Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T05:10:47.207Z Has data issue: false hasContentIssue false

3 - Bees – The Experimental Umwelt of Honeybees

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Honeybees live both a social life inside of their colony and a life as individuals when foraging. Their cognitive faculties become apparent in their individual life as foragers for provision and information. Identifying them as individuals has crucially allowed studying learning and memory formation under natural conditions and in the laboratory, thus tracing the history of individuals’ experience. Although here I mainly focus on behavioural studies, bees also lend themselves to neurophysiological studies, because of their rather small brains, the excessibility of single neurons and networks, and their robustness. Training experiments reveal that bees perform rather complex tasks (e.g. learning rules, generalization and abstraction, delayed matching to sample, what, when and where tasks). Exploratory learning leads to navigation based on a memory structure, which can be best conceptualized as cognitive maps. Social communication through waggle dance is embedded in this rich spatial memory, allowing bees to choose between alternatives on the base of the expected outcome. While reviewing existing literature on bees’ umwelt and cognition, I will provide practical tips and suggestions on how to best test cognitive skills in these fascinating insects.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 60 - 75
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amrein, I., Becker, A. S., Engler, S., et al. (2014). Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species. Frontiers in Neuroanatomy, 8, 39.CrossRefGoogle ScholarPubMed
Clarke, F. M., and Faulkes, C. G. (1997). Dominance and queen succession in captive colonies of the eusocial naked mole-rat, Heterocephalus glaber. Proceedings of the Royal Society of London B, 264, 9931000.CrossRefGoogle ScholarPubMed
Faulkes, C. G., and Bennett, N. C. (2013). Plasticity and constraints on social evolution in African mole-rats: ultimate and proximate factors. Philosophical Transactions of the Royal Society B, 368, 1618.CrossRefGoogle ScholarPubMed
Jarvis, J. U. M. (1981). Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science, 212, 571573.CrossRefGoogle Scholar
Judd, T. M., and Sherman, P. W. (1996). Naked mole-rats recruit colony mates to food sources. Animal Behaviour, 52, 957969.CrossRefGoogle Scholar
Toora, I., Clement, D., Carlson, E. N., and Holmes, M. M. (2015). Olfaction and social cognition in eusocial naked mole-rats, Heterocephalus glaber. Animal Behaviour, 107, 175181.CrossRefGoogle Scholar

References

Avargues-Weber, A., Deisig, N., and Giurfa, M. (2011). Visual cognition in social insects. Annual Review of Entomology, 56, 423443.CrossRefGoogle ScholarPubMed
Becker, L. (1958). Untersuchungen über das Heimfindevermögen der Bienen. Zeitschrift für Vergleichende Physiologie, 41, 125.CrossRefGoogle Scholar
Birke, L. I., and Archer, J. (1983). Some issues and problems in the study of animal exploration. In Exploration in animals and humans (pp. 121). London: Van Nostrand Reinhold Co. Ltd.Google Scholar
Bloch, G., Solomon, S. M., Robinson, G. E., and Fahrbach, S. E. (2003). Patterns of PERIOD and pigment-dispersing hormone immunoreactivity in the brain of the European honeybee (Apis mellifera): age- and time-related plasticity. Journal of Comparative Neurology, 464, 269284.CrossRefGoogle ScholarPubMed
Cheeseman, J. F., Millar, C. D., Greggers, U., et al. (2014). Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proceedings of the National Academy of Sciences, 111, 89498954.CrossRefGoogle ScholarPubMed
Cheung, A., Collett, M., Collett, T. S., et al. (2014). Still no convincing evidence for cognitive map use by honeybees. Proceedings of the National Academy of Sciences, 111, 43964397.CrossRefGoogle ScholarPubMed
Chittka, L., Gumbert, A., and Kunze, J. (1997). Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behavioral Ecology, 8, 239249.CrossRefGoogle Scholar
