Skip to main content Accessibility help
×
Home
Information Theory and Coding by Example
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This fundamental monograph introduces both the probabilistic and algebraic aspects of information theory and coding. It has evolved from the authors' years of experience teaching at the undergraduate level, including several Cambridge Maths Tripos courses. The book provides relevant background material, a wide range of worked examples and clear solutions to problems from real exam papers. It is a valuable teaching aid for undergraduate and graduate students, or for researchers and engineers who want to grasp the basic principles.

Reviews

‘This book offers a very good overview of information theory and coding issues enriched with interesting examples selected and proposed by two experienced researchers.’

Jozef Woźniak Source: Zentralblatt MATH

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] V., Anantharam, F., Baccelli. A Palm theory approach to error exponents. In Proceedings of the 2008 IEEE Symposium on Information Theory, Toronto, pp. 1768–1772, 2008.
[2] J., Adamek. Foundations of Coding: Theory and Applications of Error-Correcting Codes, with an Introduction to Cryptography and Information Theory. Chichester: Wiley, 1991.
[3] D., Applebaum. Probability and Information: An Integrated Approach. Cambridge: Cambridge University Press, 1996.
[4] R.B., Ash. Information Theory. New York: Interscience, 1965.
[5] E.F., Assmus Jr.,J.D., Key. Designs and their Codes. Cambridge: Cambridge University Press, 1992.
[6] K.A., Arwini, C.T.J., Dodson. Information Geometry: Near Randomness and Near Independence. Lecture notes in mathematics, 1953. Berlin: Springer, 2008.
[7] D., Augot, M., Stepanov. A note on the generalisation of the Guruswami-Sudan list decoding algorithm to Reed-Muller codes. In Grobner Bases, Coding, and Cryptography. RISC Book Series. Springer, Heidelberg, 2009.
[8] R.U., Ayres. Manufacturing and Human Labor as Information Processes. Laxenburg: International Institute for Applied System Analysis, 1987.
[9] A.V., Balakrishnan. Communication Theory (with contributions by J.W. Carlyle et al.). New York: McGraw-Hill, 1968.
[10] J., Baylis. Error-Correcting Codes: A Mathematical Introduction. London: Chapman & Hall, 1998.
[11] A., Betten et al. Error-Correcting Linear Codes Classification by Isometry and Applications. Berlin: Springer, 2006.
[12] T., Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression. Englewood Cliffs, NJ: Prentice-Hall, 1971.
[13] E.R., Berlekamp. A Survey of Algebraic Coding Theory. Wien: Springer, 1972.
[14] E.R., Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.
[15] J., Berstel, D., Perrin. Theory of Codes. Orlando, FL: Academic Press, 1985.
[16] J., Bierbrauer. Introduction to Coding Theory. Boca Raton, FL: Chapman & Hall/CRC, 2005.
[17] P., Billingsley. Ergodic Theory and Information. New York: Wiley, 1965.
[18] R.E., Blahut. Principles and Practice of Information Theory. Reading, MA: Addison-Wesley, 1987.
[19] R.E., Blahut. Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983. See also Algebraic Codes for Data Transmission. Cambridge: Cambridge University Press, 2003.
[20] R.E., Blahut. Algebraic Codes on Lines, Planes, and Curves. Cambridge: Cambridge University Press, 2008.
[21] I.F., Blake, R.C., Mullin. The Mathematical Theory of Coding. New York: Academic Press, 1975.
[22] I.F., Blake, R.C., Mullin. An Introduction to Algebraic and Combinatorial Coding Theory. New York: Academic Press, 1976.
[23] I.F., Blake (ed). Algebraic Coding Theory: History and Development. Stroudsburg, PA: Dowden, Hutchinson & Ross, 1973.
[24] N., Blachman. Noise and its Effect on Communication. New York: McGraw-Hill, 1966.
[25] R.C., Bose, D.K., Ray-Chaudhuri. On a class of errors, correcting binary group codes. Information and Control, 3(1), 68–79, 1960.
