Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2000
  • Online publication date: March 2017

Liftings of Homomorphisms Between Quotient Structures and Ulam Stability

1. H., Becker and A.S., Kechris. The descriptive set theory of Polish group actions. Cambridge University Press, 1996.
2. M., Bell. an email of October 1997.
3. M., Bell. Two Boolean algebras with extreme cellular and compactness properties. Canadian Journal of Mathematics, XXXV:824–838, 1983.
4. E., Č ech. Probléme. FundamentaMathematicae, 34:332, 1947.
5. A., Connes. Noncommutative geometry. Academic Press, 1994.
6. H.G., Dales and W.H., Woodin. An Introduction to Independence for Analysts, volume 115 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1987.
7. R., Engelking. General Topology. Heldermann, Berlin, 1989.
8. I., Farah. Analytic quotients. Memoirs of the American Mathematical Society, to appear.
9. I., Farah. Embedding partially ordered sets into ωω. Fundamenta Mathematicae, 151:53–95, 1996.
10. I., Farah. Approximate homomorphisms. Combinatorica, 18:335–348, 1998.
11. I., Farah. Approximate homomorphisms II: Group homomorphisms. Combinatorica, to appear.
12. I., Farah. Completely additive liftings. The Bulletin of Symbolic Logic, 4:37–54, 1998.
13. D., H. Fremlin. Measure algebras. In D., Monk and R., Bonnett, editors, Handbook of Boolean algebras, pages 877–980. Elsevier, 1989.
14. F., Galvin. On a problem of Čech. Notices of the American Mathematical Society, 25:A–604, 1978.
15. G., Hjorth and A.S., Kechris. New dichotomies for Borel equivalence relations. The Bulletin of Symbolic Logic, 3:329–346, 1997.
16. G., Hjorth, A.S., Kechris, and A., Louveau. Borel equivalence relations induced by actions of the symmetric group. Annals of pure and applied logic, 92:63–112, 1998.
17. A., Ionescu Tulcea and C., Ionescu Tulcea. Topics in the theory of lifting. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48. Springer-Verlag, New York, 1969.
18. S.-A., Jalali-Naini. The monotone subsets of Cantor space, filters and descriptive set theory. PhD thesis, Oxford, 1976.
19. W., Just. The space (ω*)n+1 is not always a continuous image of (∗)n. Fundamenta Mathematicae, 132:59–72, 1989.
20. W., Just. A modification of Shelah's oracle chain condition with applications. Transactions of the American Mathematical Society, 329:325–341, 1992.
21. W., Just. A weak version of AT from OCA. Mathematical Science Research Institute Publications, 26:281–291, 1992.
22. N., J. Kalton. The three-space problem for locally bounded F-spaces. Compositio Mathematicae, 37:243–276, 1978.
23. N.J., Kalton. The Maharam problem. Séminaire Initiationàĺ Analyse, 18:1–13, 1988/89.
24. V., Kanovei and M., Reeken. On Baire measurable homomorphisms of quotients of the additive group of the reals. Archive for Mathematical Logic, to appear.
25. A.S., Kechris. Actions of Polish groups and classification problems. preprint.
26. A.S., Kechris. Classical descriptive set theory, volume 156 of Graduate texts in mathematics. Springer, 1995.
27. A.S., Kechris. New directions in descriptive set theory. The Bulletin of Symbolic Logic, 5:161–174, 1999.
28. A., Louveau and B., Velickovic. A note on Borel equivalence relations. Proceedings of the American Mathematical Society, 120:255–259, 1994.
29. A., R.D.Mathias. A remark on rare filters. In A., Hajnal et al., editor, Infinite and finite sets, Vol. III, volume 10 of Coll. Math. Soc. Jänos Bolyai, pages 1095–1097. North Holland, 1975.
30. I.I., Parovičenko. A universal bicompact of weight ℵ1. Soviet Mathematics Doklady, 4:592–592, 1963.
31. R., Price. On a problem of Čech. Topology and Its Applications, 14:319–329, 1982.
32. M., Scheepers. Cardinals of countable cofinality and eventual domination. Order, 11:221–235, 1995.
33. S., Shelah. Proper Forcing. Lecture Notes in Mathematics 940. Springer, 1982.
34. S., Solecki. Analytic ideals. The Bulletin of Symbolic Logic, 2:339–348, 1996.
35. S., Solecki. Analytic ideals and their applications. preprint, 1996.
36. R., Solovay. A model of set theory in which every set of reals is Lebesgue measurable. Annals of Mathematics, 92:1–56, 1970.
37. M., Talagrand. Compacts de fonctions mesurables et filters nonmesurables. Studia Math., 67:13–43, 1980.
38. M., Talagrand. A new look at independence. Annals of Probability, 24:1–34, 1996.
39. W., Thurston. On proof and progress in mathematics. Bullettin of the American Mathematical Society, 30:161–177, 1994.
40. S., Todorcevic. Partition Problems in Topology, volume 84 of Contemporary mathematics. American Mathematical Society, Providence, Rhode Island, 1989.
41. S., Todorcevic. Analytic gaps. Fundamenta Mathematicae, 150:55–67, 1996.
42. S., Todorcevic. Definable ideals and gaps in their quotients. In C., A. DiPrisco et al, editor, Set Theory: Techniques and Applications, pages 213–226. Kluwer Academic Press, 1997.
43. S., Todorcevic. Gaps in analytic quotients. Fundamenta Mathematicae, 156:85–97, 1998.
44. S.M., Ulam. Problems in modern mathematics. John Wiley & Sons, 1964.
45. S.M., Ulam and D., Mauldin. Mathematical problems and games. Advances in Applied Mathematics, 8:281–344, 1987.
46. E., van Douwen. Mappings from hyperspaces and converging sequences. Topology and its Applications, 34:35–45, 1990.
47. B., Velickovic. Definable automorphisms of P(ω)/Fin. Proceedings of the American Mathematical Society, 96:130–135, 1986.
48. B., Velickovic. OCA and automorphisms of P(ω)/Fin. Topology and its Applications, 49:1–12, 1992.