Skip to main content Accessibility help
×
Home
Introduction to General Relativity
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 47
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

A student-friendly style, over 100 illustrations, and numerous exercises are brought together in this textbook for advanced undergraduate and beginning graduate students in physics and mathematics. Lewis Ryder develops the theory of general relativity in detail. Covering the core topics of black holes, gravitational radiation, and cosmology, he provides an overview of general relativity and its modern ramifications. The book contains chapters on gravitational radiation, cosmology, and connections between general relativity and the fundamental physics of the microworld. It explains the geometry of curved spaces and contains key solutions of Einstein's equations - the Schwarzschild and Kerr solutions. Mathematical calculations are worked out in detail, so students can develop an intuitive understanding of the subject, as well as learn how to perform calculations. The book also includes topics concerned with the relation between general relativity and other areas of fundamental physics. Selected solutions for instructors are available under Resources.

Reviews

'This superb and spirited modern introduction to Einstein’s theory of gravitation covers all of the essential topics with admirable clarity. A penetrating discussion of the basic concepts of the theory is followed by a wonderfully lucid development of the mathematical formalism using modern differential geometry. Ample illustrations and problems enhance and complement the text; moreover, a generous list of references is provided at the end of each chapter for further reading. This scholarly yet accessible textbook is highly recommended for a course on general relativity.'

Bahram Mashhoon - University of Missouri

'This book offers a lucid introduction to Einstein's theory of gravitation which is finally part of mainstream physics in many undergraduate final year options. The style is pedagogic and notable for a gentle but concise introduction to modern calculational tools in applied differential geometry along with traditional tensor calculus. The student will surely find the careful attention to detail in the many explicit computations of advanced topics (such as action principles, pseudo-tensors, gravito-magnetism and the Dirac equation in a curved space-time) of immense help in developing an understanding of general relativity. The book provides a welcome fresh approach for all students wishing to take the subject further.'

Robin Tucker - Lancaster University

'Lewis Ryder, an exceptionally fine teacher … has written a lucid account of the subject, suitable for undergraduates familiar with the special theory. In this handsomely produced volume, Ryder develops the subject from its simple principles into a mathematical edifice of unsurpassed mathematical beauty.… I would recommend anyone teaching this subject to take a look at this text, a strong candidate for the best treatment on the market.… extremely thorough and clear … this could emerge as a market leader in a crowded field.'

Source: The Times Higher Education Supplement

'This modern and inspiring textbook is highly recommended not only for a course on general relativity, but also to those who wish to learn this exciting subject by a self-study.'

Source: Annalen der Physik

'On the whole, the selection of the material and the general structure of the book is quite traditional. The two notable exceptions are the careful exposition of gravitomagnetism and the informative discussion of the gauge approach to gravity; both topics are not usually included in textbooks on general relativity … I enjoyed … reading this book [a lot]. Written with great care and accuracy in a lively and beautiful style … [it] will be undoubtedly appreciated by students, researchers and lecturers.'

Source: General Relativity and Gravitation

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Adler, R., Bazin, M. & Schiffer, M. (1975), Introduction to General Relativity (2nd edn), New York: McGraw-Hill
Aitchison, I. J. R. & Hey, A. J. G. (1982), Gauge Theories in Particle Physics, Bristol: Adam Hilger
Alpher, R. A., Bethe, H. & Gamow, G. (1948), The origin of chemical elements, Physical Review 73, 803–804
Alpher, R. A. & Herman, R. C. (1948a), Evolution of the Universe, Nature 162, 774–775
Alpher, R. A. & Herman, R. C. (1948b), On the relative abundance of the elements, Physical Review 74, 1737–1742
Anderson, J. L. (1967), Principles of Relativity Physics, New York: Academic Press
Anderson, R., Bilger, H. R. & Stedman, G. E. (1994), ‘Sagnac’ effect: a century of Earth-rotated interferometers, American Journal of Physics 62, 975–985
Arfken, G. (1970), Mathematical Methods for Physicists (2nd edn), New York: Academic Press
Arnowitt, R., Deser, S. & Misner, C. W. (1962), The dynamics of General Relativity, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: Wiley; http://arXiv.org:gr-qc/0405109
Ashcroft, N. W. & Mermin, N. D. (1976), Solid State Physics, Philadelphia: Saunders
Bacry, H. (1977), Lectures on Group Theory and Particle Theory, New York: Gordon and Breach
