Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T02:21:35.143Z Has data issue: false hasContentIssue false

2 - Preparation of Magnetic Nanoparticles for Applications in Biomedicine

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Seo, W. S., Lee, J. H., Sun, X. et al., FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater., 5:12 (2006), 971–6.CrossRefGoogle ScholarPubMed
Laurent, S., Saei, A. A., Behzadi, S., Panahifar, A., and Mahmoudi, M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges. Expert. Opin. Drug Del., 11:9 (2014), 1449–70.CrossRefGoogle ScholarPubMed
Cornell, R. M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, 1st edn (Weinheim: Wiley-VCH, 1996).Google Scholar
Veiseh, O., Gunn, J. W., and Zhang, M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 62:3 (2010), 284304.Google Scholar
Krol, S., Macrez, R., Docagne, F. et al., Therapeutic benefits from nanoparticles: The potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem. Rev., 113:3 (2013), 1877–903.CrossRefGoogle ScholarPubMed
Kodama, R. H., Magnetic nanoparticles. J. Magn. Magn. Mater., 200:1–3 (1999), 359–72.Google Scholar
Kodama, R. H., Berkowitz, A. E., McNiff, E. J. Jr., and Foner, S., Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett., 77:2 (1996), 394–7.Google Scholar
Moumen, N. and Pileni, M. P., Control of the size of cobalt ferrite magnetic fluid. J. Phys. Chem., 100:5 (1996), 1867–73.Google Scholar
Martinez, B., Obradors, X., Balcells, L. I., Rovanet, A., and Monty, C. Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys. Rev. Lett., 80:1 (1998), 181–4.Google Scholar
Morales, M. P., Veintemillas-Verdaguer, S., Montero, M. I. et al., Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater., 11:11 (1999), 3058–64.CrossRefGoogle Scholar
Kubickova, S., Niznansky, D., Morales Herrero, M. P., Salas, G., and Vejpravova, J. Structural disorder versus spin canting in monodisperse maghemite nanocrystals. Appl. Phys. Lett., 104:22 (2014), 223105.CrossRefGoogle Scholar
Ai, H., Flask, C., Weinberg, B., et al., Magnetic-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater., 17:16 (2005), 1949–52.CrossRefGoogle Scholar
Rebolledo, A. F., Laurent, S., Calero, M., et al., Iron oxide nanosized clusters embedded in porous nanorods: A new colloidal design to enhance capabilities of MRI contrast agents. ACS Nano, 4:4 (2010), 2095–103.Google Scholar
Nidhin, M., Nazeer, S. S., Jayasree, R. S., Kiran, M. S., Nair, B. U., and Sreeram, K. J. Flower shaped assembly of cobalt ferrite nanoparticles: Application as T2 contrast agent in MRI. RSC Adv., 3:19 (2013), 6906–12.Google Scholar
Zoppellaro, G., Kolokithas-Ntoukas, A., Polakova, K., et al., Theranostics of epitaxially condensed colloidal nanocrystal clusters, through a soft biomineralization route. Chem. Mater., 26:6(2014), 2062–74.Google Scholar
LaMer, V. K. and Dinegar, R. H., Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc., 72:11 (1950), 4847–54.CrossRefGoogle Scholar
Ocaña, M., Rodriguez-Clemente, R., and Serna, C. J., Uniform colloidal particles in solution: Formation mechanism. Adv. Mater., 7:2 (1995), 212–6.Google Scholar
Massart, R., Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE T. Magn., 17:2 (1981), 1247–8.Google Scholar
Sugimoto, T. and Matijevic, E., Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J. Colloid. Interface. Sci., 74:1 (1980), 227–43.Google Scholar
Verges, M. A., Costo, R., Roca, A. G., et al., Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit. J. Phys. D. Appl. Phys., 41:13 (2007), 134003.CrossRefGoogle Scholar
Andres-Verges, M., Morales, M. P., Veintemillas-Verdaguer, S., Palomares, F. J., and Serna, C. J., Core/shell magnetite/bismuth oxide nanocrystals with tunable size, colloidal, and magnetic properties. Chem. Mater., 24:2 (2012), 319–24.Google Scholar
Piao, Y., Kim, J., Bin-Na, H., et al., Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat. Mater., 7:3 (2008), 242–7.Google Scholar
Rebolledo, A. F., Bomatí-Miguel, O., Marco, J. F., and Tartaj, P. A facile synthetic route for the preparation of superparamagnetic iron oxide nanorods and nanorices with tunable surface functionality. Adv Mater., 20:9 (2008), 1760–5.CrossRefGoogle Scholar
Hollingsworth, J. A. and Klimov, V. I., Soft chemical synthesis and manipulation of semiconductor nanocrystals. In Klimov, V. I., ed. Nanocrystal Quantum Dots, 2nd edn (Boca Raton, FL: Taylor and Francis, 2010), pp. 162.Google Scholar
Sun, S. H., Murray, C. B., Weller, D., Folks, L., and Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 287:5460 (2000), 1989–92.Google Scholar
Park, J., An, K., Huang, Y., et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater., 3:12 (2004), 891–5.Google Scholar
Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chem. Commun., 8 (2003), 927–34.Google Scholar
Rockenberger, J. E., Scher, C., and Alivisatos, A. P., A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc., 121:49 (1999), 11595–6.Google Scholar
Jun, Y. W., Huh, Y. M., Choi, J. S., et al., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc., 127:16 (2005), 5732–3.Google Scholar
Choi, J-S., Jun, Y-W., Yeon, S-I., Kim, H. C., Shin, J-S., and Cheon, J., Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc., 128:50 (2006), 15982–3.Google Scholar
Sanchez-Dominguez, M., Pemartin, K., and Boutonnet, M., Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft versatile approach. Curr. Opin. Colloid Interface Sci., 17:5 (2012), 297305.CrossRefGoogle Scholar
