph Theory (Addison-Wesley, Reading, 1969).
[36] J., Hart, R., Miller, and R., Mills, “A simple geometric model for visualizing the motion of the Foucault pendulum”, Amer. J. Phys., 55, (1987), 67–70.
[37] A., Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002).
[38] A., Hatcher, Vector Bundles and K-Theory, unpublished manuscript, 2009.
[39] S., Hawking and G., Ellis, The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge, 1973).
[40] F., Hehl and Y., Obukhov, Élie Cartan's torsion in geometry and in field theory, an essay, Ann. Fond. Louis de Broglie, 32:2-3, (2007), 157–194.
[41] N., Hicks, Notes on Differential Geometry (Van Nostrand Reinhold, New York, 1965).
[42] W. V. D., Hodge, The Theory and Applications of Harmonic Integrals (Cambridge University Press, Cambridge, 1989).
[43] K., Hoffman and R., Kunze, Linear Algebra (Prentice-Hall, Englewood-Cliffs, 1961).
[44] A., Isidori, Nonlinear Control Systems, 3rd edn (Springer-Verlag, New York, 1995).
[45] L., Kauffman, Knots and Physics (World Scientific, Singapore, 1993).
[46] D., Klain and G-C., Rota, Introduction to Geometric Probability (Cambridge University Press, Cambridge, 1997).
[47] S., Kobayashi and K., Nomizu, Foundations of Differential Geometry, Vols. 1 and 2 (Wiley-Interscience, New York, 1996).
[48] G., Lamé, Leçons sur les coordonnées curvilignes et leurs diverses applications (Mallet-Bachelier, Paris, 1859).
[49] H. B., Lawson, The Qualitative Theory of Foliations CBMS Series Vol. 27 (American Mathematical Society, Providence, 1977).
[50] Jeffery, Lee, Manifolds and Differential Geometry, Graduate Studies in Mathematics Vol. 107 (American Mathematical Society, Providence, 2009).
[51] John, Lee, Introduction to Smooth Manifolds (Springer, New York, 2003).
[52] C., Livingston, Knot Theory (Mathematical Association of America, Washington, 1993).
[53] A., Lundell, A short proof of the Frobenius theorem, Proc. Amer. Math. Soc. 116:4, (1992), 1131–1133.
[54] I., Madsen and J., Tornehave, From Calculus to Cohomology (Cambridge University Press, Cambridge, 1997).
[55] W. S., Massey, Algebraic Topology: An Introduction (Springer, New York, 1967).
[56] J., Matoušek, Using the Borsuk-Ulam Theorem (Springer, New York, 2003).
[57] J., Matoušek, Lectures on Discrete Geometry (Springer, New York, 2002).
[58] J., Milnor, Topology from the Differentiable Viewpoint (The University Press of Virginia, Charlottesville, 1965).
[59] J., Milnor, The Poincaré conjecture 99 years later: a progress report, unpublished, 2003.
[60] C., Misner, K., Thorne, and J. A., Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).
[61] H., Moffat and R., Ricca, Helicity and the Calugareanu invariant, Proc. Roy. Soc. Lond. A 439, (1992), 411–429.
[62] R., Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications (American Mathematical Society, Providence, 2002).
[63] J., Morgan and G., Tian, Ricci Flow and the Poincaré Conjecture (American Mathematical Society, Providence, 2007).
[64] S., Morita, Geometry of Differential Forms (American Mathematical Society, Providence, 2001).
[65] J., Munkres, Topology: A First Course (Prentice Hall, Englewood Cliffs, 1975).
[66] M., Nakahara, Geometry, Topology, and Physics, 2nd edn (IOP Publishing, Bristol, 2003).
[67] C., Nash and S., Sen, Topology and Geometry for Physicists (Dover, New York, 2011).
[68] E., Nelson, Tensor Analysis (Princeton University Press, Princeton, 1967).
[69] G., Naber, Topology, Geometry and Gauge fields: Interactions, 2nd edn (Springer, New York, 2011).
[70] B., O'Neill, Semi-Riemannian Geometry (with Applications to Relativity) (Academic Press, San Diego, 1983).
[71] J., Oprea, Geometry and the Foucault pendulum, Amer. Math. Mon. 102:6, (1995), 515–522.
[72] D., O'Shea, The Poincaré Conjecture: In Search of the Shape of the Universe (Walker, New York, 2007).
[73] R., Osserman, A Survey of Minimal Surfaces (Van Nostrand Reinhold, New York, 1969).
[74] M., Reed and B., Simon, Methods of Modern Mathematical Physics, Vols. 1-4 (Academic Press, San Diego, 1980).
[75] J., Rotman, An Introduction to Algebraic Topology (Springer Verlag, New York, 1988).
[76] A., Shapere and F., Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989).
[77] I. M., Singer and J. A., Thorpe, Lecture Notes on Elementary Topology and Geometry (Springer, New York, 1967).
[78] P., Slepian, Mathematical Foundations of Network Analysis (Springer-Verlag, Berlin, 1968).
[79] M., Spivak, Calculus on Manifolds (Addison-Wesley, Reading, 1965)
[80] M., Spivak, A Comprehensive Introduction to Differential Geometry, Vols. 1-5, 3rd edn (Publish or Perish, 1999).
[81] R., Stanley, Enumerative Combinatorics, Vol. 2 (Cambridge University Press, Cambridge, 1999).
[82] S., Sternberg, Lectures on Differential Geometry (Prentice Hall, Englewood Cliffs, 1964).
[83] G., Szpiro, Poincaré's Prize: The Hundred-Year Quest to Solve One of Math's Greatest Puzzles (Penguin, New York, 2008).
[84] L., Tu, An Introduction to Manifolds, 2nd edn (Springer, New York, 2011).
[85] V. A., Vassiliev, Introduction to Topology (American Mathematical Society, Providence, 2001).
[86] M., Visser, Notes on Differential Geometry, unpublished lecture notes (February 2011).
[87] T., Voronov, Differential Geometry, unpublished lecture notes (Spring 2009).
[88] F., Warner, Foundations of Differentiable Manifolds and Lie Groups (Scott Foresman, Glenview, 1971).
[89] D., West, Introduction to Graph Theory (Prentice-Hall, Upper Saddle River, 1996).
[90] J. H. C., Whitehead, On C1 complexes, Ann. Math., 41, (1940), 809–824.
[91] J., Wolf, Spaces of Constant Curvature (McGraw-Hill, New York, 1967).
[92] G., Ziegler, Lectures on Polytopes (Springer, New York, 1995).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.