Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T08:39:44.137Z Has data issue: false hasContentIssue false

Part I - Extreme environments: responses and adaptation to change

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access
Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 7 - 86
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ademollo, N., Patrolecco, L., Rauseo, J., Nielsen, J., Corsolini, S. (2018). Biaccumulation of nonylphenols and bisphenol A in the Greenland shark Somniosus microcephalus from the Greenland seawaters. Microchemical Journal, 136, 106112; http://dx.doi.org/10.1016/j.microc.2016.11.009.Google Scholar
AMAP (2011). AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo.Google Scholar
Aschauer, H., Weber, R.E., Braunitzer, G. (1985). The primary structure of the hemoglobin of the dogfish shark (Squalus acanthias). Antagonistic effects of ATP and urea on oxygen affinity of an elasmobranch hemoglobin. Biological Chemistry Hoppe-Seyler, 366, 589599.CrossRefGoogle ScholarPubMed
Bacci, E. (1994). Ecotoxicology of Organic Contaminants. Lewis Publ., Boca Raton, FL, p. 164.Google Scholar
Beck, B., Mansfield, A.W. (1969). Observations on the Greenland shark, Somniosus microcephalus, in northern Baffin Island. Journal of the Fisheries Research Board of Canada, 26, 143145; https://doi.org/10.1139/f69-013.CrossRefGoogle Scholar
Bell, M.A. (1993). Convergent evolution of nasal structure in sedentary elasmobranchs. Copeia, 1, 144158; doi:10.2307/1446305.Google Scholar
Berland, B. (1961). Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland shark, a possible cause of mutual dependence. Nature, 191, 829830; https://doi.org/10.1038/191829a0.Google Scholar
Berenbrink, M., Koldkjaer, P., Kepp, O., Cossins, A.R. (2005). Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science, 307, 17521757; doi.org/10.1126/science.1107793 PMID: 15774753.Google Scholar
Bigelow, H.B., Schroeder, W.C. (1948). Sharks. In: Tee-Van, J (ed.) Fishes of the Western North Atlantic, Part 1. Yale University, New Haven, CT, pp. 59546.Google Scholar
Branco, V., Vale, C., Canàrio, J., Dos Santos, N.M. (2007). Mercury and selenium in blue shark (Prionace glauca, L. Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environmental Pollution, 150, 373380.CrossRefGoogle ScholarPubMed
Bustamante, P., Caurant, F., Flower, S.W., Miramand, P. (1998). Cephalopods are a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Sciences of the Total Environment, 220, 7180.CrossRefGoogle ScholarPubMed
Butler, P.J., Metcalfe, J.D. (1988). Cardiovascular and respiratory systems. In: Shuttleworth, T.J. (ed.) Physiology of Elasmobranch Fishes. Springer-Verlag, Berlin, pp. 147.Google Scholar
Campana, S.E., Natanson, L.J., Myklevoll, S. (2002). Bomb dating and age determination of large pelagic sharks. Canadian Journal of Fisheries and Aquatic Sciences, 59, 450455.CrossRefGoogle Scholar
Campana, S.E., Fisk, A.T., Klimley, A.P. (2015). Movements of Arctic and northwest Atlantic Greenland sharks (Somniosus microcephalus) monitored with archival satellite pop-up tags. Deep-Sea Research Part II, 115, 109115.CrossRefGoogle Scholar
Chong, K.T., Miyazaki, G., Morimoto, H., Oda, Y., Park, S.Y. (1999). Structures of the deoxy and CO forms of haemoglobin from Dasyatis akajei, a cartilaginous fish. Acta Crystallographica Section D Biological Crystallography, 55, 12911300.Google Scholar
Christiansen, J.S. (2012). The TUNU-Programme: Euro-Arctic Marine Fishes: Diversity and Adaptations. In: di Prisco, G and Verde, C (eds) Adaptation and Evolution in Marine Environments, Volume 1, From Pole to Pole. Springer-Verlag Berlin/Heidelberg, pp. 3550.Google Scholar
Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V. (2014). Arctic marine fishes and their fisheries in light of global change. Global Change Biology, 20(2), 352359.CrossRefGoogle ScholarPubMed
Collin, S. (2012). The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behavior and Evolution, 80, 8096; doi:10.1159/000339870.Google Scholar
Corsolini, S. (2009). Industrial contaminants in Antarctic biota. Journal of Chromatography A, 1216, 598612.Google Scholar
Corsolini, S., Sarà, G. (2017). The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs. Chemosphere, 177, 189199; https://doi.org/10.1016/j.chemo sphere.2017.02.116.CrossRefGoogle ScholarPubMed
Corsolini, S., Ancora, S., Bianchi, N., et al. (2014). Organotropism of persistent organic pollutants and heavy metals in the Greenland shark Somniosus microcephalus in NE Greenland. Marine Pollution Bulletin, 87(1), 381387.Google Scholar
Corsolini, S., Pozo, K., Christiansen, J.S. (2016). Legacy and emergent POPs in a marine trophic web of NE Greenland fjords including the Greenland shark Somniosus microcephalus. Rendiconti Lincei Scienze Fisiche e Naturali, 27(S1), 201206.Google Scholar
Costantini, D., Smith, S., Killen, S.S., Nielsen, J., Steffensen, J.F. (2016). The Greenland shark: a new challenge for the oxidative stress theory of ageing? Comparative Biochemistry and Physiology, Part A. Molecular and Integrative Physiology, 203, 227232.Google Scholar
Cotronei, S., Pozo, K., Kohoutek, J., et al. (2017). HBCDs in the top predator Greenland shark (Somniosus microcephalus) from Greenland seawaters. 8th International Symposium on Flame Retardants: BFR 2017, May 7–10, 2017, York, UK; www.researchgate.net/publication/318882647 (accessed December 4, 2018).Google Scholar
Cotronei, S., Pozo, K., Audy, O., Přibylová, P., Corsolini, S. (2018a). Contamination profile of DDTs in the shark Somniosus microcephalus from Greenland Seawaters. Bulletin of Environmental Contamination and Toxicology, 101(1), 713; https://doi.org/10.1007/s00128-018–2371-z.Google Scholar
Cotronei, S., Pozo, K., Kohoutek, J., et al. (2018b). Occurrence of PBDEs in the Greenland Shark Somniosus microcephalus. Proceedings SCAR Open Science Conference ‘Where the Poles come together’, June 19–23, 2018, Davos, Switzerland, p. 1987.Google Scholar
Cox, J.P.L. (2013). Ciliary function in the olfactory organs of sharks and rays. Fish and Fisheries, 14, 364390; https://doi.org/10.1111/j.1467–2979.2012.00476.x.Google Scholar
Cuvin-Aralar, M.L.A., Furness, R.W. (1991). Mercury and selenium interaction: a review. Ecotoxicology and Environmental Safety, 21, 348364.Google Scholar
Dettaȉ, A., di Prisco, G., Lecointre, G., Parisi, E., Verde, C. (2008). Inferring evolution of fish proteins: the globin case study. Methods in Enzymology, 436, 539570; doi.org/10.1016/S0076-6879(08)36030–3 PMID:18237653.CrossRefGoogle ScholarPubMed
Devine, B.M., Wheeland, L.J., Fisher, J.A. (2018). First estimates of Greenland shark (Somniosus microcephalus) local abundances in Arctic waters. Scientific Reports, 8, 974; https://doi.org/10.1038/s41598-017–19115-x.Google Scholar
Dietz, R., Rigét, F., Born, E.W. (2000). An assessment of selenium to mercury in Greenland marine animals. Sciences of the Total Environment, 245, 1524.Google Scholar
di Prisco, G., Condò, S.G., Tamburrini, M., Giardina, B. (1991). Oxygen transport in extreme environments. Trends in Biochemical Science, 16, 471474.Google Scholar
di Prisco, G., Eastman, J.T., Giordano, D., Parisi, E., Verde, C. (2007). Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene, 398, 143155; doi.org/10.1016/j.gene.2007.02.047 PMID: 17553637.Google Scholar
Domi, N., Bouquegneau, J.M., Das, K. (2005). Feeding ecology of five commercial shark species of the Celtic sea through stable isotope and trace metal analysis. Marine Environmental Research, 60, 551569.CrossRefGoogle ScholarPubMed
Dryer, L., Graziadei, P.P.C. (1996). Synaptology of the olfactory bulb of an elasmobranch fish, Sphyrna tiburo. Anatomy and Embryology, 193, 101114; doi:10.1007/BF00214701.Google Scholar
Edwards, J.E., Broell, F., Bushnell, P.G., et al. (2018). Advancing our understanding of long-lived species: A case study on the Greenland shark. Frontiers in Marine Science, https://www.frontiersin.org/articles/10.3389/fmars.2019.00087/fullGoogle Scholar