[26] W., Bradley, Y.M., Suhov. The entropy of famous reals: some empirical results. Random and Computational Dynamics, 5, 349–359, 1997.
[27] A.A., Bruen, M.A., Forcinito. Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century. Hoboken, NJ: Wiley-Interscience, 2005.
[28] J.A., Buchmann. Introduction to Cryptography. New York: Springer-Verlag, 2002.
[29] P.J., Cameron, J.H., van Lint. Designs, Graphs, Codes and their Links. Cambridge: Cambridge University Press, 1991.
[30] J. Castineira, Moreira, P.G., Farrell. Essentials of Error-Control Coding. Chichester: Wiley, 2006.
[31] W.G., Chambers. Basics of Communications and Coding. Oxford: Clarendon, 1985.
[32] G.J., Chaitin. The Limits of Mathematics: A Course on Information Theory and the Limits of Formal Reasoning. Singapore: Springer, 1998.
[33] G., Chaitin. Information-Theoretic Incompleteness. Singapore: World Scientific, 1992.
[34] G., Chaitin. Algorithmic Information Theory. Cambridge: Cambridge University Press, 1987.
[35] F., Conway, J., Siegelman. Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics. New York: Basic Books, 2005.
[36] T.M., Cover, J.M., Thomas. Elements of Information Theory. New York: Wiley, 2006.
[37] I., Csiszar, J., Körner. Information Theory: Coding Theorems for Discrete Memo-ryless Systems. New York: Academic Press, 1981; Budapest: Akademiai Kiado, 1981.
[38] W.B., Davenport, W.L., Root. Random Signals and Noise. New York: McGraw Hill, 1958.
[39] A., Dembo, T. M., Cover, J. A., Thomas. Information theoretic inequalities. IEEE Transactions on Information Theory, 37, (6), 1501–1518, 1991.
[40] R.L., Dobrushin. Taking the limit of the argument of entropy and information functions. Teoriya Veroyatn. Primen., 5, (1), 29–37, 1960; English translation: Theory of Probability and its Applications, 5, 25–32, 1960.
[41] F., Dyson. The Tragic Tale of a Genius. New York Review of Books, July 14, 2005.
[42] W., Ebeling. Lattices and Codes: A Course Partially Based on Lectures by F. Hirze-bruch. Braunschweig/Wiesbaden: Vieweg, 1994.
[43] N., Elkies. Excellent codes from modular curves. STOC'01: Proceedings of the 33rd Annual Symposium on Theory of Computing (Hersonissos, Crete, Greece), pp. 200–208, NY: ACM, 2001.
[44] S., Engelberg. Random Signals and Noise: A Mathematical Introduction. Boca Raton, FL: CRC/Taylor & Francis, 2007.
[45] R.M., Fano. Transmission of Information: A Statistical Theory of Communication. New York: Wiley, 1961.
[46] A., Feinstein. Foundations of Information Theory. New York: McGraw-Hill, 1958.
[47] G.D., Forney. Concatenated Codes. Cambridge, MA: MIT Press, 1966.
[48] M., Franceschetti, R., Meester. Random Networks for Communication. From Statistical Physics to Information Science. Cambridge: Cambridge University Press, 2007.
[49] R., Gallager. Information Theory and Reliable Communications. New York: Wiley, 1968.
[50] A., Gofman, M., Kelbert, Un upper bound for Kullback-Leibler divergence with a small number of outliers. Mathematical Communications, 18, (1), 75–78, 2013.
[51] S., Goldman. Information Theory. Englewood Cliffs, NJ: Prentice-Hall, 1953.
[52] C.M., Goldie, R.G.E., Pinch. Communication Theory. Cambridge: Cambridge University Press, 1991.
[53] O., Goldreich. Foundations of Cryptography, Vols 1, 2. Cambridge: Cambridge University Press, 2001, 2004.
[54] V.D., Goppa. Geometry and Codes. Dordrecht: Kluwer, 1988.