Bailin, D. & Love, A. (1987), Kaluza-Klein theories, Reports on Progress in Physics 50, 1087–1170
Barbashov, B. M., Pervushin, V. N. & Pawlowski, M. (2001), Time-reparametrization-invariant dynamics of relativistic systems, Элеменmарных Часmuц u Аmомноsƨо Ядра (Dubna) 32, 546
Barbour, J. B. & Pfister, H. (1995), Mach's Principle: From Newton's Bucket to Quantum Gravity, Boston: Birkhäuser
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. (1957), Theory of superconductivity, Physical Review 108, 1175–1204
Bardeen, J. M., Carter, B. & Hawking, S. W. (1973), The four laws of black hole mechanics, Communications in Mathematical Physics 31, 161–170
Barish, B. C. (2002), Gravitational waves: the new generation of laser interferometric detectors, in Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity (Gurzadyan, V. G., Jantzen, R. T. & Ruffini, R., eds), Singapore: World Scientific
Bażański, S. (1962), The problem of motion, in Recent Developments in General Relativity, Oxford: Pergamon Press, and Warszawa: PWN Polish Scientific Publishers
Bekenstein, J. D. (1980), Black-hole thermodynamics, Physics Today, January 1980, 24–31
Bergmann, P. G. (1942), Introduction to the Theory of Relativity, New York: Prentice-Hall
Berry, M. V. (1976), Principles of Cosmology and Gravitation, Cambridge: Cambridge University Press
Bethe, H. (1939), On energy generation in stars, Physical Review 55, 434–456
Bjorken, J. D. & Drell, S. D. (1964), Relativistic Quantum Mechanics, New York: McGraw-Hill
Blagojević, M. (2002), Gravitation and Gauge Symmetries, Bristol, Philadelphia: Institute of Physics Publishing
Bondi, H. (1960), Cosmology (2nd edn), Cambridge: Cambridge University Press
Bondi, H. & Samuel, J. (1997), The Lense–Thirring effect and Mach's principle, Physics Letters A 228, 121–126
Bonnor, W. B. & Steadman, B. R. (1999), The gravitomagnetic clock effect, Classical and Quantum Gravity 16, 1853–1861
Börner, G. (1988), The Early Universe: Facts and Fiction, Berlin: Springer-Verlag
Bousso, R. (2002), The holographic principle, Reviews of Modern Physics 74, 825–874; http://arXiv.org:hep-th/0203101
Boyer, R. H. & Lindquist, R. W. (1967), Maximal analytic extension of the Kerr metric, Journal of Mathematical Physics 8, 265–281
Bradaschia, C. & Desalvo, R. (2007), A global network listens for ripples in space-time, CERN Courier, December, p. 17
Brault, J. (1963), Gravitational red shift of solar lines, Bulletin of the American Physical Society 8, 28
Brill, D. B. & Cohen, J. M. (1966), Cartan frames and the general relativistic Dirac equation, Journal of Mathematical Physics 7, 238–243
Brown, L. S. (1992), Quantum Field Theory¸Cambridge: Cambridge University Press
Bruhat, Y. (1962), The Cauchy problem, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: Wiley
Burcham, W. E. & Jobes, M. (1995), Nuclear and Particle Physics, Harlow: Longman Scientific and Technical
Cao, Tian Yu (1997), Conceptual Developments of 20th Century Field Theories, Cambridge: Cambridge University Press
Carroll, B. W. & Ostlie, D. A. (1996), An Introduction to Modern Astrophysics, Reading, Massachusetts: Addison-Wesley
Cartan, E. (2001), Riemannian Geometry in an Orthogonal Frame, Singapore: World Scientific
Cartan, H. (1967, 1971), Formes Différentielles: Applications Élémentaires au Calcul et à la Théorème des Courbes et des Surfaces, Paris: Hermann (1967); Differential Forms, London: Kershaw Publishing Company (1971)
Carter, B. (1979), The general theory of the mechanical, electromagnetic and thermodynamic properties of black holes, in Hawking, S. W. & Israel, W. (eds.), General Relativity: An Einstein Centenary Survey, Cambridge: Cambridge University Press
Chandrasekhar, S. (1931a), The density of white dwarf stars, Philosophical Magazine 11, 592–596
Chandrasekhar, S. (1931b), The maximum mass of ideal white dwarfs, Astrophysical Journal 74, 81–82
Chandrasekhar, S. (1969), Some historical notes, American Journal of Physics 37, 577–584
Chandrasekhar, S. (1972), The increasing role of general relativity in astronomy, Observatory 92, 160–174
Chapman, T. C. & Leiter, D. J. (1976), On the generally covariant Dirac equation, American Journal of Physics 44, 858–862
Cheng, T-P. & Li, L-F. (1984), Gauge Theory of Elementary Particle Physics, Oxford: Clarendon Press
Choquet-Bruhat, Y. (1968), Géométrie Différentielle et Systèmes Extérieurs, Paris: Dunod
Choquet-Bruhat, Y., DeWitt-Morette, C. & Dillard-Bleick, M. (1982), Analysis, Manifolds and Physics (rev. edn), Amsterdam: North-Holland
Chow, W. W.et al. (1985), The ring laser gyro, Reviews of Modern Physics 57, 61–104
Christodoulou, D. (1970), Reversible and irreversible transformations in black hole physics, Physical Review Letters 25, 1596–1597
Ciufolini, I. (1995), Dragging of inertial frames, gravitomagnetism and Mach's Principle, in Barbour, J. B. & Pfister, H. (eds.), Mach's Principle: From Newton's Bucket to Quantum Gravity, Boston: Birkhäuser
Ciufolini, I. & Pavlis, E. C. (2004), A confirmation of the general relativistic prediction of the Lense–Thirring effect, Nature 431, 958–960
Ciufolini, I. & Wheeler, J. A. (1995), Gravitation and Inertia, Princeton: Princeton University Press
Clarke, C. J. S. (1993), The Analysis of Space-Time Singularities, Cambridge: Cambridge University Press