Endo, T., Hisamichi, Y., Koichi, H., et al. (2008). Hg, Zn and Cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast of Ishigaki island, Japan: relationship between metal concentrations and body length. Marine Pollution Bulletin, 56, 17741780.CrossRefGoogle ScholarPubMed
Fago, A., Wells, R.M.G., Weber, R.E. (1997). Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins. Comparative Biochemistry and Physiology, 118B, 319326.Google Scholar
Ferrando, S., Amaroli, A., Gallus, L., et al. (2019). Secondary folds determine the surface area in the olfactory organ of Chondrichthyes. Frontiers in Physiology. https://doi.org/10.3389/fphys.2019.00245CrossRefGoogle Scholar
Ferrando, S., Gallus, L., Ghigliotti, L., et al. (2016). Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus. Polar Biology, 39, 13991409; https://doi.org/10.1007/s00300-015–1862-1.CrossRefGoogle Scholar
Ferrando, S., Gallus, L., Ghigliotti, L., et al. (2017a). Anatomy of the olfactory bulb in Greenland shark Somniosus microcephalus (Bloch & Schneider, 1801). Journal of Applied Ichthyology, 33, 263269; https://doi.org/10.1111/jai.13303.Google Scholar
Ferrando, S., Gallus, L., Ghigliotti, L., et al. (2017b). Clarification of the terminology of the olfactory lamellae in Chondrichthyes. The Anatomical Record, 300, 20392045; doi:10.1002/ar.23632.Google Scholar
Ferrari, M.C., Wisenden, B.D., Chivers, D.P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology, 88, 698724; https://doi.org/10.1139/Z10-029.CrossRefGoogle Scholar
Fisher, W.K., Nash, A.R., Thompson, E.O. (1977). Haemoglobins of the shark, Heterodontus portusjacksoni. III. Amino acid sequence of the β-chain. Australian Journal of Biological Science, 30, 487506.Google Scholar
Fisk, A.T., Tittlemier, S., Pranschke, J., Norstrom, R.J. (2002). Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland shark. Ecology, 83, 21622172.Google Scholar
Fisk, A. T., Lydersen, C., and Kovacs, K. M. (2012). Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway. Mar. Ecol. Prog. Ser. 468, 255265. doi: 10.3354/meps09962Google Scholar
Fossheim, M., Primicerio, R., Johannesen, E., et al. (2015). Recent warming leads to rapid borealization of fish communities in the Arctic. Nature Climate Change, 5, 673, doi:10.1038/NCLIMATE2647.Google Scholar
Fyhn, U.E.H., Sullivan, B. (1975). Elasmobranch hemoglobins: dimerization and polymerization in various species. Comparative Biochemistry and Physiology, 50, 119129.Google Scholar
Gebbink, W.A., Sonne, C., Dietz, R., et al. (2008). Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus). Environmental Pollution, 152, 621629; http://dx.doi.org/10.1016/j.envpol.2007.07.001.Google Scholar
Gillen, R., Riggs, A. (1973). The hemoglobins of a fresh-water teleost, Cichlasoma cyanoguttatum (Baird and Girard). II. Subunit structure and oxygen equilibria of the isolated components. Archives of Biochemistry and Biophysics, 154, 348359.CrossRefGoogle ScholarPubMed
Giordano, D., Russo, R., Coppola, D., di Prisco, G., Verde, C. (2010). Molecular adaptations in haemoglobins of notothenioid fishes. Journal of Fish Biology, 76, 301318; doi.org/10.1111/j.1095–8649.2009.02528.xPMID: 20738709.Google Scholar
Hara, T.J. (1992). Mechanisms of olfaction. In: Hara, T.J. (ed.) Fish Chemoreception. Fish & Fisheries Series, vol 6. Springer, Dordrecht, pp. 150170.Google Scholar
Herbert, N.A., Skov, P.V., Tirsgaard, B., et al. (2017). Blood O2 affinity of a large polar elasmobranch, the Greenland shark Somniosus microcephalus. Polar Biology, 40(11), 22972305.Google Scholar
Hodgson, E.S., Mathewson, R.F. (1978). Sensory Biology of Sharks, Skates, and Rays. U.S. Office of Naval Research, Arlington.Google Scholar
Hong, E.J., Choi, K.C., Jung, Y.W., Leung, P.C., Jeung, E.B. (2004). Transfer of maternally injected endocrine disruptors through breast milk during lactation induces neonatal Calbindin-D 9 k in the rat model. Reproductive Toxicology, 18(5), 661668.Google Scholar
Hussey, N.E., Orr, J., Fisk, A.T., et al. (2018). Mark report satellite tags (mrPATs) to detail large-scale horizontal movements of deep water species: First results for the Greenland shark (Somniosus microcephalus). Deep Sea Research Part I: Oceanographic Research Papers, 134, 3240.Google Scholar
IARC (1979). World Health Organization-International Agency for Research on Cancer. WHO-IARC-annual report 1979.Google Scholar
Ikonomou, M.G., Rayne, S., Fischer, M. (2002). Occurrence and congener profiles of polybrominated diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, Canada. Chemosphere, 46, 649663.Google Scholar
Ingvaldsen, R., Gjøsæter, H., Ona, E., Michalsen, K. (2017). Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biology, 40(10), 21052111; DOI 10.1007/s00300-017–2115-2.CrossRefGoogle Scholar
Janák, K., Covaci, A., Voorspoels, S., Becher., G. (2005). Hexabromocyclododecane in marine species from the Western Scheldt Estuary: diastereoisomer-and enantiomer-specific accumulation. Environmental Science Technology, 39, 19871994.Google Scholar
Kannan, K., Corsolini, S., Focardi, S., Tanabe, S., Tatsukawa, R. (1996). Accumulation pattern of butyltin compounds in dolphin, tuna, and shark collected from Italian coastal waters. Archives of Environmental Contamination and Toxicology, 31, 1923.Google Scholar
Klaassen, C.D. (1986). Distribution, excretion, and absorption of toxicants. In: Klaassen, C.D., Amdur, M.O., Doull, J.M.D. (eds) Casarett and Doull’s Toxicology the Basic Science of Poisons. 3rd edition. Macmillan Publishing Company, New York, pp. 3363.Google Scholar
Koeman, J.H., Ven, W.S.M., Goeij, J.J.M., Tijoe, P.S., Haften, J.L. (1975). Mercury and selenium in marine mammals and birds. Sciences of the Total Environment, 3, 279287.Google Scholar
Komiyama, N.H., Shih, D.T., Looker, D., Tame, J., Nagai, K. (1991). Was the loss of the D helix in α-globin a functionally neutral mutation? Nature, 352, 349351; doi.org/10.1038/352349a0 PMID: 1852211.Google Scholar
Koy, K., Plotnick, R.E. (2007). Theoretical and experimental ichnology of mobile foraging. In: Miller, W III (ed.) Trace Fossils: Concepts, Problems and Prospects. Elsevier, Amsterdam, pp. 428441.Google Scholar
Kramer, D.L. (2001). Foraging behavior. In: Fox, C.W., Roff, D.A., Fairbairn, D.J. (eds) Evolutionary Ecology. Oxford University Press, Oxford, pp. 232246.Google Scholar
Leclerc, L.M., Lydersen, C., Haug, T., et al. (2011). Greenland sharks (Somniosus microcephalus) scavenge offal from minke (Balaenoptera acutorostrata) whaling operations in Svalbard (Norway). Polar Research, 30, 7342; doi:10.3402/polar.v30i0.7342.Google Scholar
Leclerc, L. M., Lydersen, C., Haug, T., Bachmann, L., Fisk, A. T., and Kovacs, K. M. (2012). A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 11971208. doi: 10.1007/s00300-012-1166-7 Google Scholar
Lynghammar, A., Christiansen, J.S., Mecklenburg, C.W., et al. (2013). Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas. Biodiversity, 14, 5766.CrossRefGoogle Scholar
MacNeil, M.A., McMeans, B.C., Hussey, N.E., et al. (2012). Biology of the Greenland shark Somniosus microcephalus. Journal of Fish Biology, 80, 9911018.Google Scholar
Malins, D.C., Barone, L. (1970). The ether bond in marine lipids. In: Snyder, F (ed.) Ether Lipids, Chemistry and Biology. Academic Press, Boca Raton, FL, pp. 297312.Google Scholar
Manwell, C., Baker, C.M.A. (1970). Molecular Biology and the Origin of Species: Heterosis, Protein Polymorphism and Animal Breeding. Sidwick and Jacson, London.Google Scholar
McMeans, B.C., Börga, K., Bechtol, W.R., Higginbotham, D., Fisk, A.T. (2007). Essential and non-essential element concentrations in two sleeper shark species collected in Arctic waters. Environmental Pollution, 148, 281290.CrossRefGoogle ScholarPubMed
McMeans, B.C., Svavarsson, J., Dennard, S., Fisk, A.T. (2010). Diet and resource use among Greenland sharks (Somniosus microcephalus) and teleosts sampled in Icelandic waters, using δ13C, δ15 N and mercury. Canadian Journal of Fisheries and Aquatic Sciences, 67, 14281438.Google Scholar