[55] S., Gravano. Introduction to Error Control Codes. Oxford: Oxford University Press, 2001.
[56] R.M., Gray. Source Coding Theory. Boston: Kluwer, 1990.
[57] R.M., Gray. Entropy and Information Theory. New York: Springer-Verlag, 1990.
[58] R.M., Gray, L.D., Davisson (eds). Ergodic and Information Theory. Stroudsburg, CA: Dowden, Hutchinson & Ross, 1977.
[59] V., Guruswami, M., Sudan. Improved decoding of Reed-Solomon codes and algebraic geometry codes. IEEE Trans. Inform. Theory, 45, (6), 1757–1767, 1999.
[60] R.W., Hamming. Coding and Information Theory. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1986.
[61] T.S., Han. Information-Spectrum Methods in Information Theory. New York: Springer-Verlag, 2002.
[62] D.R., Hankerson, G.A., Harris, P.D., Johnson Jr., Introduction to Information Theory and Data Compression. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC, 2003.
[63] D.R., Hankerson et al. Coding Theory and Cryptography: The Essentials. 2nd ed. New York: M. Dekker, 2000. (Earlier version: D. G. Hoffman et al. Coding Theory: The Essentials. New York: M. Dekker, 1991.)
[64] W.E., Hartnett. Foundations of Coding Theory. Dordrecht: Reidel, 1974.
[65] S.J., Heims. John von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death. Cambridge, MA: MIT Press, 1980.
[66] C., Helstrom. Statistical Theory of Signal Detection. 2nd ed. Oxford: Pergamon Press, 1968.
[67] C.W., Helstrom. Elements of Signal Detection and Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[68] R., Hill. A First Course in Coding Theory. Oxford: Oxford University Press, 1986.
[69] T., Ho, D.S., Lun. Network Coding: An Introduction. Cambridge: Cambridge University Press, 2008.
[70] A., Hocquenghem. Codes correcteurs d'erreurs. Chiffres, 2, 147–156, 1959.
[71] W.C., Huffman, V., Pless. Fundamentals of Error-Correcting Codes. Cambridge: Cambridge University Press, 2003.
[72] J.F., Humphreys, M.Y., Prest. Numbers, Groups, and Codes. 2nd ed. Cambridge: Cambridge University Press, 2004.
[73] S., Ihara. Information Theory for Continuous Systems. Singapore: World Scientific, 1993.
[74] F.M., Ingels. Information and Coding Theory. Scranton: Intext Educational Publishers, 1971.
[75] I.M., James. Remarkable Mathematicians. From Euler to von Neumann. Cambridge: Cambridge University Press, 2009.
[76] E.T., Jaynes. Papers on Probability, Statistics and Statistical Physics. Dordrecht: Reidel, 1982.
[77] F., Jelinek. Probabilistic Information Theory. New York: McGraw-Hill, 1968.
[78] G.A., Jones, J.M., Jones. Information and Coding Theory. London: Springer, 2000.
[79] D.S., Jones. Elementary Information Theory. Oxford: Clarendon Press, 1979.
[80] O., Johnson. Information Theory and the Central Limit Theorem. London: Imperial College Press, 2004.
[81] J., Justensen. A class of constructive asymptotically good algebraic codes. IEEE Transactions Information Theory, 18(5), 652–656, 1972.
[82] M., Kelbert, Y., Suhov. Continuity of mutual entropy in the large signal-to-noise ratio limit. In Stochastic Analysis 2010, pp. 281–299, 2010. Berlin: Springer.
[83] N., Khalatnikov. Dau, Centaurus and Others. Moscow: Fizmatlit, 2007.
[84] A.Y., Khintchin. Mathematical Foundations of Information Theory. NewYork: Dover, 1957.
[85] T., Klove. Codes for Error Detection. Singapore: World Scientific, 2007.
[86] N., Koblitz. A Course in Number Theory and Cryptography. New York: Springer, 1993.