Cohen-Tannoudji, C., Diu, B. & Laloë, F. (1977), Mécanique Quantique, Paris: Hermann; Quantum Mechanics, New York: Wiley
Colella, R., Overhauser, A. W. & Werner, S. A. (1975), Observation of gravitationally induced quantum interference, Physical Review Letters 34, 1472–1474
Coles, P. & Ellis, G. F. R. (1997), Is the Universe Open or Closed?: The Density of Matter in the Universe, Cambridge: Cambridge University Press
Cottingham, W. N. & Greenwood, D. A. (1998), An Introduction to the Standard Model of Particle Physics, Cambridge: Cambridge University Press
Crampin, M. & Pirani, F. A. E. (1986), Applicable Differential Geometry, Cambridge: Cambridge University Press
Davis, W. R. (1970), Classical Fields, Particles, and the Theory of Relativity, New York: Gordon & Breach
Felice, F. & Clarke, C. J. S. (1990), Relativity on Curved Manifolds, Cambridge: Cambridge University Press
Wit, B. & Smith, J. (1986), Field Theory in Particle Physics, Amsterdam: North-Holland
Dicke, R. H. (1964), Experimental relativity, in DeWitt, C. & DeWitt, B. S. (eds.), Relativity, Groups and Topology, London: Blackie; New York: Gordon & Breach
d'Inverno, R. (1992), Introducing Einstein's Relativity, Oxford: Clarendon Press
Dirac, P. A. M. (2001), Lectures on Quantum Mechanics, New York: Dover Publications
Doughty, N. A. (1990), Lagrangian Interaction, Reading, Mass.: Addison-Wesley
Douglass, D. H. & Braginsky, V. B. (1979), Gravitational-radiation experiments, in Hawking, S. W. & Israel, W. (eds), General Relativity: An Einstein Centenary Survey, Cambridge: Cambridge University Press
Drever, R. W. P. (1960), A search for anisotropy of inertial mass using a free precession technique, Philosophical Magazine 6, 683–687
Eddington, A. S. (1924), Nature 113, 192
Eguchi, T., Gilkey, P. B. & Hanson, A. J. (1980), Gravitation, gauge theories and differential geometry, Physics Reports 66, 213–393
Einstein, A. (1905a), Zur Elektrodynamik bewegter Köper, Annalen der Physik 17, 891–921; translated as On the Electrodynamics of moving bodies, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 35–65, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 2, 140–171, Princeton: Princeton University Press (1989)
Einstein, A. (1905b), Ist die Trägheit eines Körpers von seinem Energie inhalt abhängig?, Annalen der Physik 18, 639–641; translated as Does the inertia of a body depend upon its energy content?, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 67–71, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 2, 172–174, Princeton: Princeton University Press (1989)
Einstein, A. (1911), Über die Einfluss der Schwerkraft auf die Ausbreitung des Lichtes, Annalen der Physik 35, 898–908; translated as On the influence of gravitation on the propagation of light, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 97–108, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 3, 379–387, Princeton: Princeton University Press (1993)
Einstein, A. (1916a), Hamiltonsches Prinzip und allgemeine Relativitätstheorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften; translated as Hamilton's Principle and the General Theory of Relativity, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, 165–173, New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 6, 240–246, Princeton: Princeton University Press (1997)
Einstein, A. (1916b), Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse688; translated as Approximative integration of the field equations of gravitation, in The Collected Papers of Albert Einstein (English transl.) 6, 201–210, Princeton: Princeton University Press (1997)
Einstein, A. (1917), Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse; translated as Cosmological considerations in the General Theory of Relativity, in Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, pp. 175–188 New York: Dover Publications; and in The Collected Papers of Albert Einstein (English transl.) 6, 421–432, Princeton: Princeton University Press (1997)
Einstein, A. (1918), Über Gravitationswellen, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse154
Einstein, A. & Rosen, N. (1933), The Particle Problem in the General Theory of Relativity, Physical Review 48, 73–77
Einstein, A. & Infeld, L. (1949), On the Motion of Particles in General Relativity Theory, Canadian Journal of Mathematics 1, 209–241
Einstein, A. & Straus, E. G. (1946), A Generalisation of the Relativistic Theory of Gravitation II, Annals of Mathematics 47, 731–741
Eisenhart, L. P. (1926), Riemannian Geometry, Princeton: Princeton University Press
Ellis, G. F. R. & Williams, R. (1988), Flat and Curved Space-times, Oxford: Clarendon Press
Everitt, C. W. F.et al. (2001), Gravity Probe B: countdown to launch, in Lämmerzahl, C., Everitt, C. W. F. & Hehl, F. W. (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Berlin: Springer-Verlag
Faber, R. L. (1983), Differential Geometry and Relativity Theory: an Introduction, New York: Dekker
Fairbank, J. D., Deaver, B. S. Jr., Everitt, C. W. F. & Michelson, P. F. (1988), Near Zero: New Frontiers of Physics, New York: Freeman
Ferreras, I., Melchiarri, A. & Silk, J. (2001), Setting new constraints on the age of the Universe, Monthly Notices of the Royal Astronomical Society 327, L47–L51