Mecklenburg, C.W., Møller, P.R., Steinke, D. (2011). Biodiversity of arctic marine fishes: taxonomy and zoogeography. Marine Biodiversity, 41, 109140.Google Scholar
Mecklenburg, C.W., Lynghammar, A., Johannesen, E., et al. (2018). Marine Fishes of the Arctic Region, Vol I. CAFF Monitoring Series Report 28, February 14, 2018.Google Scholar
Meng, Q., Yin, M. (1981). A study of the olfactory organ of skates, rays and chimaeras. Journal of Fisheries of China, 5, 209228.Google Scholar
Meredith, T.L., Kajiura, S.M. (2010). Olfactory morphology and physiology of elasmobranch. Journal of Experimental Biology, 213, 34493456; doi:10.1242/jeb.045849.Google Scholar
Mita, L., Bianco, M., Viggiano, E., et al. (2011). Bisphenol A content in fish caught in two different sites of the Tyrrhenian Sea (Italy). Chemosphere, 82, 405410.Google Scholar
Molde, K., Ciesielski, T.M., Fisk, A.T., et al. (2013). Associations between vitamins A and E and legacy POP levels in highly contaminated Greenland sharks (Somniosus microcephalus). Science of the Total Environment, 442, 445454.Google Scholar
Muir, D.G., de Wit, C.A. (2010). Trends of legacy and new persistent organic pollutants in the circumpolar arctic: overview, conclusions, and recommendations. Science of Total Environment, 408, 30443051.Google Scholar
Naoi, Y., Chong, K.T., Yoshimatsu, K., et al. (2001). The functional similarity and structural diversity of human and cartilaginous fish hemoglobins. Journal of Molecular Biology, 307, 259270; doi.org/10.1006/jmbi.2000.4446 PMID: 11243818.Google Scholar
Nash, A.R., Fisher, W.K., Thompson, E.O. (1976). Haemoglobins of the shark, Heterodontus portusjacksoni. II. Amino acid sequence of the α-chain. Australian Journal of Biological Science, 29, 7397.CrossRefGoogle ScholarPubMed
Nielsen, J. (2018). The Greenland shark (Somniosus microcephalus): Diet, tracking and radiocarbon age estimates reveal the world’s oldest vertebrate. PhD thesis, University of Copenhagen; DOI:10.13140/RG.2.2.35883.49448.Google Scholar
Nielsen, J., Christiansen, J.S., Grønkjær, P., et al. (2019) Greenland shark (Somniosus microcephalus) stomach content and stable isotope values reveal ontogenetic dietary shift. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00125Google Scholar
Nielsen, J., Hedeholm, R.B., Simon, M., Steffensen, J.F. (2014). Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biology, 37, 3746.Google Scholar
Nielsen, J., Hedeholm, R.B., Heinemeier, J., et al. (2016). Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science, 353(6300), 702704.Google Scholar
Nielsen, J., Hedeholm, R.B., Lynghammar, A., McClusky, L.M., Berland, B., Steffensen, J.F., Christiansen, J.S. Assessing the reproductive biology of the Greenland shark (Somniosus microcephalus). Plos One, in press.Google Scholar
Olin, J.A., Beaudry, M., Fisk, A.T., Paterson, G. (2014). Age-related polychlorinated biphenyl dynamics in immature bull sharks (Carcharhinus leucas). Environmental Toxicology and Chemistry, 33, 3543; https://doi.org/10.1002/etc.2402.CrossRefGoogle ScholarPubMed
Pedersen, S.A., Madsen, J., Dyhr-Nielsen, M. (2004). Global International waters assessment: Arctic Greenland, East Greenland Shelf, West Greenland Shelf. United Nations Environment Programme, GIWA Regional Assessment 2b, 15, 16. University of Kalmar, Kalmar, Sweden.Google Scholar
Perutz, M.F. (1983). Species adaptation in a protein molecule. Molecular Biology and Evolution, 1, 128.Google Scholar
Perutz, M.F. (1998). The stereochemical mechanism of the cooperative effects in haemoglobin revisited. Annual Reviews of Biophysical and Biomolecular Structure, 27, 134.Google Scholar
Perutz, M.F., Brunori, M. (1982). Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature, 299, 421426.Google Scholar
Porteiro, F.M., Sutton, T.T., Byrkjedal, I., et al. (2017). Fishes of the northern Mid-Atlantic Ridge collected during the MAR-ECO cruise in 522 June–July 2004: an annotated checklist. Arquipelago Life and Marine Sciences Supplement 10.Google Scholar
Rigét, F., Bignert, A., Braune, B., Stow, J., Wilson, S. (2010). Temporal trends of legacy POPs in Arctic biota, an update. Science of Total Environment, 408, 28742884.Google Scholar
Riggs, A. (1970). Properties of fish hemoglobins. In: Hoar, W.S., Randall, D.J. (eds) Fish Physiology, Vol. 4. Academic Press, New York, pp. 209252.Google Scholar
Righton, D.A., Andersen, K.H., Neat, F., et al. (2010). Thermal niche of Atlantic cod Gadus morhua, limits, tolerance and optima. Marine Ecology Progress Series, 420, 113.Google Scholar
Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22, 81113.Google Scholar
Russo, R., Giordano, D., Paredi, G., et al. (2017). The Greenland shark Somniosus microcephalus: Hemoglobins and ligand-binding properties. PLoS ONE, 12(10), e0186181; doi.org/10.1371/journal.pone.0186181.Google Scholar
Schluessel, V., Bennett, M.B., Bleckmann, H., Blomberg, S., Collin, S.P. (2008). Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure–function relationships based on phylogeny and ecology. Journal of Morphology, 269, 13651386; https://doi.org/10.1002/jmor.10661.Google Scholar
Schluessel, V., Bennett, M.B., Bleckmann, H., Collin, S.P. (2010). The role of olfaction throughout juvenile development: functional adaptations in elasmobranchs. Journal of Morphology, 271, 451461; https://doi.org/10.1002/jmor.10809.Google Scholar
SC-POPs (2013). Stockholm convention on persistent organic pollutants. http://chm.pops.int/Implementation/Exemptions/AcceptablePurposesDDT/tabid/456/Default.aspx.Google Scholar
Shadwick, R.E., Bernal, D., Bushnell, P.G., Steffensen, J.F. (2018). Blood pressure in the Greenland shark as estimated from ventral aortic elasticity. Journal of Experimental Biology, 221, 16. doi/10.1242/jeb.186957.Google Scholar
Skomal, G.B., Benz, G.W. (2004). Ultrasonic tracking of Greenland sharks (Somniosus microcephalus) under Arctic ice. Marine Biology, 145, 489498.Google Scholar
Smeets, W.J.A.J. (1998). Cartilaginous fishes. In: Nieuwenhuys, R, Donkelaar, H.J. ten, Nicholson, C (eds) The Central Nervous System of Vertebrates. Springer, Berlin, pp. 551654.Google Scholar
Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., Lester, J.N. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environmental International, 34(7), 10331049.Google Scholar
Speers-Roesch, B., Richards, J.G., Brauner, C.J., et al. (2012a). Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure. Journal of Experimental Biology, 215, 93102.Google Scholar
Speers-Roesch, B., Brauner, C.J., Farrell, A.P., et al. (2012b). Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures. Journal of Experimental Biology, 215, 103114.Google Scholar
Staniszewska, M., Falkowska, L., Grabowski, P., et al. (2014). Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (E. Southern Baltic). Archives of Environmental Contamination and Toxicology, 67, 335.Google Scholar
Storelli, M.M., Marcotrigiano, G.O. (2002). Mercury speciation and relationship between mercury and selenium in liver of Galeus melastomus from the Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 69, 516522.Google Scholar
Strid, A., Athanassiadis, I., Athanasiadou, M., et al. (2010). Neutral and phenolic brominated organic compounds of natural and anthropogenic origin in northeast Atlantic Greenland Shark (Somniosus microcephalus). Environmental Toxicology and Chemistry, 29, 26532659.Google Scholar
Strid, A., Jörundsdóttir, H., Päpke, O., Svavarsson, J., Bergman, Å. (2007). Dioxins and PCBs in Greenland shark (Somniosus microcephalus) from the North-East Atlantic. Marine Pollution Bulletin, 54, 15141522.Google Scholar
Strid, A., Bruhn, C., Sverko, E., et al. (2013). Brominated and chlorinated flame retardants in liver of Greenland shark (Somniosus microcephalus). Chemosphere, 91(2), 222228.Google Scholar