[87] H., Krishna. Computational Complexity of Bilinear Forms: Algebraic Coding Theory and Applications of Digital Communication Systems. Lecture notes in control and information sciences, Vol. 94. Berlin: Springer-Verlag, 1987.
[88] S., Kullback. Information Theory and Statistics. New York: Wiley, 1959.
[89] S., Kullback, J.C., Keegel, J.H., Kullback. Topics in Statistical Information Theory. Berlin: Springer, 1987.
[90] H.J., Landau, H.O., Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell System Technical Journal, 64–84, 1961.
[91] H.J., Landau, H.O., Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty, III. The dimension of the space of essentially time- and band-limited signals. Bell System Technical Journal, 1295–1336, 1962.
[92] R., Lidl, H., Niederreiter. Finite Fields. Cambridge: Cambridge University Press, 1997.
[93] R., Lidl, G., Pilz. Applied Abstract Algebra. 2nd ed. New York: Wiley, 1999.
[94] E.H., Lieb. Proof of entropy conjecture of Wehrl. Commun. Math. Phys., 62,(1), 35–41, 1978.
[95] S., Lin. An Introduction to Error-Correcting Codes. Englewood Cliffs, NJ; London: Prentice-Hall, 1970.
[96] S., Lin, D.J., Costello. Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[97] S., Ling, C., Xing. Coding Theory. Cambridge: Cambridge University Press, 2004.
[98] J.H., van Lint. Introduction to Coding Theory. 3rd ed. Berlin: Springer, 1999.
[99] J.H., van Lint, G., van der Geer. Introduction to Coding Theory and Algebraic Geometry. Basel: Birkhäuser, 1988.
[100] J.C.A., van der Lubbe. Information Theory. Cambridge: Cambridge University Press, 1997.
[101] R.E., Lewand. Cryptological Mathematics. Washington, DC: Mathematical Association of America, 2000.
[102] J.A., Llewellyn. Information and Coding. Bromley: Chartwell-Bratt; Lund: Studentlitteratur, 1987.
[103] M., Loeve. Probability Theory. Princeton, NJ: van Nostrand, 1955.
[104] D.G., Luenberger. Information Science. Princeton, NJ: Princeton University Press, 2006.
[105] D.J.C., Mackay. Information Theory, Inference and Learning Algorithms. Cambridge: Cambridge University Press, 2003.
[106] H.B., Mann (ed). Error-Correcting Codes. New York: Wiley, 1969.
[107] M., Marcus. Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics. Notices of the AMS 53, (5), 574–579, 2005.
[108] A., Marshall, I., Olkin. Inequalities: Theory of Majorization and its Applications. New York: Academic Press, 1979.
[109] V.P., Maslov, A.S., Chernyi. On the minimization and maximization of entropy in various disciplines. Theory Probab. Appl. 48, (3), 447–464, 2004.
[110] F.J., MacWilliams, N.J.A., Sloane. The Theory of Error-Correcting Codes, Vols I, II. Amsterdam: North-Holland, 1977.
[111] R.J., McEliece. The Theory of Information and Coding. Reading, MA: Addison-Wesley, 1977. 2nd ed. Cambridge: Cambridge University Press, 2002.
[112] R., McEliece. The Theory of Information and Coding. Student ed. Cambridge: Cambridge University Press, 2004.
[113] A., Menon, R.M., Buecher, J.H., Read. Impact of exclusion region and spreading in spectrum-sharing ad hoc networks. ACM 1-59593-510-X/06/08, 2006.
[114] R.A., Mollin. RSA and Public-Key Cryptography. New York: Chapman & Hall, 2003.
[115] R.H., Morelos-Zaragoza. The Art of Error-Correcting Coding. 2nd ed. Chichester: Wiley, 2006.
[116] G.L., Mullen, C., Mummert. Finite Fields and Applications. Providence, RI: American Mathematical Society, 2007.
[117] A., Myasnikov, V., Shpilrain, A., Ushakov. Group-Based Cryptography. Basel: Birkhauser, 2008.
