Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: February 2019

1 - Magnetism, Magnetic Materials, and Nanoparticles

Related content

Powered by UNSILO
[1]Gubin, S. P., Koksharov, Y. A., Khomutov, G. B. and Yurkov, G. Y., Magnetic nanoparticles: Preparation, structure and properties. Russ. Chem. Rev., 74:6 (2005), 489520.
[2]Batlle, X. and Labarta, A., Finite-size effects in fine particles: Magnetic and transport properties. J. Phys. D: Appl. Phys., 35:6 (2002), R15–42.
[3]Skomski, R., Nanomagnetics. J. Phys. Cond. Matter., 15:20 (2003), R841–96.
[4]Bansmann, J., Baker, S. H., Binns, C., et al., Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep., 56:6–7 (2005), 189275.
[5]Mills, D. L. L. and Bland, J. A. C., Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, 1st edn (Amsterdam: Elsevier, 2006).
[6]Mørup, S. and Hansen, M. F., Superparamagnetic particles. In Kronmüller, H. and Parkin, S. S., eds., Handbook of Magnetism and Advanced Magnetic Materials, Vol. 4 of Novel Materials. (Chichester: J. Wiley & Sons Ltd., 2007), pp. 2159–76.
[7]Aktas, B. and F. Mikailov, eds., Advances in Nanoscale Magnetism, 1st edn (Berlin, Heidelberg: Springer, 2007).
[8]Guimaraes, A. P., Principles of Nanomagnetism, 1st edn (Berlin, Heidelberg: Springer, 2009).
[9]Shinjo, T., ed., Nanomagnetics and Spintronics, 1st edn (Oxford: Elsevier, 2009).
[10]Bozorth, R., Ferromagnetism, 3rd edn (New York, NY: Wiley-IEEE Press, 1993).
[11]Chikazumi, S., Physics of Ferromagnetism, 2nd edn, (Oxford: Oxford University Press, 2009).
[12]Smart, J. S., Effective Field Theories of Magnetism, (Philadelphia, PA: W.B. Saunders Co., 1966).
[13]Odom, B., Hanneke, D., d’Urso, B. and Gabrielse, G., New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett., 97:3 (2006), 030801.
[14]Figgis, B. N. and Lewis, J., The magnetochemistry of complex compounds. In Lewis, J. and Wilkins, R. G., eds., Modern Coordination Chemistry (New York, NY: Wiley, 1960).
[15]Goodenough, J. B., Magnetism and the Chemical Bond, 1st edn (New York, NY: J. Wiley & Sons, 1963).
[16]Kittel, C., Introduction to Solid State Physics, 8th edn (New York, NY: Wiley, 2005).
[17]Martin, D. H., Magnetism in Solids, 1st edn (Cambridge, MA: MIT Press, 1967).
[18]Eriksson, O., Johansson, B., Albers, R. C., Boring, A. M., and Brooks, M. S. S., Orbital magnetism in Fe, Co, and Ni. Phys. Rev. B., 42:4 (1990), 2707–10.
[19]Haynes, W. M., ed., Handbook of Chemistry and Physics, 92nd edn (Boca Raton, FL: CRC Press, 2011).
[20]Hesjedal, T., Kretzer, U. and Ney, A., Magnetic susceptibility of n-type GaAs. Semicond. Sci. Technol., 27:5 (2012), 055018.
[21]Goryunova, N. A., Slozhnye Almazopodobnye Poluprovodniki (Complex Diamond-like Semiconductors), 1st edn (Moscow: Sovietskoye Radio (Soviet Radio), 1968).
[22]Crangle, J., Magnetic Properties of Solids, 1st edn (London: Edward Arnold, 1977).
[23]Darby, M. I., Tables of the Brillouin function and of the related function for the spontaneous magnetization. Br. J. Appl. Phys., 18:10 (1967), 1415–7.
[24]Callen, E. R. and Callen, H. B., Static magnetoelastic coupling in cubic crystals. Phys. Rev., 129:2 (1963), 578–93.
[25]Chudnovsky, E. M. and Gunther, L., Quantum tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett., 60:8 (1988), 661–4.
[26]Meiklejohn, W. H. and Bean, C. P., New magnetic anisotropy. Phys. Rev., 102:5 (1956), 1413–4.
[27]Carey, R. and Isaac, E. D., Magnetic Domains and Techniques for their Observation (New York, NY: Academic Press, 1966).
[28]Craik, D. J. and Tebble, R. S., Magnetic domains. Rep. Prog. Phys., 24 (1961), 116–66.
[29]De Hosson, J. T. M., Chechenin, N. G. and Vystavel, T., Nano-structured magnetic films investigated with Lorentz transmission electron microscopy and electron holography. Nato Science Series II, 128 (2003), 463–80.
[30]Allenspach, R., Sallemik, H., Bischof, A. and Weibel, E., Tunneling experiments involving magnetic tip and magnetic sample. Z. Phys. B: Condens. Matter, 67 (1987), 125–8.