Tetens, V., Wells, R.M. (1984). Oxygen binding properties of blood and hemoglobin solutions in the carpet shark (Cephaloscyllium isabella): roles of ATP and urea. Comparative Biochemistry and Physiology, 79A, 165168.Google Scholar
Tierney, K.B. (2015). Olfaction in aquatic vertebrates. In: Doty, R.L (ed.) Handbook of Olfaction and Gustation. Wiley-Blackwell, USA, pp. 547564.Google Scholar
UNEP (2013). Global Mercury Assessment 2013, Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland.Google Scholar
van den Berg, M., Birnbaum, L., Bosveld, A.T.C., et al. (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives, 106, 775792.Google Scholar
van den Berg, M., Birnbaum, L.S., Denison, M., et al. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223241; http://dx.doi.org/10.1093/toxsci/kfl055.CrossRefGoogle ScholarPubMed
Vas, P. (1991). Trace-metal levels in sharks from British and Atlantic Waters. Marine Pollution Bulletin, 22, 6772.CrossRefGoogle Scholar
Verde, C., De Rosa, M.C., Giordano, D., et al. (2005). Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochemical Journal, 389, 297306; doi.org/10.1042/BJ20050305 PMID: 15807670.Google Scholar
Verde, C., Balestrieri, M., de Pascale, D., et al. (2006). The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. Journal of Biological Chemistry, 281, 2207322084; doi.org/10.1074/jbc.M513080200 PMID: 16717098Google Scholar
Verreault, J., Gabrielsen, G.W., Chu, S., Muir, D.C.G., Andersen, M. (2005). Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: glaucous gulls and polar bears. Environmental Science and Technology, 39, 60216028.Google Scholar
Weber, R.E., Campbell, K.L. (2011). Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance. Acta Physiologica, Oxford, 202, 549562.Google Scholar
Weber, R.E., Wells, R.M., Rossetti, J.E. (1983a). Allosteric interactions governing oxygen equilibrium in the haemoglobin system of the spiny dogfish Squalus acanthias. Journal of Experimental Biology, 103, 109120.Google Scholar
Weber, R.E., Wells, R.M., Tougaard, S. (1983b). Antagonistic effect of urea on oxygenation-linked binding of ATP in an elasmobranch hemoglobin. Life Sciences, 32, 21572161.Google Scholar
Yano, K., Stevens, J.D., Compagno, L.J.V. (2007). Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus.Journal of Fish Biology, 70, 374390.Google Scholar
Yopak, K., Lisney, T.J., Collin, S.P. (2015). Not all sharks are ‘swimming noses’: Variation in olfactory bulb size in cartilaginous fishes. Brain Structure and Function, 220, 11271143; https://doi.org/10.1007/s00429-014–0705-0.Google Scholar
Zhou, J., Cai, Z.H., Zhu, X.S. (2009). Endocrine disruptors: an overview and discussion on issues surrounding their impact on marine mammals. Journal of Marine Animal Ecology, 2, 712.Google Scholar

References

Aisen, P., Enns, C., Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. International Journal of Biochemistry & Cell Biology, 33, 940959.Google Scholar
Arp, A.J., Childress, J.J. (1983). Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science, 219, 295297.Google Scholar
Arp, A.J., Childress, J.J., Vetter, R.D. (1987). The sulphide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular haemoglobin. Journal of Experimental Biology, 128, 139158.Google Scholar
Bates, A.E., Tunnicliffe, V., Lee, R.W. (2005). Role of thermal conditions in habitat selection by hydrothermal vent gastropods. Marine Ecology Progress Series, 305, 115.Google Scholar
Bates, A.E., Lee, R.W., Tunnicliffe, V., Lamare, M.D. (2010). Deep-sea hydrothermal vent animals seek cool fluids in a highly variable thermal environment. Nature Communications, 1, 14.Google Scholar
Bates, A.E., Bird, T.J., Robert, K., et al. (2013). Activity and positioning of eurythermal hydrothermal vent sulphide worms in a variable thermal environment. Journal of Experimental Marine Biology and Ecology, 448, 149155.Google Scholar
Bougerol, M., Boutet, I., Le Guen, D., Jollivet, D., Tanguy, A. (2015). Transcriptomic response of the hydrothermal mussel Bathymodiolus azoricus in experimental exposure to heavy metals is modulated by the Pgm genotype and symbiont content. Marine Genomics, 21, 6373.Google Scholar
Boutet, I., Jollivet, D., Shillito, B., Moraga, D., Tanguy, A. (2009a). Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genomics, 10(1), 222.Google Scholar
Boutet, I., Tanguy, A., Le Guen, D., et al. (2009b). Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 30713079.Google Scholar
Brulle, F., Cocquerelle, C., Wamalah, A.N., et al. (2008). c-DNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotoxicology & Environmental Safety, 71, 4755.Google Scholar
Campbell, B.J., Smith, J.L., Hanson, T.E., et al. (2009). Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genetics, 5(2), e1000362.Google Scholar
Cary, S.C., Shank, T., Stein, J. (1998). Worms bask in extreme temperatures. Nature, 391(6667), 545.Google Scholar
Chausson, F., Bridges, C.R., Sarradin, P.M., et al. (2001). Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab. Proteins, 45, 351359.Google Scholar
Chausson, F., Sanglier, S., Leize, E., et al. (2004). Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Micron, 35, 3141.Google Scholar
Chen, L., Zhou, J., Zhang, Y., et al. (2015). Preparation and representation of recombinant Mn-Ferritin flower-like spherical aggregates from marine invertebrates. PLoS One, 10, 115.Google Scholar
Chevaldonné, P., Jollivet, D. (1993). Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour. Marine Ecology Progress Series, 95, 251262.Google Scholar
Chevaldonné, P., Desbruyères, D., Childress, J.J. (1992). Some like it hot and some even hotter. Nature, 359, 593594.Google Scholar
Chevaldonné, P., Fisher, C.R., Childress, J.J., et al. (2000). Thermotolerance and the ‘Pompeii worms’. Marine Ecology Progress Series, 208, 293295.Google Scholar
Childress, J.J., Fisher, C.R. (1992). The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanography and Marine Biology: An Annual Review, 30, 337441.Google Scholar
Company, R., Serafim, A., Cosson, R.P., et al. (2006). The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Biology, 148, 817825.Google Scholar
Corliss, J.B., Ballard, R.D. (1977). Oases of life in the cold abyss. National Geographic, 152, 441454.Google Scholar
Cosson, R.P., Thiébaut, E., Company, R., et al. (2008). Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research, 65(5), 405415.Google Scholar
Cosson-Mannevy, M.A., Cosson, R.P., Gaill, F. (1986). Mise en évidence de protéines de type metallothionéine chez deux invertébrés des sources hydrothermales, le pogonophore vestimentifère Riftia pachyptila et l’annélide polychète Alvinella pompejana. Comptes Rendus de l’Académie des Sciences de Paris, Série III, 302, 347352.Google Scholar
Cosson-Mannevy, M.A., Cosson, R.P., Gaill, F., Laubier, L. (1988). Transfert, accumulation et régulation des éléments mineraux chez les organismes des sources hydrothermales. Oceanologica Acta (Special Issue), 8, 219226.Google Scholar
Cottin, D., Shillito, B., Chertemps, T., et al. (2010). Comparison of heat-shock responses between the hydrothermal vent shrimp Rimicaris exoculata and the related coastal shrimp Palaemonetes varians.Journal of Experimental Marine Biology and Ecology, 393(1–2), 916.Google Scholar
Cravo, A., Foster, P., Almeida, C., et al. (2007). Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the Mid-Atlantic Ridge. Environment International, 33(5), 609615.Google Scholar
Cravo, A., Foster, P., Almeida, C., et al. (2008). Metal concentrations in the shell of Bathymodiolus azoricus from contrasting hydrothermal vent fields on the mid-Atlantic ridge. Marine Environmental Research, 65, 338348.Google Scholar
Dahlhoff, E., Somero, G.N. (1991). Pressure and temperature adaptation of cytosolic malate dehydrogenases of shallow and deep-living marine invertebrates: evidence for high body temperatures in hydrothermal vent animals. Journal of Experimental Biology, 159(1), 473487.Google Scholar