Wang, J., Shah, Z. H., Zhang, S., and Lu, R. Silica-based nanocomposites via reverse microemulsions: Classifications, preparations, and applications. Nanoscale, 6:9 (2014), 4418–37.Google Scholar
Song, M-M., Song, W-J., Bi, H., et al., Cytotoxicity and cellular uptake of iron nanowires. Biomaterials, 31:7 (2010), 1509–17.Google Scholar
Song, S., Bohuslav, G., Capitano, A., et al., Experimental characterization of electrochemical synthesized Fe nanowires for biomedical applications. J. Appl. Phys., 111 (2012), 056103.Google Scholar
Stephen, Z. R., Kievit, F. M., and Zhang, M., Magnetite nanoparticles for medical MR imaging. Mater. Today, 14:7–8 (2011), 330–8.Google Scholar
Mahmoudi, M., Sheibani, S., Milani, A. S., et al., Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (Lond.), 10:2 (2015), 215–26.Google Scholar
Hui, C. M., Pietrarsik, J., Schmitt, M., et al., Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials. Chem. Mater., 26:1 (2014), 745–62.Google Scholar
Patel, T., Zhou, J., Piepmeier, J. M., and Saltzman, W. M., Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev., 64:7 (2012), 701–5.Google Scholar
Liu, D., He, C., Poon, C., and Lin, W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J. Mater. Chem. B, 2:46 (2014), 8249–55.Google Scholar
Jung, C. W. and Jacobs, P., Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran and ferumoxsil. J. Magn. Reson., 13:5 (1995), 661–74.Google Scholar
Wong, R. M., Gilbert, D. A., Liu, K., and Louie, A. Y., Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano, 6:4 (2012), 3461–7.Google Scholar
Gregoriadis, G. and Ryman, B. E., Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases. Biochem. J., 124:5 (1971), 58.Google Scholar
Al-Jamal, W. T. and Kostarelos, K., Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 44:10 (2011), 1094–104.Google Scholar
van der Meel, R. Fens, M. H., Vader, P., van Solinge, W. W., Eniola-Adefeso, O., and Schiffelers, R. M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release, 195(2014), 7285.Google Scholar
De Cuyper, M. and Valtonen, S., Investigation of the spontaneous transferability of a phospholipid-poly(ethylene glycol)-biotin derivative from small unilamellar phospholipid vesicles to magnetoliposomes. J. Magn. Magn. Mater., 225:1–2 (2001), 8994.Google Scholar
Bulte, J. W. M., Ma, L. D., Magin, R. L., et al., Selective MR imaging of labeled human peripheral-blood mononuclear-cells by liposome mediated incorporation of dextran-magnetite particles. Magn. Reson. Med., 29:1 (1993), 32–7.Google Scholar
Sung, W., Wang, H., Wang, S., et al., PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int. J. Pharm., 426:1–2 (2012), 170–81.Google Scholar
Torchilin, V. P., Micellar nanocarriers: Pharmaceutical perspectives, Pharm. Res., 24:1 (2007), 116.Google Scholar
Buwalda, S. J., Boere, K. W. M., Dijkstra, P. J., Feijen, J., Vermonden, T., and Hennink, W. E., Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release, 190 (2014), 254–73.CrossRefGoogle Scholar
Rossi, F., Ferrari, R., Castiglione, F., Mele, A., Perale, G., and Moscatelli, D. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery. Nanotechnology, 26:1 (2015), 015602.Google Scholar
Bhattacharya, S., Eckert, F., Boyko, V., and Pich, A., Temperature-, pH-, and magnetic field-sensitive hybrid microgels. Small, 3:4 (2007), 650–7.Google Scholar
Wong, H. L., Wu, X. Y., and Bendayan, R., Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev., 64:7 (2012), 686700.Google Scholar
Omwoyo, W. N., Ogutu, B., Oloo, F., et al., Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomed., 9:1 (2014), 3865–74.Google Scholar
Hsu, M. H. and Su, Y. C., Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomed. Microdevices, 10:6 (2008), 785–93.Google Scholar
Horcajada, P., Chalati, T., Serre, C., et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 9:2 (2010), 172–8.Google Scholar
Lee, D. C., Mikulec, F. V., Pelaez, J. M., Koo, B., andKorgel, B. A., Synthesis and magnetic properties of silica-coated FePt nanocrystals. J. Phys. Chem. B, 110:23 (2006), 11160–6.Google Scholar
Chen, X., Klingeler, R., Kath, M., et al., Magnetic silica nanotubes: Synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl. Mater. Interfaces, 4:4 (2012), 2303–9.Google Scholar
Ma, W-F., Zhang, Y., Li, L-L., et al., Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano, 6:4 (2012), 3179–88.Google Scholar
Kim, T., Momin, E., Choi, J., et al., Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc., 133:9 (2011), 2955–61.Google Scholar
Bae, K. H., Lee, K., Kim, C., and Park, T. G., Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials, 32:1 (2011), 176–84.CrossRefGoogle ScholarPubMed
Gutsch, A., Mühlenweg, H., and Kramer, M., Tailor-made nanoparticles via gas-phase synthesis. Small, 1:1 (2005), 3046.Google Scholar
Kodas, T. T. and Hampden-Smith, M., Aerosol Processing of Materials, 1st edn (New York, NY: John Wiley & Sons Inc., 1999).Google Scholar
Bomati-Miguel, O., Morales, M. P., Tartaj, P., et al., Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials, 26:28 (2005), 5695–703.Google Scholar
Iwasaki, T., Kosaka, K., Watano, S., Yanagida, T., and Kawai, T., Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect. Mater. Res. Bull., 45:4 (2010), 481–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×