Collett, T. S., and Graham, P. (2004). Animal navigation: path integration, visual landmarks and cognitive maps. Current Biology, 14, 475477.CrossRefGoogle ScholarPubMed
Degen, J., Kirbach, A., Reiter, L., et al. (2015). Exploratory behaviour of honeybees during orientation flights. Animal Behaviour, 102, 4557.CrossRefGoogle Scholar
Degen, J., Kirbach, A., Reiter, L., et al. (2016). Honeybees learn landscape features during exploratory orientation flights. Current Biology, 26, 28002804.CrossRefGoogle ScholarPubMed
Filla, I., and Menzel, R. (2015). Mushroom body extrinsic neurons in the honeybee (Apis mellifera) brain integrate context and cue values upon attentional stimulus selection. Journal of Neurophysiology, 114, 20052014.CrossRefGoogle ScholarPubMed
Gahl, R. A. (1975). The shaking dance of honey bee workers: evidence for age discrimination. Animal Behaviour, 23, 230232.CrossRefGoogle Scholar
Gerber, B., and Smith, B. H. (1998). Visual modulation of olfactory learning in honeybees. Journal of Experimental Biology, 201, 22132217.CrossRefGoogle ScholarPubMed
Getz, W. M., Brückner, D., and Smith, K. B. (1986). Conditioning honeybees to discriminate between heritable odors from full and half-sisters. Journal of Comparative Physiology A, 159, 251256.CrossRefGoogle Scholar
Giurfa, M. (2003). Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Current Opinion in Neurobiology, 13, 726735.CrossRefGoogle Scholar
Giurfa, M., Eichmann, B., and Menzel, R. (1996). Symmetry perception in an insect. Nature, 382, 458461.CrossRefGoogle ScholarPubMed
Giurfa, M., Zhang, S. W., Jenett, A., Menzel, R., and Srinivasan, M. V. (2001). The concepts of ‘sameness’ and ‘difference’ in an insect. Nature, 410, 930933.CrossRefGoogle ScholarPubMed
Greggers, U., and Menzel, R. (1993). Memory dynamics and foraging strategies of honeybees. Behavioral Ecology and Sociobiology, 32, 1729.CrossRefGoogle Scholar
Guerrieri, F., Lachnit, H., Gerber, B., and Giurfa, M. (2005). Olfactory blocking and odorant similarity in the honeybee. Learning & Memory, 12, 8695.CrossRefGoogle ScholarPubMed
Hammer, M. (1997). The neural basis of associative reward learning in honeybees. Trends in Neurosciences, 20, 245252.CrossRefGoogle ScholarPubMed
Hempel de Ibarra, N., Giurfa, M., and Vorobyev, M. V. (2002). Discrimination of coloured patterns by honeybees through chromatic and achromatic cues. Journal of Comparative Physiology A, 188, 503512.CrossRefGoogle ScholarPubMed
Hussaini, S. A., and Menzel, R. (2013). Mushroom body extrinsic neurons in the honeybee brain encode cues and context differently. Journal of Neuroscience, 33, 71547164.CrossRefGoogle ScholarPubMed
Lehrer, M. (1993). Why do bees turn back and look? Journal of Comparative Physiology A, 172, 549563.CrossRefGoogle Scholar
Matsumoto, Y., Menzel, R., Sandoz, J. C., and Giurfa, M. (2012). Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. Journal of Neuroscience Methods, 211, 159167.CrossRefGoogle Scholar
Menzel, R. (1999). Memory dynamics in the honeybee. Journal of Comparative Physiology A, 185, 323340.CrossRefGoogle Scholar
Menzel, R. (2001). Searching for the memory trace in a mini-brain, the honeybee. Learning & Memory, 8, 5362.CrossRefGoogle Scholar
Menzel, R. (2012). The honeybee as a model for understanding the basis of cognition. Nature Reviews Neuroscience, 13, 758768.CrossRefGoogle Scholar
Menzel, R. (2014). The insect mushroom body, an experience-dependent recoding device. Journal of Physiology, 108, 8495.Google ScholarPubMed
Menzel, R. (2017). Navigation and communication in insects. In Learning and memory: a comprehensive reference (pp. 389405). Elsevier.CrossRefGoogle Scholar
Menzel, R., and Bitterman, M. E. (1983). Learning by honey bees in an unnatural situation. In Neuroethology and behavioral physiology: roots and growing points (pp. 206215). Berlin: Springer.CrossRefGoogle Scholar
Menzel, R., and Müller, U. (1996). Learning and memory in honeybees: from behavior to neural substrates. Annual Review of Neuroscience, 19, 379404.CrossRefGoogle ScholarPubMed