Dahlhoff, E., O’Brien, J., Somero, G.N., Vetter, R.D. (1991). Temperature effects on mitochondria from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. Physiological Zoology, 64(6), 14901508.Google Scholar
Decelle, J., Andersen, A.C., Hourdez, S. (2010). Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold-seeps. Marine Biology, 156(7), 12591269.CrossRefGoogle Scholar
Demina, L.L., Galkin, S.V. (2008). On the role of abiogenic factors on the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge. Oceanology, 48(6), 784797.CrossRefGoogle Scholar
Demuynck, S., Bocquet-Muchembled, B., Deloffre, L., Grumiaux, F., Leprêtre, A. (2004). Stimulation by cadmium of myohemerythrin-like cells in the gut of the annelid Nereis diversicolor. Journal of Experimental Biology, 207, 11011111.Google Scholar
Desbruyères, D., Chevaldonné, P., Alayse, A.-M., et al. (1998). Biology and ecology of the Pompeii worm (Alvinella pompejana Desbruyères and Laubier), a normal dweller on an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Research Part II, 45, 383422.Google Scholar
Dilly, G.F., Young, C.R., Lane, W.S., Pangilinan, J., Girguis, P.R. (2012). Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes. Proceedings of the Royal Society B: Biological Sciences, 279(1741), 33473356.Google Scholar
Di Meo-Savoie, C.A., LutherIII, G.W., Cary, S.C. (2004). Physicochemical characterization of the microhabitat of the epibionts associated with Alvinella pompejana, a hydrothermal vent annelid. Geochimica et Cosmochimica Acta, 68(9), 20552066.Google Scholar
Dubilier, N., Bergin, C., Lott, C. (2008). Symbiotic diversity in marine animals: The art of harnessing chemosynthesis. Nature Reviews Microbiology, 6(10), 725740.Google Scholar
Fago, A., Forest, E., Weber, R. (2002). Hemoglobin and subunit multiplicity in the rainbow trout (Oncorhynchus mykiss) hemoglobin system. Fish Physiology & Biochemistry, 24, 335342.Google Scholar
Felbeck, H., Somero, G.N., Childress, J.J. (1981). Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide rich habitats. Nature, 293, 291293.Google Scholar
Fisher, C.R. (1995). Toward an appreciation of hydrothermal-vent animals: their environment, physiological ecology, and tissue stable isotope values. In: Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (eds) Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph 91. American Geophysical Union, Washington, DC, pp. 297316.Google Scholar
Flores, J.F., Hourdez, S. (2006). The zinc-mediated sulfide-binding mechanism of hydrothermal vent tubeworm 400-kDa hemoglobin. Cahiers de Biologie Marine, 47(4), 371377.Google Scholar
Flores, J., Fisher, C.R., Carney, S.L., et al. (2005). Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proceedings of the National Academy of Sciences USA, 102(8), 27132718.Google Scholar
Fontanillas, E., Galzitskaya, O.V., Lecompte, O., et al. (2017). Proteome evolution of deep-sea hydrothermal vent alvinellid polychaetes supports the ancestry of thermophily and subsequent adaptation to cold in some lineages. Genome Biology and Evolution, 9(2), 279296.Google Scholar
Fuenzalida, G. (2017). Transcriptomic approach of the response to metals in the hydrothermal mussel Bathymodiolus azoricus. PhD thesis, Université Pierre and Marie Curie.Google Scholar
Gagnière, N., Jollivet, D., Boutet, I., et al. (2010). Insights into metazoan evolution from Alvinella pompejana cDNAs. BMC Genomics, 11(1), 634.Google Scholar
Gaill, F., Hunt, S. (1991). The biology of annelid worms from high temperature hydrothermal vent regions. Reviews in Aquatic Sciences, 4(2), 107137.Google Scholar
Gaill, F., Mann, K., Wiedemann, H., Engel, J., Timpl, R. (1995). Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. Journal of Molecular Biology, 246(2), 284294.Google Scholar
Genard, B., Marie, B., Loumaye, E., et al. (2013). Living in a hot redox soup: antioxidant defenses of the hydrothermal worm Alvinella pompejana. Aquatic Biology, 18, 217228.Google Scholar
Geret, F., Rousse, N., Riso, R., Sarradin, P.-M., Cosson, R.P. (1998). Metal compartmentalization and metallothionein isoforms in mussels from the Mid-Atlantic Ridge; preliminary approach to the fluid-organism relationship. Cahiers de Biologie Marine, 39(3–4), 291293.Google Scholar
Girguis, P.R., Childress, J.J. (2006). Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Journal of Experimental Biology, 209(18), 35163528.Google Scholar
Girguis, P.R., Lee, R.W. (2006). Thermal preference and tolerance of alvinellids. Science, 312(5771), 231–231.Google Scholar
Gorodezky, L.A., Childress, J.J. (1994). Effects of sulfide exposure history and hemolymph thiosulfate on oxygen-consumption rates and regulation in the hydrothermal vent crab Bythograea thermydron. Marine Biology, 120, 123131.Google Scholar
Grieshaber, M.K., Völkel, S. (1998). Animal adaptations for tolerance and exploitation of poisonous sulfide. Annual Review of Physiology, 60, 3353.Google Scholar
Grill, E., Winnacker, E.L., Zenk, M.H. (1987). Phytochelatins, a class of heavy-metal-binding from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences of the USA, 84, 439443.Google Scholar
Grzymski, J.J., Murray, A.E., Campbell, B.J., et al. (2008). Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proceedings of the National Academy of Sciences of the USA, 105(45), 1751617521.Google Scholar
Hardivillier, Y., Denis, F., Demattei, M.-V., et al. (2006). Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus thermophilus. Comparative Biochemistry & Physiology, Part C, 143, 321332.Google Scholar
Hartwig, A. (1994). Role of DNA repair inhibition in lead and chromium-induced genotoxicity: a review. Environmental Health & Perspectives, 102, 4550.Google Scholar
Hassoun, E.A., Stohs, S.J. (1996). Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology, 112(2–3), 219226.Google Scholar
Henscheid, K.L., Shin, D.S., Cary, S.C., Berglund, J.A. (2005). The splicing factor U2AF65 is functionally conserved in the thermotolerant deep-sea worm Alvinella pompejana. Biochimica et Biophysica Acta Gene Structure and Expression, 1727(3), 197207.Google Scholar
Holder, T., Basquin, C., Ebert, J., et al. (2013). Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biology Direct, 8(1), 2.Google Scholar
Horikoshi, K. (1998). Barophiles: deep-sea microorganisms adapted to an extreme environment. Current Opinion in Microbiology, 1(3), 291295.Google Scholar
Hourdez, S. (2012). Hypoxic environments. In: E. M. Bell (ed.) Life at Extremes: Environments, Organisms and Strategies for Survival, pp. 438–453 CABI WallingfordGoogle Scholar
Hourdez, S. (2018). Cardiac response of the hydrothermal vent crab Segonzacia mesatlantica to variable temperature and oxygen levels. Deep Sea Research Part I: Oceanographic Research Papers, 137, 5765.Google Scholar
Hourdez, S., Jouin-Toulmond, C. (1998). Functional anatomy of the respiratory system of Branchipolynoe (Annelida; Polychaeta), commensal with mussels from deep-sea hydrothermal vents. Zoomorphology, 118, 225233.Google Scholar
Hourdez, S., Lallier, F.H. (2007). Adaptations to hypoxia in hydrothermal vent and cold-seep invertebrates. Reviews in Environmental Sciences & Biotechnology, 6, 143159.Google Scholar
Hourdez, S., Weber, R.E. (2005). Molecular and functional adaptations in deep-sea hemoglobins. Journal of Inorganic Biochemistry, 99(1), 130141.CrossRefGoogle ScholarPubMed
Hourdez, S., Lallier, F.H., Green, B.N., Toulmond, A. (1999a). Hemoglobins from deep-sea scale-worms of the genus Branchipolynoe (Polychaeta, Polynoidae): a new type of quaternary structure. Proteins, 34(4), 427434.Google Scholar
Hourdez, S., Martin-Jézéquel, V., Lallier, F.H., Weber, R.E., Toulmond, A. (1999b). Characterization and functional properties of the extracellular coelomic hemoglobins from the deep-sea, hydrothermal vent scaleworm Branchipolynoe symmytilida. Proteins, 34(4), 435442.Google Scholar