Feynman, R. P., Leighton, R. B. & Sands, M. (1963), The Feynman Lectures on Physics, vol. 1, Reading, Massachusetts: Addison-Wesley
Feynman, R. P., Leighton, R. B. & Sands, M. (1964), The Feynman Lectures on Physics, vol. 2, Reading, Massachusetts: Addison-Wesley
Feynman, R. P., Leighton, R. B. & Sands, M. (1965), The Feynman Lectures on Physics, vol. 3, Reading, Massachusetts: Addison-Wesley
Finkelstein, D. (1958), Past-future asymmetry of the gravitational field of a point particle, Physical Review 110, 965–967
Flanders, H. (1989), Differential Forms with Applications to the Physical Sciences, New York: Dover Publications
Frankel, T. (1979), Gravitational Curvature, San Francisco: Freeman
Frankel, T. (1997), The Geometry of Physics: An Introduction, Cambridge: Cambridge University Press
Freedman, W. L. (1997), Determination of the Hubble Constant, in Turok, N. (ed.), Critical Dialogues in Cosmology, Singapore: World Scientific
Friedmann, A. (1922), Über die Krümmung des Raumes, Zeitschrift für Physik 10, 377
Frolov, V. P. (1979), The Newman–Penrose method in the General Theory of Relativity, in Basov, N. G. (ed.), Problems in the General Theory of Relativity and Theory of Group Representations, New York: Consultants Bureau
Fulton, T., Rohrlich, F. & Witten, L. (1962), Conformal invariance in physics, Reviews of Modern Physics 34, 442–457
Gamow, G. (1970), My World Line, New York: Viking Press
Geroch, R. (1960), What is a singularity in general relativity?, Annals of Physics 48, 526–540
Göckeler, M. & Schücker, T. (1987), Differential Geometry, Gauge Theories, and Gravity, Cambridge: Cambridge University Press
Goldstein, H. (1950), Classical Mechanics, Reading, Massachusetts: Addison-Wesley
Gronwald, F., Gruber, E., Lichtenegger, H. I. M. & Puntigam, R. A., in Proceedings of the Alpbach Summer School 1997: Fundamental Physics in Space, organised by the Austrian and European Space Agency, ed. Wilson, A., http://arxiv:gr-qc / 9712054
Gross, F. (1993), Relativistic Quantum Mechanics and Field Theory, New York: Wiley
Gürsey, F. (1965), Group combining internal symmetries and spin, in DeWitt, C. & Jacob, M. (eds.), High Energy Physics, New York: Gordon and Breach
Guth, A. H. (1981), Inflationary Universe: A possible solution to the horizon and flatness problems, Physical Review D 23, 347–356
Guth, A. H. (2000), Inflation and eternal inflation, Physics Reports 333–334, 555–574
Hafele, J. C. & Keating, R. E. (1972), Around-the-world atomic clocks: predicted relativistic time gains, Science 177, 166–168
Hammond, R. (1994), Spin, torsion, forces, General Relativity and Gravitation 26, 247 – 263
Hammond, R. (1995), New fields in General Relativity, Contemporary Physics 36, 103–114
Harrison, E. (2000), Cosmology (2nd edn.), Cambridge: Cambridge University Press
Hartle, J. B. (1978), Bounds on the mass and moment of inertia of non-rotating neutron stars, Physics Reports 46, 201–247
Hartle, J. B. (2003), Gravity, San Francisco: Addison-Wesley
Hawking, S. W. (1971), Gravitational radiation from colliding black holes, Physical Review Letters 26, 1344
Hawking, S. W. (1975), Particle creation by black holes, Communications in Mathematical Physics, 43, 199–220; also in Isham, C. J., Penrose, R. & Sciama, D. W. (eds.), Quantum Gravity: An Oxford Symposium, Oxford: Clarendon Press
Hawking, S. W. & Ellis, G. F. R. (1973), The Large Scale Structure of Space-time, Cambridge: Cambridge University Press
Hawking, S. W. & Penrose, R. (1969), The singularities of gravitational collapse and cosmology, Proceedings of the Royal Society of London A 314, 529–548
Healey, R. (2007), Gauging What's Real, Oxford: Oxford University Press
Hehl, F. W. (1973), Spin and torsion in General Relativity I: Foundations, General Relativity and Gravitation 4, 333–349
Hehl, F. W. (1974), Spin and torsion in General Relativity II: Geometry and field equations, General Relativity and Gravitation 5, 491–516
Hehl, F. W. & der Heyde, P. (1973), Spin and the structure of space-time, Annales de l'Institut Henri Poincaré 19, 179–196
Hehl, F. W., der Heyde, P. & Kerlick, G. D. (1976), General relativity with spin and torsion: foundations and prospects, Reviews of Modern Physics 48, 393–416
Helgason, S. (1978), Differential Geometry and Symmetric Spaces (2nd edn), New York: Academic Press
Higgs, P. W. (1964a), Broken symmetries, massless particles and gauge fields, Physics Letters 12, 132–133
Higgs, P. W. (1964b), Broken symmetries and the masses of gauge bosons, Physical Review Letters 13, 508–509
Higgs, P. W. (1966), Spontaneous symmetry breakdown without massless bosons, Physical Review 145, 1156–1163
Hobson, M. P., Efstathiou, G. & Lasenby, A. N. (2006), General Relativity: An Introduction for Physicists, Cambridge: Cambridge University Press
Hoffmann, B. (1983), Relativity and Its Roots, New York: Scientific American Books – Freeman
Hogan, C. J. (1997), Big bang nucleosynthesis and the observed abundances of light elements, in Turok, N. (ed.), Critical Dialogues in Cosmology, Singapore: World Scientific
Huang, K. (1998), Quantum Field Theory: From Operators to Path Integrals, New York: Wiley
Hughes, V. W., Robinson, H. G. & Beltran-Lopez, V. (1960), Upper limit for the anisotropy of inertial mass from nuclear resonance experiments, Physical Review Letters 4, 342–344