Menzel, R., Greggers, U., Smith, A., et al. (2005). Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences, 102, 30403045.CrossRefGoogle ScholarPubMed
Menzel, R., Kirbach, A., Haass, W. D., et al. (2011). A common frame of reference for learned and communicated vectors in honeybee navigation. Current Biology, 21, 645650.CrossRefGoogle ScholarPubMed
Menzel, R., Lehmann, K., Manz, G., Fuchs, J., and Kobolofsky, M. G. (2012). Vector integration and novel shortcutting in honeybee navigation. Apidologie, 43, 229243.CrossRefGoogle Scholar
Opfinger, E. (1931). Über die Orientierung der Biene an der Futterquelle. Zeitschrift für Vergleichende Physiologie, 15, 432487.CrossRefGoogle Scholar
Osborne, J. L., Williams, I. H., Carreck, N. L., et al. (1997). Harmonic radar: a new technique for investigating bumblebee and honeybee foraging flight. Proceedings of the International Symposium on Pollination, Acta Horticulturae, 437, 163.Google Scholar
Plettner, E., Slessor, K. N., Winston, M. L., Robinson, G. E., and Page, R. E. Jr. (1993). Mandibular gland components and ovarian development as measures of caste differentiation in the honey bee (Apis mellifera). Journal of Insect Physiology, 39, 235240.CrossRefGoogle Scholar
Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R., and Menzel, R. (2005). The flight paths of honeybees recruited by the waggle dance. Nature, 435, 205207.CrossRefGoogle ScholarPubMed
Robinson, G. E., and Page, R. E. Jr. (1989). Genetic determination of nectar foraging, pollen foraging, and nest-site scouting in honey bee colonies. Behavioral Ecology and Sociobiology, 24, 317323.CrossRefGoogle Scholar
Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., and Marshall, J. A. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science, 335, 108111.CrossRefGoogle ScholarPubMed
Stürzl, W., Zeil, J., Boeddeker, N., and Hemmi, J. M. (2016). How wasps acquire and use views for homing. Current Biology, 26, 470482.CrossRefGoogle ScholarPubMed
Tibbetts, E. A. (2002). Visual signals of individual identity in the wasp Polistes fuscatus. Proceedings of the Royal Society of London B: Biological Sciences, 269, 14231428.CrossRefGoogle ScholarPubMed
Tibbetts, E. A., and Dale, J. (2004). A socially enforced signal of quality in a paper wasp. Nature, 432, 218222.CrossRefGoogle Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189208.CrossRefGoogle ScholarPubMed
Vollbehr, J. (1975). Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zoologische Jahrbücher Physiologie, 79, 3369.Google Scholar
von Frisch, K. (1914). Der Farbensinn und Formensinn der Biene. Zoologische Jahrbücher Physiologie, 37, 1238.Google Scholar
von Frisch, K. (1921). Über den Sitz des Geruchssinnes bei Insekten. Zoologische Jahrbücher Physiologie, 38, 168.Google Scholar
von Frisch, K. (1922). Methoden sinnesphysiologischer und psychologischer Untersuchungen an Bienen. In Handbuch der biologischen Arbeitsmethoden (Abt. VI, Teil D, E). Urban und Schwarzenberg.Google Scholar
von Frisch, K. (1967). The dance language and orientation of bees. Cambridge, MA: Harvard University Press.Google Scholar
Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B., and Menzel, R. (2001). Colour thresholds and receptor noise: behaviour and physiology compared. Vision Research, 41, 639653.CrossRefGoogle ScholarPubMed
Werner, A., Menzel, R., and Wehrhahn, C. (1988). Color constancy in the honeybee. Journal of Neuroscience, 8, 156159.CrossRefGoogle ScholarPubMed
Wiener, J., Shettleworth, S., Bingman, V. P., et al. (2011). Animal navigation: a synthesis. In Animal thinking: contemporary issues in comparative cognition (pp. 5178). Cambridge, MA: MIT Press.Google Scholar
Wilson, E. O. (1971). The insect societies. Cambridge, MA: Harvard University Press.Google Scholar
Zeil, J. (2012). Visual homing: an insect perspective. Current Opinion in Neurobiology, 22, 285293.CrossRefGoogle ScholarPubMed
Zhang, S. W., Bock, F., Si, A., Tautz, J., and Srinivasan, M. V. (2005). Visual working memory in decision making by honey bees. Proceedings of the National Academy of Sciences, 102, 52505255.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×