Hourdez, S., Lamontagne, J., Peterson, P., Weber, R.E., Fisher, C.R. (2000). Hemoglobin from a deep-sea hydrothermal vent copepod. The Biological Bulletin, 199, 9599.Google Scholar
Isani, G., Carpenè, E. (2014). Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules, 4, 435457.Google Scholar
Johnson, K.S., Childress, J.J., Beehler, C.L. (1988a). Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep-Sea Research, 35, 17111721.Google Scholar
Johnson, K.S., Childress, J.J., Hessler, R.R., Sakamoto-Arnold, C.M., Beehler, C.L. (1988b). Chemical and biological interactions in the Rose Garden hydrothermal vent field. Deep-Sea Research, 35A, 17231744.Google Scholar
Jokumsen, A., Weber, R.E. (1982). Hemocyanin-oxygen affinity in hermit crab blood is temperature independent. The Journal of Experimental Zoology, 221, 389394.Google Scholar
Jollivet, D., Desbruyères, D., Ladrat, C., Laubier, L. (1995). Evidence for differences in the allozyme thermostability of deep-sea hydrothermal vent polychaetes (Alvinellidae): a possible selection by habitat. Marine Ecology Progress Series, 123, 125136.Google Scholar
Jollivet, D., Mary, J., Gagnière, N., et al. (2012). Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm. PLoS One, 7(2), e31150.Google Scholar
Jouin, C., Gaill, F. (1990). Gills of hydrothermal vent annelids: structure, ultrastructure and functional implications in two alvinellid species. Progress in Oceanography, 24, 5969.Google Scholar
Jouin-Toulmond, C., Hourdez, S. (2006). Morphology, ultrastructure and functional anatomy of the branchial organ of Terebellides stroemii (Polychaeta: Trichobranchidae), with remarks on the systematic position of the genus Terebellides. Cahiers de Biologie Marine, 47(3), 287299.Google Scholar
Jouin-Toulmond, C., Augustin, D., Desbruyères, D., Toulmond, A. (1996). The gas transfer system in alvinellids (Annelida Polychaeta, Terebellida). Anatomy and ultrastructure of the anterior circulatory system and characterization of a coelomic, intracellular, haemoglobin. Cahiers de Biologie Marine, 37, 135151.Google Scholar
Kashiwagi, S., Kuraoka, I., Fujiwara, Y., et al. (2010). Characterization of a Y-family DNA polymerase Eta from the eukaryotic thermophile Alvinella pompejana. Journal of Nucleic Acids, 2010, 113.Google Scholar
Lallier, F.H., Truchot, J.P. (1997). Hemocyanin oxygen-binding properties of a deep-sea hydrothermal vent shrimp: evidence for a novel cofactor. Journal of Experimental Zoology, 277, 357364.Google Scholar
Lallier, F.H., Camus, L., Chausson, F., Truchot, J.-P. (1998). Structure and function of hydrothermal vent crustacean haemocyanin: an update. Cahiers de Biologie Marine, 39, 313316.Google Scholar
Lau, A.T., He, Q.Y., Chiu, J.F. (2004). A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochemical Journal, 382, 641650.Google Scholar
Le Bris, N., Gaill, F. (2007). How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? Reviews in Environmental Science and Biotechnology, 6(1–3), 197.Google Scholar
Le Bris, N., Sarradin, P.-M., Caprais, J.C. (2003). Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna. Deep-Sea Research I, 50, 737747.Google Scholar
Lee, R.W. (2003). Thermal tolerances of deep-sea hydrothermal vent animals from the Northeast Pacific. The Biological Bulletin, 205(2), 98101.Google Scholar
Leignel, V., Hardivillier, Y., Laulier, M. (2005). Small metallothionein MT-10 genes in coastal and hydrothermal mussels. Marine & Biotechnology, 7, 236244.Google Scholar
Lowe, S.E., Jain, M.K., Zeikus, J.G. (1993). Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiology & Molecular Biology Reviews, 57(2), 451509.Google Scholar
Lushchak, V.I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101, 1330.Google Scholar
Luther, G.W., Rozan, T.F., Taillefert, M., et al. (2001). Chemical speciation drives hydrothermal vent ecology. Nature, 410, 813816.Google Scholar
Marie, B., Genard, B., Rees, J.-F., Zal, F. (2006). Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Marine Biology, 150, 273284.Google Scholar
Matabos, M., Le Bris, N., Pendlebury, S., Thiébaut, E. (2008). Role of physico-chemical environment on gastropod assemblages at hydrothermal vents on the East Pacific Rise (13 N/EPR). Journal of the Marine Biological Association of the UK, 88(5), 9951008.Google Scholar
Matabos, M., Cuvelier, D., Brouard, J., et al. (2015). Behavioural study of two hydrothermal crustacean decapods: Mirocaris fortunata and Segonzacia mesatlantica, from the Lucky Strike vent field (Mid-Atlantic Ridge). Deep-Sea Research Part II, 121, 146158.Google Scholar
Mickel, T.J., Childress, J.J. (1982a). Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). The Biological Bulletin, 162(1), 7082.Google Scholar
Mickel, T.J., Childress, J.J. (1982b). Effects of temperature, pressure, and oxygen concentration on the oxygen consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Physiological Zoology, 55(2), 199207.Google Scholar
Moore, P.G., Rainbow, P.S. (1997). Ferritin crystals in the gut caeca of a deep-sea hydrothermal vent stegocephalid (Crustacea: Amphipoda). Journal of the Marine Biological Association of UK, 77(1), 269272.Google Scholar
Morris, S., Taylor, A.C., Bridges, C.R., Grieshaber, M.K. (1985). Respiratory properties of the haemolymph of the intertidal prawn Palaemon elegans (Rathke). The Journal of Experimental Zoology 233, 175186.Google Scholar
Phleger, C.F., Nelson, M.M., Groce, A.K., et al. (2005). Lipid biomarkers of deep-sea hydrothermal vent polychaetes – Alvinella pompejana, A. caudata, Paralvinella grasslei and Hesiolyra bergi. Deep Sea Research Part I: Oceanographic Research Papers, 52(12), 23332352.Google Scholar
Piccino, P., Viard, F., Sarradin, P.-M., et al. (2004). Thermal selection of PGM allozymes in newly founded populations of the thermotolerant vent polychaete Alvinella pompejana. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1555), 23512359.Google Scholar
Prieur, D., Erauso, G., Jeanthon, C. (1995). Hyperthermophilic life at deep-sea hydrothermal vents. Planetary and Space Science, 43(1–2), 115122.Google Scholar
Projecto-Garcia, J., Zorn, N., Jollivet, D., et al. (2010). Origin and evolution of the unique tetra-domain hemoglobin from the hydrothermal vent scale-worm Branchipolynoe. Molecular Biology & Evolution, 27(1), 143152.Google Scholar
Projecto-Garcia, J., Le Port, A.-S., Govindji, T., et al. (2017). Evolution of single-domain globins in hydrothermal vent scale-worms. Journal of Molecular Evolution, 85(5–6), 172187.Google Scholar
Ravaux, J., Toullec, J.Y., Léger, N., et al. (2007). First hsp70 from two hydrothermal vent shrimps, Mirocaris fortunata and Rimicaris exoculata: characterization and sequence analysis. Gene, 386(1–2), 162172.Google Scholar
Ravaux, J., Hamel, G., Zbinden, M., et al. (2013). Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm. PLoS One, 8(5), e64074.Google Scholar
Roesijadi, G., Smith, J.S., Crecelius, E.A., Thomas, L.E. (1985). Distribution of trace metals in the hydrothermal vent clam Calyptogena magnifica. Bulletin of the Biological Society of Washington, 6, 311324.Google Scholar
Sanders, N.K., Arp, A.J., Childress, J.J. (1988). Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans. Respiration Physiology, 71, 5768.Google Scholar
Sarrazin, J., Levesque, C., Juniper, S.K., Tivey, M.K. (2002). Mosaic community dynamics on Juan de Fuca Ridge sulphide edifices: substratum, temperature and implications for trophic structure. Cahiers de Biologie Marine, 43(3/4), 275280.Google Scholar
Sell, A. (2000). Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod. Proceedings of the Royal Society of London B, 267.Google Scholar
Shillito, B., Jollivet, D., Sarradin, P.-M., et al. (2001). Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls. Marine Ecology Progress Series, 216, 141149.Google Scholar
Shin, D.S., DiDonato, M., Barondeau, D.P., et al. (2009). Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Journal of Molecular Biology, 385(5), 15341555.Google Scholar