Hulse, R. A. & Taylor, J. M. (1975), Discovery of a pulsar in a binary system, Astrophysical Journal Letters 195, L51–L53
Israel, W. (1986), Third law of black-hole dynamics: a formulation and proof, Physical Review Letters 57, 397–399
Israel, W. (1987), Dark stars: the evolution of an idea, in Hawking, S. W. & Israel, W. (eds.), Three Hundred Years of Gravitation, Cambridge: Cambridge University Press
Itzykson, C. & Zuber, J-B. (1980), Quantum Field Theory, New York: McGraw-Hill
Jackson, J. D. (1975), Classical Electrodynamics, New York: Wiley
Jammer, M. (2000), Concepts of Mass in Contemporary Physics and Philosophy, Princeton: Princeton University Press
Kaluza, T. (1921), Zum Unitätsproblem der Physik, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Sitzung der physikalisch-mathematischen Klasse966–972
Kawashima, N. (1994), The laser interferometric gravitational wave antenna: present status and future plan, Classical and Quantum Gravity 11, A83–A95
Kerr, R. P. (1963), Gravitational field of a spinning mass as an example of algebraically special metrics, Physical Review Letters 11, 237–238
Kibble, T. W. B. (1961), Lorentz invariance and the gravitational field, Journal of Mathematical Physics 2, 212–221
Kibble, T. W. B. & Berkshire, F. H. (1996), Classical Mechanics (4th edn), Harlow: Addison Wesley Longman
Kilmister, C. W. (1973), General Theory of Relativity, Oxford: Pergamon Press
Klein, O. (1926), Zeitschrift für Physik 37, 895; The atomicity of electricity as a quantum theory law, Nature 118, 516; Generalisations of Einstein's theory of gravitation considered from the point of view of quantum field theory, Helvetica Physica Acta Supplementum 4, 58–71
Kolb, E. W. & Turner, M. S. (1990), The Early Universe, Redwood City, California: Addison-Wesley
Kopczyński, W. & Trautman, A. (1992), Spacetime and Gravitation, Chichester, New York: Wiley; Warszawa: PWN Polish Scientific Publishers
Kruskal, M. D. (1960), Maximal extension of Schwarzschild metric, Physical Review 119, 1743–1745
Lämmerzahl, C. & Neugebauer, G. (2001), The Lense–Thirring effect: from the basic notions to the observed effects, in Lämmerzahl, C., Everitt, C. W. F. & Hehl, F. W. (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Berlin: Springer-Verlag
Lamoreaux, S. K.et al. (1986), New limits on spatial anisotropy from optically pumped 201Hg and 199Hg, Physical Review Letters 57, 3125–3128
Landau, L. D. & Lifshitz, E. M. (1971), The Classical Theory of Fields, Oxford: Pergamon Press
Lebach, D. E.et al. (1995), Measurements of the solar gravitational deflection of radio waves using very-long-baseline interferometry, Physical Review Letters 75, 1439–1442
Levi-Civita, T. (1927), The Absolute Differential Calculus, London: Blackie
Lichnérowicz, A. (1958), Géométrie des Groupes de Transformations, Paris: Dunod
Linde, A. (1990), Particle Physics and Inflationary Cosmology, Chur, Switzerland: Harwood Academic Publishers
Linde, A. (2000), Inflationary cosmology, Physics Reports 333–334, 575–591
Lorentz, H. A., Einstein, A., Minkowski, H. & Weyl, H. (1952), The Principle of Relativity, New York: Dover Publications
Ludvigsen, M. (1999), General Relativity: A Geometric Approach, Cambridge: Cambridge University Press
Mach, E. (1919), The Science of Mechanics (4th edn), La Salle, Illinois: Open Court
Maggiore, M. (2005), A Modern Introduction to Quantum Field Theory, Oxford: Oxford University Press
Mandl, F. (1988), Statistical Physics (2nd edn), Chichester: Wiley
Martin, D. (1991), Manifold Theory: an Introduction for Mathematical Physicists, New York: Ellis Horwood
Mashhoon, B. (1993), On the gravitational analogue of Larmor's theorem, Physics Letters A 173, 347–354
Mashhoon, B. & Santos, N. O. (2000), Rotating cylindrical systems and gravitomagnetism, Annalen der Physik 9, 49–63
Mashhoon, B., Hehl, F. W. & Theiss, D. S. (1984), On the gravitational effects of rotating masses: the Thirring–Lense papers, General Relativity and Gravitation 16, 711–750
Mashhoon, B., Gronwald, F. & Lichtenegger, H. I. M. (2001), Gravitomagnetism and the Clock Effect, in Lämmerzahl, C., Everitt, C. W. F. & Hehl, F. W. (eds.), Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space, Berlin: Springer-Verlag
McGlinn, W. D. (2003), Introduction to Relativity, Baltimore, Maryland: Johns Hopkins University Press
McVittie, G. C. (1965), General Relativity and Cosmology, Urbana, Illinois: University of Illinois Press
Mehra, J. (1973), Einstein, Hilbert and the Theory of Gravitation, in Mehra, J. (ed.), The Physicist's Conception of Nature, Dordrecht: Reidel
Misner, C. W. (1964), Differential geometry, in DeWitt, C. and DeWitt, B. S. (eds.), Relativity, Groups and Topology, London: Blackie; New York: Gordon & Breach
Misner, C. W., Thorne, K. S. & Wheeler, J. A. (1973), Gravitation, San Francisco: Freeman
Møller, C. (1972), The Theory of Relativity, Oxford: Clarendon Press
Moore, W. (1989), Schrödinger: Life and Thought, Cambridge: Cambridge University Press
Morin, D. (2007), Introduction to Classical Mechanics, Cambridge: Cambridge University Press
Mukhanov, V. (2005), Physical Foundations of Cosmology, Cambridge: Cambridge University Press
Nakahara, M. (1990), Geometry, Topology and Physics, Bristol and New York: Adam Hilger