[31]Schippan, F., Behme, G., Däweritz, L., et al., Magnetic structure of epitaxially grown MnAs on GaAs(001). J. Appl. Phys. 88:5 (2000), 2766–70.
[32]Baruchel, J., Schlenker, M., Kurosawa, K. and Saito, S., Antiferromagnetic S-domains in NiO. Phil. Mag. B, 43:5 (1981), 853–60.
[33]Tanner, B. K., Antiferromagnetic domains. Contemp. Phys., 20:2 (1979), 187210.
[34]Stöhr, J., Padmore, H. A., Anders, S., Stammler, T. and Scheinfein, M. R., Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. and Lett., 5:6 (1998), 1297–308.
[35]Brown, P. J., Spherical neutron polarimetry. In Chatterji, T., ed., Neutron Scattering from Magnetic Materials (Amsterdam: Elsevier, 2005).
[36]McHenry, M. E. and Laughlin, D. E., Nano-scale materials development for future magnetic applications. Acta mater., 48:1 (2000), 223–38.
[37]Néel, L., Some theoretical aspects of rock-magnetism. Adv Phys., 4:14 (1955), 191243.
[38]Coey, J. M. D., Magnetism and Magnetic Materials, 2nd edn (Cambridge: Cambridge University Press, 2010).
[39]Kneller, E. F. and Luborsky, F. E., Particle size dependence of coercivity and remanence of single-domain particles. J. Appl. Phys., 34:3 (1963), 656–8.
[40]McIntyre, D. A., The size dependence of the coercivity of small particles: a statistical approach. J. Phys. D: Appl. Phys., 3:10 (1970), 1430–3.
[41]Herzer, G., Nanocrystalline soft magnetic materials. Phys. Scripta, T49 (1993), 307–14.
[42]Rowlands, G., The variation of coercivity with particle size. J. Phys. D: Appl. Phys., 9:8 (1976), 1267–9.
[43]Stoner, E. C. and Wohlfarth, E. P., Interpretation of high coercivity in ferromagnetic materials. Nature, 160 (1947), 650–1.
[44]Néel, L., Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. C.N.R.S., 5 (1949), 99136.
[45]Brown, W. F. Jr., Thermal fluctuations of a single-domain particle. Phys. Rev., 130:5 (1963), 1677–86.
[46]Wohlfarth, E. P., The coefficient of magnetic viscosity. J. Phys. F: Met. Phys., 14:8 (1984), L155–9.
[47]Wernsdorfer, W., Hasselbach, K., Benoit, A., et al., Measurement of the dynamics of the magnetization reversal in individual single-domain Co particles. J. Magn. Magn. Mater., 151:1–2 (1995), 3844.
[48]Wernsdorfer, W., Doudin, B., Mailly, D., et al., Nucleation of magnetization reversal in individual nanosized nickel wires. Phys. Rev. Lett. 77:9 (1996), 1873–6.
[49]Donahue, M. J. and Porter, D. G., Object Oriented MicroMagnetic Framework (OOMMF) Users’ Guide. NIST Interagency Report 6376. National Institute of Standards and Technology (1999).
[50]Vansteenkiste, A., Leliaert, J., Dvornik, M., et al., The design and verification of MuMax3. AIP Adv., 4:10 (2014), 107133.
[51]McHenry, M. E., Majetich, S. A., Artman, J. O., Degraef, M. and Staley, S. W., Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. Phys. Rev. B, 49:16 (1994), 11358.
[52]Ionescu, A., Darton, N. J., Vyas, K. and Llandro, J., Detection of endogenous magnetic nanoparticles with a tunnelling magneto-resistance sensor. Phil. Trans. Roy. Soc. A, 368:1927 (2010), 4371–87.
[53]Hansen, M. F. and Mørup, S., Models for the dynamics of interacting magnetic nanoparticles. J. Mag. Magn. Mater., 184:3 (1998), L262–74.
[54]Billas, I. M. L., Châtelain, A. and de Heer, W. A., Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science, 265:5179 (1994), 1682–4.
[55]Knickelbein, M. B., Adsorbate-induced enhancement of the magnetic moments of iron clusters. Chem. Phys. Lett., 353:3–4 (2002), 221–5.
[56]Stoner, E. C. and Wohlfarth, E. P., A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A, 240:826 (1948), 599642.
[57]Tannous, C. and Gieraltowski, J., The Stoner–Wohlfarth model of ferromagnetism. Eur. J. Phys., 29:3 (2008), 475–87.
[58]Hansen, M. F. and Mørup, S., Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater., 203:1–3 (1999), 214–6.
[59]Arrott, A., Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 108:6 (1957), 1394–6.
[60]Lifshitz, E. M. and Pitaevskii, L. P., Statistical Physics Part 2, Vol. 9 of Course of Theoretical Physics, 3rd edn (Oxford: Butterworth-Heinemann, 1991).