Sicot, F.X., Mesnage, M., Masselot, M., et al. (2000). Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. Journal of Molecular Biology, 302(4), 811820.Google Scholar
Smith, F., Brown, A., Mestre, N.C., Reed, A.J., Thatje, S. (2013). Thermal adaptations in deep-sea hydrothermal vent and shallow-water shrimp. Deep-Sea Research Part II: Topical Studies in Oceanography, 92, 234239.Google Scholar
Smith, R.P., Cooper, R.C., Engen, T., et al. (1979). Hydrogen Sulfide. University Park Press, Baltimore.Google Scholar
Somero, G.N., Childress, J.J., Anderson, A.E. (1989). Transport, metabolism and detoxification of hydrogen sulphide in animals from sulphide-rich marine environments. Critical Reviews in Aquatic Sciences, 1, 591614.Google Scholar
Toulmond, A., Slitine, F.E.I., De Frescheville, J., Jouin, C. (1990). Extracellular hemoglobins of hydrothermal vent annelids: structural and functional characteristics in three alvinellid species. The Biological Bulletin, 179(3), 366373.Google Scholar
Truchot, J-P. (1992). Respiratory function of arthropod hemocyanins. In: Mangum, C.P. (ed.) Blood and Tissues Oxygen Carriers. Spinger Verlag, Berlin/Heidelberg, pp. 377410.Google Scholar
Tunnicliffe, V. (1991). The biology of hydrothermal vents: Ecology and evolution. Oceanography and Marine Biology: An Annual Review, 29, 319407.Google Scholar
Tunnicliffe, V., Desbruyères, D., Jollivet, D., Laubier, L. (1993). Systematic and ecological characteristics of Paralvinella sulfincola Desbruyères and Laubier, a new polychaete (family Alvinellidae) from northeast Pacific hydrothermal vents. Canadian Journal of Zoology, 71(2), 286297.Google Scholar
Vetter, R.D., Wells, M.E., Kurtsman, A.L., Somero, G.N. (1987). Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiological Zoology, 60, 121137.Google Scholar
Von Damm, K.L. (1995). In:Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., Thomson, R.E. (eds) Controls on the Chemistry and Temporal Variability of Seafloor Hydrothermal Fluids. Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp. 222247.Google Scholar
Weber, R.E. (1990). Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In: Truchot, J.-P. and Lahlou, B (eds) Animal Nutrition and Transport Processes. 2. Transport, Respiration and Excretion: Comparative and Environmental Aspects.Karger, Basel, pp. 5875.Google Scholar
Weber, R.E. (2000). Adaptations for oxygen transport: Lessons from fish hemoglobins. In: Di Prisco, G, Giardina, B, Weber, R.E. (eds) Hemoglobin Function in Vertebrates: Molecular Adaptation in Extreme and Temperate Environments. Springer-Verlag, Italia, Milan, pp. 2337.Google Scholar
Weber, R.E., Hourdez, S., Knowles, F., Lallier, F.H. (2003). Hemoglobin function in deep-sea and hydrothermal vent fish: Symenchelis parasitica (Anguillidae) and Thermarces cerberus (Zoarcidae). Journal of Experimental Biology, 206(15), 26932702.Google Scholar
Wilmot, D.B.J., Vetter, R.D. (1990). The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Marine Biology, 106, 273283.Google Scholar
Wohlgemuth, S.E., Arp, A.J., Bergquist, D., Julian, D. (2007). Rapid induction and disappearance of electron-dense organelles following sulfide exposure in the marine annelid Branchioasychis americana.Invertebrate Biology, 126(2), 163172.Google Scholar
Wong, Y.H., Sun, J., He, L.S., et al. (2015). High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Scientific Reports, 5, 16597.Google Scholar
Yamada, H., Miyahara, T., Sasaki, Y. (1993). Inorganic cadmium increases the frequency of chemically induced chromosome aberrations in cultured mammalian cells. Mutation Research, 302(3), 137145.Google Scholar
Zal, F., Leize, E., Lallier, F.H., et al. (1998). S-sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proceedings of the National Academy of Sciences of the USA, 95(15), 89979002.Google Scholar
Zal, F., Leize, E., Oros, D.R., et al. (2000). Haemoglobin structure and biochemical characteristics of the sulphide-binding component from the deep-sea clam Calyptogena magnifica. Cahiers de Biologie Marine, 41(4), 413423.Google Scholar
Zapata, M., Tanguy, A., David, E., Moraga, D., Riquelme, C. (2009). Transcriptomic response of Argopecten purpuratus post-larvae to copper exposure under experimental conditions. Gene, 442, 3746.Google Scholar
Zierenberg, R.A., Adams, M.W., Arp, A.J. (2000). Life in extreme environments: hydrothermal vents. Proceedings of the National Academy of Sciences of the USA, 97(24), 1296112962.Google Scholar

References

Anitori, R.P., Trott, C., Saul, D.J., Berquist, P.L., Walter, M.R. (2002). A culture-independent survey of the bacterial community in a radon hot spring. Astrobiology, 2(3), 255270.Google Scholar
Bavarnegin, E., Fathabadi, N., Vahabi Moghaddam, M., et al. (2013). Radon exhalation rate and natural radionuclide content in building materials Enigmatic Microorganisms and Life in Extreme Environments. Journal of Environmental Radioactivity, 117, 3640.Google Scholar
Beitollahi, M., Ghiassi-Nejad, M., Esmaeli, A. (2007). Radiological studies in the hot spring region of Mahallat, Central Iran. Radiation Protection Dosimetry, 123, 505508.Google Scholar
Ben-Amotz, A., Avron, M. (1983). Accumulation of metabolites by halotolerant algae and its industrial potential. Annual Review Microbiology, 37, 95119.Google Scholar
Bidigare, R.R., Ondrusek, M.E., Kennicutt, M.C. II, et al. (1993). Evidence for a photoprotective function for secondary carotenoids of snow algae. Journal of Phycology, 29, 427434.Google Scholar
Castenholz, R.W., Garcia-Pichel, F. (2000). Cyanobacterial responses to UV-radiation. In: B.A. Whitton, M. Potts (eds) Ecology of Cyanobacteria: Their Diversity in Time and Space. Springer Science+Business Media B.V.Google Scholar
Dissanayake, C.B., Chandrajith, R. (2009). Introduction to Medical Geology. Springer, the Netherlands.Google Scholar
Duval, B., Shetty, K., Thomas, W.H. (2000). Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. Journal of Applied Phycology, 11, 559566.Google Scholar
El-Gamal, H., El-Azab Farid, M., Abdel Mageed, A.I., Hasabelnaby, M., Hassanien, H.M. (2013). Assessment of natural radioactivity levels in soil samples from some areas in Assiut, Egypt. Environment Sciences Pollution Research, 20, 87008708.Google Scholar
Ghiassi-nejad, M., Mortazavi, S.M., Cameron, J.R., Niroomand-rad, A., Karam, P.A. (2002). Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Physics, 82, 8793.Google Scholar
Heidari, F., Riahi, H., Aghamiri, M.R., Shariatmadari, Z., Zakeri, F. (2017). Isolation of an efficient biosorbent of radionuclides (238U & 226Ra): green algae from high background radiation areas in Iran. Journal of Applied Phycology, 29, 2887–2898. DOI 10.1007/s10811-017–1151-1.Google Scholar
Heidari, F., Zima, J, Jr., Riahi, H., Hauer, T. (2018a). New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea Olomouc, 18(2), 137149.Google Scholar
Heidari, F., Riahi, H., Aghamiri, M.R., et al. (2018b). 226 Ra, 238U and Cd adsorption kinetics and binding capacity of two cyanobacterial strains isolated from highly radioactive springs and optimal conditions for maximal removal effects in contaminated water. International Journal of Phytoremediation, 20(4), 369377.Google Scholar
Hendry, J.H., Simon, S.L., Wojcik, A., et al. (2009). Human exposure to high natural background radiation: what can it teach us about radiation risks? Journal of Radiological Protection, 29, A29.Google Scholar
Hutchinson, F. (1985). Chemical changes induced in DNA by ionizing radiation. Progress in Nucleic Acid Research Molecular Biology, 32, 115154.Google Scholar
ICRP (1991). 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Annals of the ICRP, 21(1–3), 1201.Google Scholar
ICRP (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, 37.Google Scholar
Imlay, J.A. (2006). Iron-sulphur clusters and the problem with oxygen. Molecular Microbiology, 59(4), 10731082.Google Scholar