Newman, E. T. & Janis, A. I. (1965), Note on the Kerr spinning-particle metric, Journal of Mathematical Physics 6, 915–917
Newman, E. T. & Penrose, R. (1962), An approach to gravitational radiation by a method of spin coefficients, Journal of Mathematical Physics 3, 566–578
Nieto, M. M., Hughes, R. J. & Goldman, T. (1989), Actually, Eötvös did publish his results in 1910, it's just that no-one knows about itAmerican Journal of Physics 57, 397–404
Nordstrøm, G. (1918), On the energy of the gravitational field in Einstein's theory, Proc. Kon. Ned. Akad. Wet. 20, 1238–1245
Novikov, I. D. & Frolov, V. P. (1989), Physics of Black Holes, Dordrecht: Kluwer Academic Publishers
Okun, L. B., Selivanov, K. G. & Telegdi, V. (2000), On the interpretation of the redshift in a static gravitational field, American Journal of Physics 68, 115–119
Oppenheimer, J. R. & Snyder, H. (1939), On continued gravitational contraction, Physical Review 56, 455–459
Oppenheimer, J. R. & Volkoff, G. M. (1939), On massive neutron cores, Physical Review 55, 374–381
Padmanabhan, T. (1989), Some fundamental aspects of semiclassical and quantum gravity, International Journal of Modern Physics A, 4, 4735–4818
Pais, A. (1982), Subtle is the Lord, New York: Oxford University Press
Panofsky, W. K. H. & Phillips, M. (1962), Classical Electricity and Magnetism (2nd edn), Reading, Massachusetts: Addison-Wesley
Papapetrou, A. (1974), Lectures on General Relativity, Dordrecht: Reidel Publishing Company
Pauli, W. (1958), Theory of Relativity, Oxford: Pergamon Press
Pauli, W. (1965), Continuous groups in quantum mechanics, Ergebnisse der Exakten Naturwissenschaften 37, 85–104
Peacock, J. A. (1999), Cosmological Physics, Cambridge: Cambridge University Press
Peebles, P. J. E. (1993), Principles of Physical Cosmology, Princeton: Princeton University Press
Penrose, R. (1964), Conformal treatment of infinity, in DeWitt, C. & DeWitt, B. S. (eds.), Relativity, Groups and TopologyLondon: Blackie; New York: Gordon & Breach
Penrose, R. (1965), Gravitational collapse and space-time singularities, Physical Review Letters 14, 57–59
Penrose, R. (1969), Gravitational collapse: the role of general relativity, Rivista del Nuovo Cimento 1, 252–276
Penrose, R. (1998), The question of cosmic censorship, in Wald, R. (ed.), Black Holes and Relativistic Stars, Chicago: Chicago University Press
Penrose, R. (2004), The Road to Reality, London: Jonathan Cape
Penzias, A. A. & Wilson, R. W. (1965), A measurement of excess antenna temperature at 4080 Mc/s, Astrophysical Journal 142, 419–421
Perkins, D. H. (2000), Introduction to High Energy Physics (4th edn), Cambridge: Cambridge University Press
Petrov, A. Z. (1969), Einstein Spaces, Oxford: Pergamon Press
Pirani, F. A. E. (1962a), Survey of gravitational radiation theory, in Recent Developments in General Relativity, Oxford: Pergamon Press; Warszawa: PWN Polish Scientific Publishers
Pirani, F. A. E. (1962b), Gravitational radiation, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: Wiley
Pirani, F. A. E. (1965), Introduction to gravitational radiation theory, in Trautman, A., Pirani, F. A. E. & Bondi, H.Lectures on General Relativity, (Brandeis Summer Institute 1964), Englewood Cliffs, New Jersey: Prentice-Hall
Plebański, J. & Krasiński, A. (2006), An Introduction to General Relativity and Cosmology, Cambridge: Cambridge University Press
Poisson, E. (2004), A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge: Cambridge University Press
Popper, D. M. (1954), Red shift in the spectrum of 40 Eridani B, Astrophysical Journal 120, 316–321
Post, E. J. (1967), Sagnac effect, Reviews of Modern Physics 39, 475
Pound, R. V. & Rebka, G. A. (1960), Apparent weight of photons, Physical Review Letters 4, 337–341
Pound, R. V. & Snider, J. L. (1964), Effect of gravity on nuclear resonances, Physical Review Letters 13, 539–540
Raffelt, G. G. (1996), Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions and Other Weakly Interacting Particles, Chicago: Chicago University Press
Raine, D. J. (1981), Mach's principle and space-time structure, Reports on Progress in Physics 44, 1151–1195
Rauch, H. & Werner, S. A. (2000), Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Oxford: Clarendon Press
Reissner, H. (1916), Über die Eigengravitation des elecktrischen Feldes nach der Einsteinschen Theorie, Annalen der Physik 50, 106–120
Rindler, W. (1977), Essential Relativity (2nd edn), Berlin: Springer Verlag
Rindler, W. (1994), The Lense–Thirring effect exposed as anti-Machian, Physics Letters A 187, 236–238
Rindler, W. (1997), The case against space dragging, Physics Letters A 233, 25–29
Rindler, W. (2001), Relativity, Oxford: Oxford University Press
Robertson, H. P. (1935), Kinematics and world structure, Astrophysical Journal 82, 248–301
Robertson, H. P. (1936), Kinematics and world structure, Astrophysical Journal 83, 187–201
Robertson, H. P. (1938), The apparent luminosity of a receding nebula, Zeitschrift für Astrophysik 15, 69–81
Robertson, H. P. & Noonan, T. W. (1968), Relativity and Cosmology, Philadelphia: Saunders
Roll, P. G., Krotkov, R. & Dicke, R. H. (1964), The equivalence of inertial and passive gravitational mass, Annals of Physics 26, 442–517
Roos, M. (2003), Introduction to Cosmology (3rd edn), Chichester: Wiley