[118] G., Nebe, E.M., Rains, N.J.A., Sloane. Self-Dual Codes and Invariant Theory. New York: Springer, 2006.
[119] H., Niederreiter, C., Xing. Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge: Cambridge University Press, 2001.
[120] W.W., Peterson, E.J., Weldon. Error-Correcting Codes. 2nd ed. Cambridge, MA: MIT Press, 1972. (Previous ed. W.W. Peterson. Error-Correcting Codes. Cambridge, MA: MIT Press, 1961.)
[121] M.S., Pinsker. Information and Information Stability of Random Variables and Processes. San Francisco: Holden-Day, 1964.
[122] V., Pless. Introduction to the Theory of Error-Correcting Codes. 2nd ed. New York: Wiley, 1989.
[123] V.S., Pless, W.C., Huffman (eds). Handbook of Coding Theory, Vols 1, 2. Amsterdam: Elsevier, 1998.
[124] P., Piret. Convolutional Codes: An Algebraic Approach. Cambridge, MA: MIT Press, 1988.
[125] O., Pretzel. Error-Correcting Codes and Finite Fields. Oxford: Clarendon Press, 1992; Student ed. 1996.
[126] T.R.N., Rao. Error Coding for Arithmetic Processors. New York: Academic Press, 1974.
[127] M., Reed, B., Simon. Methods of Modern Mathematical Physics, Vol. II. Fourier analysis, self-adjointness. New York: Academic Press, 1975.
[128] A., Rényi. A Diary on Information Theory. Chichester: Wiley, 1987; initially published Budapest: Akad'emiai Kiadó, 1984.
[129] F.M., Reza. An Introduction to Information Theory. New York: Constable, 1994.
[130] S., Roman. Coding and Information Theory. New York: Springer, 1992.
[131] S., Roman. Field Theory. 2nd ed. New York: Springer, 2006.
[132] T., Richardson, R., Urbanke. Modern Coding Theory. Cambridge: Cambridge University Press, 2008.
[133] R.M., Roth. Introduction to Coding Theory. Cambridge: Cambridge University Press, 2006.
[134] B., Ryabko, A., Fionov. Basics of Contemporary Cryptography for IT Practitioners. Singapore: World Scientific, 2005.
[135] W.E., Ryan, S., Lin. Channel Codes: Classical and Modern. Cambridge: Cambridge University Press, 2009.
[136] T., Schürmann, P., Grassberger. Entropy estimation of symbol sequences. Chaos, 6, (3), 414–427, 1996.
[137] P., Seibt. Algorithmic Information Theory: Mathematics of Digital Information Processing. Berlin: Springer, 2006.
[138] C.E., Shannon. A mathematical theory of cryptography. Bell Lab. Tech. Memo., 1945.
[139] C.E., Shannon. A mathematical theory of communication. Bell System Technical Journal, 27, July, October, 379-423, 623–658, 1948.
[140] C.E., Shannon: Collected Papers. N.J.A., Sloane, A.D., Wyner (eds). New York: IEEE Press, 1993.
[141] C.E., Shannon, W., Weaver. The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press, 1949.
[142] P.C., Shields. The Ergodic Theory of Discrete Sample Paths. Providence, RI: American Mathematical Society, 1996.
[143] M.S., Shrikhande, S.S., Sane. Quasi-Symmetric Designs. Cambridge: Cambridge University Press, 1991.
[144] S., Simic. Best possible global bounds for Jensen functionals. Proc. AMS, 138,(7), 2457–2462, 2010.
[145] A., Sinkov. Elementary Cryptanalysis: A Mathematical Approach. 2nd ed. revised and updated by T. Feil. Washington, DC: Mathematical Association of America, 2009.
[146] D., Slepian, H.O., Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty, Vol. I. Bell System Technical Journal, 43–64, 1961.
[147] W., Stallings. Cryptography and Network Security: Principles and Practice. 5th ed. Boston, MA: Prentice Hall; London: Pearson Education, 2011.