Jeffrey, S.W., MacTavish, H.S., Dunlap, W.C., Vesk, M., Groenewoud, K. (1999). Occurrence of UV-A- and UV-B-absorbing compounds in 152 species (206 strains) of marine microalgae. Marine Ecology Progress Services, 189, 3551.Google Scholar
Jibiri, N.N. (2001). Assessments of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria. Environmental Integrity, 21, 2126.Google Scholar
Johansen, J.R., Mareš, J., Pietrasiak, N., et al. (2017). Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLoS ONE, 12(10), e0186393.Google Scholar
Kminek, G., Bada, J.L., Pogliano, K., Ward, J.F. (2003). Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiation Research, 159, 722729.Google Scholar
Kottemann, M., Kish, A., Iloanusi, C., Bjork, S., DiRuggiero, J. (2005). Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC-1 to desiccation and gamma irradiation. Extremophiles, 9, 219227.Google Scholar
Liedert, C., Peltola, M., Bernhardt, J., Neubauer, P., Salkinoja-Salonen, P. (2012). Physiology of resistant Deinococcus geothermalis bacterium aerobically cultivated in low-manganese medium. Journal of Bacteriology, 194, 1552–1156.Google Scholar
Mancinelli, R.L., White, M.R., Rothschild, L.J. (1998). Biopan survival I: Exposure of the osmophiles Synechococcus sp. (Nägeli) and Haloarcula sp. to the space environment. Advances in Space Research, 22, 327334.Google Scholar
Mares, S. (1984). Introduction to Applied Geophysics. Springer-Science+Business Media, B.V., p. 574.Google Scholar
Matallana-Surget, S., Wattiez, R. (2013). Impact of solar radiation on gene expression in bacteria. Proteomes, 1, 7086.Google Scholar
Møller, A.P., Mousseau, T.A. (2013). The effects of natural variation in background radioactivity on humans, animals and other organisms. Biological Review, 88, 226254.Google Scholar
Mortazavi, S.M.J., Mozdarani, H. (2012). Is it time to shed some light on the black box of health policies regarding the inhabitants of the high background radiation areas of Ramsar?Iranian Journal of Radiation Research, 10, 111116.Google Scholar
Mortazavi, S.M.J., Ghiassi-Nejad, M., Beitollahi, M. (2001). Very high background radiation areas (VHBRAs) of Ramsar: Do we need any regulations to protect the inhabitants? 34th Midyear Meeting Radiation Safety and ALARA – Considerations for the 21st Century, California, USA, pp. 177182.Google Scholar
Mortazavi, S.M.J., Ghiassi-Nejad, M., Ikushima, T. (2002). Do the findings on the health effects of prolonged exposure to very high levels of natural radiation contradict current ultra conservative radiation protection regulations? International Congress Series, 1236, 1921.Google Scholar
Nikitaki, Z., Hellweg, C.E., Georgakilas, A.G., Ravanat, J.-L. (2015). Stress induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry, 3, 3555.Google Scholar
Oren, A., Gurevich, P., Anati, D.A., Barkan, E., Luz, B. (1995a). A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia, 297, 173185.Google Scholar
Pavlopoulou, A., Savva, G.D., Louka, M., et al. (2016). Adaption of Microbial Life to Environmental Extremes. Springer, ChamGoogle Scholar
Quindos, L.S., Fernandez, P.L., Soto, J., Rodenas, C. (1991). Terrestrial gamma radiation levels outdoors in Cantabria, Spain. Journal of Radiological Protection, 11, 127130.Google Scholar
Riley, P.A. (1994). Free radicals in biology: oxidative stress and the effects of ionizing radiation. International Journal of Radiation Biology, 65(1), 2733.Google Scholar
Roa, S., Chan, O., Lacap-Bugler, D. (2016). Radiation-tolerant bacteria isolated from high altitude soil in Tibet. Indian Journal of Microbiology, 56, 508–512. DOI 10.1007/s12088-016–0604-6.Google Scholar
Rothschild, L.J. (1999). Microbes and radiation. In: Seckbach, J (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, pp. 549562.Google Scholar
Saito, K., Ishigure, N., Petoussi-Henss, N., Schlattl, H. (2012). Effective dose conversion coefficients for radionuclides exponentially distributed in the ground. Radiation Environment Biophysics, 51, 411423.Google Scholar
Schnelzer, M., Hammer, G.P., Kreuzer, M., Tschense, A., Grosche, B. (2010). Accounting for smoking in the radon-related lung cancer risk among German uranium miners: results of a nested case-control study. Health Physics, 98, 2028.Google Scholar
Seckbach, J., Oren, A. (2007). Oxygenic photosynthetic microorganisms in extreme environments: possibilities and limitations. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Vol 11. Springer, pp. 325.Google Scholar
Sohrabi, M. (1994). Proceedings of the international conference on high levels of natural radiation. Radiation Measurement, 23, 261262.Google Scholar
Sohrabi, M. (2013a). Response to the letter of H. Abdollahi. Radiation Measurement, 59, 290292.Google Scholar
Sohrabi, M. (2013b). World high background natural radiation areas: need to protect public from radiation exposure. Radiation Measurements, 50, 166171.Google Scholar
Sohrabi, M. (1993). Recent Radiological Studies of High Level Natural Radiation Areas of Ramsar, International Conference on High Levels of Natural Radiation Areas. IAEA Publication Series. IAEA, Vienna/Ramsar, Iran.Google Scholar
Sohrabi, M. (1998). The state-of-the-art on worldwide studies in some environments with elevated naturally occurring radioactive materials (NORM). Applied Radiation Isotopes, 49, 169188.Google Scholar
Sohrabi, M., Babapouran, M. (2005). New public dose assessment from internal and external exposures in low-and elevated-level natural radiation areas of Ramsar, Iran. International Congress Services, 169174. Elsevier.Google Scholar
Sohrabi, M., Esmaili, A.R. (2002). New public dose assessment of elevated natural radiation areas of Ramsar (Iran) for epidemiological studies. International Congress Services, 1225, 1524.Google Scholar
Soppa, J. (2013). Evolutionary advantages of polyploidy in halophilic archaea. Biochemistry Society Transactions, 41, 339343.Google Scholar
Soppa, J. (2014). Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. Journal of Molecular Microbiology Biotechnology, 24, 409419.Google Scholar
Stadtman, E.R., Levine, R.L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3–4), 207218.Google Scholar
Stan-Lotter, H., Fendrihan, S. (2015). Halophilic archaea: life with desiccation, radiation and oligotrophy over geologic times. Life, 5, 14871496.Google Scholar
Tapias, A., Leplat, C., Confalonieri, F. (2009). Recovery of ionizing-radiation damage after high doses of gamma ray in the hyperthermophilic archaeon Thermococcus gammatolerans. Extremophiles, 13, 333334.Google Scholar
UNSCEAR (2000a). Biological Effects at Low Radiation Doses. United Nations Scientific Committee on the Effects of Atomic Radiation., New York.Google Scholar
UNSCEAR (2000b). Sources and Effects of Ionizing Radiation, Report to the General Assembly of the United Nations with Scientific Annexes. United Nations Scientific Committee on the Effects of Atomic Radiation, New York.Google Scholar
Vincent, W.F. (2000). Cyanobacterial dominance in the polar regions. Kluwer Academic Publishers, Dordrecht, pp. 591611.Google Scholar
Webb, K.M., Yu, J, Robinson, C.K., et al. (2013). Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum.Extremophiles, 17(3), 485497. • Jerry Yu • Courtney K. RobinsonGoogle Scholar
Webb, K.M., DiRuggiero, J. (2012). Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. Archaea, 2012, 111. doi:10.1155/2012/845756Google Scholar
Wei, L., Zha, Y., Tao, Z., et al. (1990). Epidemiological investigation of radiological effects in high background radiation areas of Yangjiang, China. Journal of Radiation Research, 31, 119136.Google Scholar
Westall, F., Loizeau, D., Foucher, F., et al. (2013). Habitability on Mars from a microbial point of view. Astrobiology, 13, 887889.Google Scholar
Zupunski, L., Vesna, S.J., Trobok, M., Vojin, G. (2010). Cancer risk assessment after exposure from natural radionuclides in soil using Monte Carlo techniques. Environmental Sciences Pollution Research, 17, 15741580.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×