Rubakov, V. (2002), Classical Theory of Gauge Fields, Princeton: Princeton University Press
Ruggiero, M. L. & Tartaglia, A. (2002), Gravitomagnetic effects, http://arXiv:gr-qc/0207065
Ryan, M. P.., & Shepley, L. C. (1975), Homogeneous Relativistic Cosmologies, Princeton: Princeton University Press
Ryder, L. H. (1996), Quantum Field Theory (2nd edn), Cambridge: Cambridge University Press
Ryder, L. H. (1999), Relativistic spin operator for Dirac particles, General Relativity and Gravitation, 31 775–780
Sachs, R. K. (1964), Gravitational radiation, in DeWitt, C. & DeWitt, B. S. (eds), Relativity, Groups and TopologyLondon: Blackie; New York: Gordon & Breach
Sagnac, G. (1913a), L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interférométre en rotation uniforme, Comptes Rendues de l'Académie des Sciences 157, 708–710
Sagnac, G. (1913b), Sur la preuve de la réalité d'éther lumineux par l'expérience de l'interférographe tournant, Comptes Rendues de l'Académie des Sciences 157, 1410–1413
Sakurai, J. J. (1994), Modern Quantum Mechanics (rev. edn), Reading, Massachusetts: Addison-Wesley
Salam, A. (1968), Weak and electromagnetic interactions, Elementary Particle Physics: Nobel Symposium No 8, (Svartholm, N., ed.), Stockholm: Almqvist Wiksell
Schiff, L. I. (1939), A question in general relativity, Proceedings of the National Academy of Sciences(USA) 25, 391–395
Schiff, L. I. (1960), Possible new experimental test of general relativity theory, Physical Review Letters 4, 215–217
Schmidt, B. G. (1971), A new definition of singular points in general relativity, General Relativity and Gravitation 1, 269–280
Schouten, J. A. (1954), Ricci-Calculus, Berlin: Springer
Schreiber, M. (1977), Differential Forms: A Heuristic Introduction, Berlin: Springer-Verlag
Schröder, U. E. (2002), Gravitation: Einführung in die Allgemeine Relativitätstheorie, Frankfurt am Main: Verlag Harri Deutsch
Schrödinger, E. (1985), Space-Time Structure, Cambridge: Cambridge University Press
Schutz, B. (1980), Geometrical Methods of Mathematical Physics, Cambridge: Cambridge University Press
Schwarzschild, K. (1916a), Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Physik-Math Klasse, 189–196
Schwarzschild, K. (1916b), Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, Physik-Math Klasse, 424–434
Sciama, D. W. (1953), On the origin of inertia, Monthly Notices of the Royal Astronomical Society 113, 34–42
Sciama, D. W. (1962), On the analogy between charge and spin in general relativity, in Recent Developments in General Relativity, Oxford: Pergamon Press; Warszawa: PWN Polish Scientific Publishers
Sciama, D. W. (1969), The Physical Foundations of General Relativity, Garden City, New York: Doubleday
Sexl, R. U. & Urbantke, H. K. (1976), Relativität, Gruppen, Teilchen, Vienna: Springer-Verlag
Sexl, R. U. & Urbantke, H. K. (1983), Gravitation und Kosmologie, Mannheim: Bibliographisches Institut
Shankar, R. (1980), Principles of Quantum Mechanics, New York: Plenum Press
Shapiro, I. L. (2002), Physical aspects of the space-time torsion, Physics Reports 357, 113–213
Skillman, E. & Kennicutt, R. C. (1993), Spatially resolved optical and near-infrared spectroscopy of 1Zw18, Astrophysical Journal 411, 655–666
Smarr, L. (1973), Mass formula for Kerr black holes, Physical Review Letters 30, 71–73
Smolin, L. (2001), Three Roads to Quantum Gravity, London: Basic Books
Soper, D. E. (1976), Classical Field Theory, New York: McGraw-Hill
Speiser, D. (1964), Theory of compact Lie groups and some applications to elementary particle physics, in Gürsey, F. (ed.), Group Theoretical Concepts and Methods in Elementary Particle Physics, New York, London: Gordon & Breach
Spergel, D. N.et al. (2003), First year Wilkinson Microware Anisotropy Probe (WMAP) observations, Astrophysical Journal Supplement 148, 175
Spivak, M. (1970), A Comprehensive Introduction to Differential Geometry, vol. I, Brandeis University
Srednicki, M. (2007), Quantum Field Theory, Cambridge: Cambridge University Press
Stedman, G. E. (1997), Ring-laser tests of fundamental physics and geophysics, Reports on Progress in Physics 60, 615–688
Stephani, H. (1982), General Relativity, Cambridge: Cambridge University Press
Stephani, H. (2004), Relativity: An Introduction to Special and General Relativity (3rd edn), Cambridge: Cambridge University Press
Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. & Herlt, E. (2003), Exact Solutions of Einstein's Field Equations (2nd edn), Cambridge: Cambridge University Press
Stoker, J. J. (1969), Differential Geometry, New York: Wiley
Straumann, N. (1991), General Relativity and Relativistic Astrophysics, Berlin: Springer-Verlag
Struik, D. J. (1961), Lectures on Classical Differential Geometry, Reading, Massachusetts: Addison-Wesley
Susskind, L. & Lindesay, J. (2005), An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe, New Jersey: World Scientific
Synge, J. L. (1964), Relativity: The General Theory, Amsterdam: North-Holland
Szekeres, G. (1960), On the singularities of a Riemannian manifold, Publ. Mat. Debrecen 7, 285–301
Tartaglia, A. (2002), General treatment of the gravitomagnetic clock effect, in Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity eds. Gurzadyan, V. G., Jantzen, R. T., Ruffini, R., Part B, p. 969, New Jersey: World Scientific