[148] H., Stichtenoth. Algebraic Function Fields and Codes. Berlin: Springer, 1993.
[149] D.R., Stinson. Cryptography: Theory and Practice. 2nd ed. Boca Raton, FL; London: Chapman & Hall/CRC, 2002.
[150] D., Stoyan, W.S., Kendall. J., Mecke. Stochastic Geometry and its Applications. Berlin: Academie-Verlag, 1987.
[151] C., Schlegel, L., Perez. Trellis and Turbo Coding. New York: Wiley, 2004.
[152] š., šujan. Ergodic Theory, Entropy and Coding Problems of Information Theory. Praha: Academia, 1983.
[153] P., Sweeney. Error Control Coding: An Introduction. New York: Prentice Hall, 1991.
[154] Te Sun, Han, K., Kobayashi. Mathematics of Information and Coding. Providence, RI: American Mathematical Society, 2002.
[155] T.M., Thompson. From Error-Correcting Codes through Sphere Packings to Simple Groups. Washington, DC: Mathematical Association of America, 1983.
[156] R., Togneri, C.J.S., deSilva. Fundamentals of Information Theory and Coding Design. Boca Raton, FL: Chapman & Hall/CRC, 2002.
[157] W., Trappe, L.C., Washington. Introduction to Cryptography: With Coding Theory. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006.
[158] M.A., Tsfasman, S.G., Vladut. Algebraic-Geometric Codes. Dordrecht: Kluwer Academic, 1991.
[159] M., Tsfasman, S., Vlǎadut, T., Zink. Modular curves, Shimura curves and Goppa codes, better than Varshamov-Gilbert bound. Mathematics Nachrichten, 109, 21–28, 1982.
[160] M., Tsfasman, S., Vlǎadut, D., Nogin. Algebraic Geometric Codes: Basic Notions. Providence, RI: American Mathematical Society, 2007.
[161] M.J., Usher. Information Theory for Information Technologists. London: Macmillan, 1984.
[162] M.J., Usher, C.G., Guy. Information and Communication for Engineers. Basingstoke: Macmillan, 1997
[163] I., Vajda. Theory of Statistical Inference and Information. Dordrecht: Kluwer, 1989.
[164] S., Verdu. Multiuser Detection. New York: Cambridge University Press, 1998.
[165] S., Verdu, D., Guo. A simple proof of the entropy-power inequality. IEEE Trans. Inform. Theory, 52, (5), 2165–2166, 2006.
[166] L.R., Vermani. Elements of Algebraic Coding Theory. London: Chapman & Hall, 1996.
[167] B., Vucetic, J., Yuan. Turbo Codes: Principles and Applications. Norwell, MA: Kluwer, 2000.
[168] G., Wade. Coding Techniques: An Introduction to Compression and Error Control. Basingstoke: Palgrave, 2000.
[169] J.L., Walker. Codes and Curves. Providence, RI: American Mathematical Society, 2000.
[170] D., Welsh. Codes and Cryptography. Oxford, Oxford University Press, 1988.
[171] N., Wiener. Cybernetics or Control and Communication in Animal and Machine. Cambridge, MA: MIT Press, 1948; 2nd ed: 1961, 1962.
[172] J., Wolfowitz. Coding Theorems of Information Theory. Berlin: Springer, 1961; 3rd ed: 1978.
[173] A.D., Wyner. The capacity of the band-limited Gaussian channel. Bell System Technical Journal, 359–395, 1996.
[174] A.D., Wyner. The capacity of the product of channels. Information and Control, 423–433, 1966.
[175] C., Xing. Nonlinear codes from algebraic curves beating the Tsfasman-Vladut-Zink bound. IEEE Transactions Information Theory, 49, 1653–1657, 2003.
[176] A.M., Yaglom, I.M., Yaglom. Probability and Information. Dordrecht, Holland: Reidel, 1983.
[177] R., Yeung. A First Course in Information Theory. Boston: Kluwer Academic, 1992; 2nd ed. New York: Kluwer, 2002.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.