[61]Noakes, J. E. and Arrott, A., Surface of magnetization, field, and temperature for nickel near its Curie temperature, J. Appl. Phys., 38:3 (1967), 973–4; Magnetization of nickel near its critical temperature, J. Appl. Phys., 39:2 (1968) 1235–6.
[62]Widom, B., Degree of the critical isotherm. J. Chem. Phys., 41:6 (1964), 1633–4.
[63]van Hove, L., Temperature variation of the magnetic inelastic scattering of slow neutrons, Phys. Rev., 93:2 (1954), 268–9; Correlations in space and time and Born approximation scattering in systems of interacting particles, Phys. Rev., 95:1 (1954), 249–62; Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals, Phys. Rev., 95:6 (1954), 1374–84.
[64]Lovesey, S. W., Theory of Neutron Scattering from Condensed Matter, Vol. 2, 1st edn (Oxford: Clarendon Press, 1984).
[65]Kadanoff, L. P., Scaling laws for Ising models near Tc. Physics, 2:6 (1966), 263–72.
[66]Fisher, M. E., The theory of equilibrium critical phenomena. Rep. Prog. Phys., 30:Part II (1967), 615730. Corrigendum: M.E. Fisher, Rep. Prog. Phys., 31:1 (1968), 418–20.
[67]Pelissetto, A. and Vicari, E., Critical phenomena and renormalization-group theory. Phys. Rep., 368:6 (2002), 549727.
[68]Campostrini, M., Hasenbusch, M., Pelissetto, A. and Vicari, E., Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods. Phys. Rev. B, 74:14 (2006), 144506.
[69]Chantrell, R. W. and Wohlfarth, E. P., Dynamic and static properties of interacting fine ferromagnetic particles. J. Magn. Magn. Mater., 40:1 (1983), 111.
[70]Bødker, F., Mørup, S., Pedersen, M. S., et al., Superparamagnetic relaxation in α-Fe particles. J. Mag. Mag. Mat., 177–181:Part 2 (1998), 925–7.
[71]Mørup, S. and Topsøe, H., Mössbauer studies of thermal excitations in magnetically ordered microcrystals. Appl. Phys., 11:1 (1976), 63–6.
[72]Mørup, S., Hansen, M. F. and Frandsen, C., Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol., 1 (2010), 182–90.
[73]Tronc, E., Nanoparticles. Il Nuovo Cimento D, 18:2–3 (1996), 163–80.
[74]Mørup, S., Christensen, P. H. and Clausen, B.S., Magnetic hyperfine splitting in superparamagnetic particles in external magnetic fields. J. Magn. Magn. Mater. 68:2 (1987), 160–70.
[75]Squires, G. L., Introduction to the Theory of Thermal Neutron Scattering, 1st edn (Cambridge: Cambridge University Press, 1978).
[76]Mørup, S. and Hansen, B. R., Uniform magnetic excitations in nanoparticles. Phys. Rev. B, 72:2 (2005), 024418.
[77]Hennion, M., Bellouard, C., Mirebeau, I., Dormann, J. L. and Nogues, M., Dual spin dynamics of small Fe particles. Europhys. Lett., 25:1 (1994), 43–8.
[78]Kubo, R., Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan., 12:6 (1957), 570–86.
[79]van der Laan, G. and Figueroa, A. I., X-ray magnetic circular dichroism – A versatile tool to study magnetism. Coord. Chem. Rev., 277–278 (2014), 95129.
[80]Funk, T., Deb, A., George, S. J., Wang, H. and Cramer, S. P., X-ray magnetic circular dichroism – A high energy probe of magnetic properties. Coord. Chem. Rev., 249:1–2 (2005), 330.
[81]Thole, B. T., Carra, P., Sette, F. and van der Laan, G., X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett., 68:12 (1992), 1943–6.
[82]Carra, P., Thole, B. T., Altarelli, M. and Wang, X., X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett., 70 (1993), 694–7.
[83]Imada, S., Suga, S., Kuch, W. and Kirchner, J., Magnetic microspectroscopy by a combination of XMCD and PEEM. Surf. Rev. Lett., 9:2 (2002), 877–81.
[84]Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, 1st edn (San Francisco, CA: W.H. Freeman & Co., 1963).
[85]Rodriguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 192:1–2 (1993), 5569.
[86]Scherrer, P., Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 2 (1918), 98100.
[87]Stokes, A. R. and Wilson, A. J. C., The diffraction of X-rays by distorted crystal aggregates. I. Proc. Phys. Soc., 56:3 (1944), 174–81.
[88]Mote, V. D., Purushotham, Y. and Dole, B. N., Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys., 6 :6 (2012).
[89]Cooper, J. F. K., Ionescu, A., Langford, R. M., et al., Core/shell magnetism in NiO nanoparticles. J. Appl. Phys., 114:8 (2013), 083906.