Taylor, J. C. (2001), Hidden Unity in Nature's Laws, Cambridge: Cambridge University Press
Thirring, H. & Lense, J. (1918), Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Physikalisches Zeitschrift 19 156–163
Thirring, W. (1972), Five dimensional theories and CP violation, Acta Physica Austriaca Supplementum 9, 256–271
Thomas, L. W. (1926), The motion of the spinning electron, Nature 117, 514
Thomas, L. W. (1927), The kinematics of an electron with an axis, Philosophical Magazine (7th series) 3, 1–22
't Hooft, G. (1997), In Search of the Ultimate Building Blocks, Cambridge: Cambridge University Press
Thorne, K. S. (1994), Black Holes and Time Warps, London: Picador
Thorne, K. S. (1987), Gravitational radiation, in Three Hundred Years of Gravitation, Hawking, S. W. & Israel, W. (eds.), Cambridge: Cambridge University Press
Tolman, R. C. (1939), Static solutions of Einstein's field equations for spheres of fluid, Physical Review 55, 364–373
Tonnelat, M-A. (1964), Les Vérifications Expérimentales de la Relativité Générale, Paris: Masson
Torretti, R. (1996), Relativity and Geometry, New York: Dover Publications
Trautman, A. (1973a), Spin and torsion may avert gravitational singularities, Nature Physical Science 242, 7
Trautman, A. (1973b), On the structure of the Einstein–Cartan equations, Symposia Mathematica 12, 139–162, Istituto Nazionale di Alta Matematica, Bologna
Tung, Wu-Ki (1985), Group Theory in Physics, Philadelphia, Singapore: World Scientific
Utiyama, R. (1956), Invariant interpretation of interaction, Physical Review 101, 1597–1607
Vessot, R. F. C. & Levine, M. W. (1979), A test of the equivalence principle using a space-borne clock, General Relativity and Gravitation 10, 181–204
Vessot, R. F. C.et al. (1980), Test of relativistic gravitation with a space-borne hydrogen maser, Physical Review Letters 45, 2081–2084
Wald, R. M. (1984), General Relativity, Chicago: Chicago University Press
Wald, R. M. (1994), Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago: Chicago University Press
Wald, R. M. (2001), The thermodynamics of black holes, Living Reviews in Relativity, www.livingreviews.org/Articles/Volume4/2001–6wald
Walker, A. G. (1936), On Milne's theory of world-structure, Proceedings of the London Mathematical Society 42, 90–127
Weinberg, S. (1967), A model of leptons, Physical Review Letters 19, 1264–1266
Weinberg, S. (1972), Gravitation and Cosmology, New York: Wiley
Weinberg, S. (1978), The First Three Minutes: A Modern View of the Origin of the Universe, Glasgow: Fontana/Collins
Weinberg, S. (1995), The Quantum Theory of Fields, vol. 1, Cambridge: Cambridge University Press
Weissberg, J. M. & Taylor, J. M. (1984), Observations of post-Newtonian timing effects in the binary pulsar PSR 1913+16, Physical Review Letters 52, 1348–50
Werner, S. A., Colella, R., Overhauser, A. W. & Eagen, C. F. (1975), Observation of the phase shift of a neutron due to precession in a magnetic field, Physical Review Letters 35, 1053–1055
Wess, J. (1960), The conformal invariance in quantum field theory, Il Nuovo Cimento 18, 1086–1107
Westenholtz, C. (1978), Differential Forms in Mathematical Physics, Amsterdam: North-Holland
Weyl, H. (1929), Elektron und Gravitation, Zeitschrift für Physik 56, 330–352
Weyl, H. (1950), A remark on the coupling of gravitation and electron, Physical Review 77, 699–701
Weyl, H. (1952), Space-Time-Matter, New York: Dover Publications
Wheeler, J. A. (1964), Geometrodynamics and the issue of the final state, in DeWitt, C., & DeWitt, B. S. (eds.), Relativity, Groups and Topology, London: Blackie; New York: Gordon & Breach
Wightman, A. S. (1960), L'invariance dans la mécanique quantique relativiste, in DeWitt, C. & Omnès, R. (eds.), Relations de Dispersion et Particules Elémentaires, Paris: Hermann; New York: Wiley
Wigner, E. P. (1939), On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40, 149–204
Wigner, E. P. (1964), Unitary representations of the inhomogeneous Lorentz group including reflections, in Gürsey, F. (ed.), Group Theoretical Concepts and Methods in Elementary Particle Physics, New York: Gordon and Breach
Wigner, E. P. (1967), Symmetries and Reflections: Scientific Essays, Cambridge, Massachusetts: MIT Press
Will, C. M. (1993), Theory and Experiment in Gravitational Physics, (rev. edn) Cambridge: Cambridge University Press
Will, C. M. (2001), The Confrontation between General Relativity and Experiment, gr-qc/0103036
Witten, L. (1962), A geometric theory of the electromagnetic and gravitational fields, in Witten, L. (ed.), Gravitation: An Introduction to Current Research, New York: Wiley
Yang, C. N. (1983), Selected Papers 1945–1980 With Commentary, San Francisco: Freeman
Yang, C. N. & Mills, R. L. (1954), Conservation of isotopic spin and isotopic gauge invariance, Physical Review 96, 191–195
Yourgrau, Y. & Mandelstam, S. (1968), Variational Principles in Dynamics and Quantum Theory, (3rd edn), London: Pitman
Zel'dovich, Ya. B. (1968), The cosmological constant and the theory of elementary particles, Soviet Physics Uspekhi 11, 381–393
Zel'dovich, Ya. B. & Novikov, I. D. (1996), Stars and Relativity, New York: Dover Publications

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.