Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T23:15:53.963Z Has data issue: false hasContentIssue false

Chapter 16 - Lung Growth Through the “Life Course” and Predictors and Determinants of Chronic Respiratory Disorders

Published online by Cambridge University Press:  05 April 2016

Alan H. Jobe
Affiliation:
University of Cincinnati
Jeffrey A. Whitsett
Affiliation:
Cincinnati Children’s Hospital
Steven H. Abman
Affiliation:
University of Colorado School of Medicine
Get access

Summary

Abstract

Strong observational and experimental evidence indicates that lung growth during fetal and early postnatal life is one of the strongest determinants of adult lung function. Genetic variation plays a critical role in determining maximal lung function reached in adult life. Factors that affect lung growth such as extreme prematurity with bronchopulmonary dysplasia, intrauterine growth retardation, exposure to tobacco smoke in utero and postnatally, and vitamin A and D deficiencies also play varying roles in determining lung function. However, catch-up growth seems to be able to reverse at least in part the negative effects of some of these conditions. Individuals who reach early adult life with lower levels of lung function are at increased risk of developing chronic obstructive pulmonary disease during the decline phase of lung function, after the third decade of life, and may also be more susceptible to the deleterious effects of active cigarette smoking.

Type
Chapter
Information
Fetal and Neonatal Lung Development
Clinical Correlates and Technologies for the Future
, pp. 286 - 302
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Criner, GJ, Bourbeau, J, Diekemper, RL, et al. Executive summary: prevention of acute exacerbation of Chronic Obstructive Pulmonary Disease: American College of Chest Physicians and Canadian Thoracic Society Guideline. Chest. 2014. Epub 2014/10/17. doi: 10.1378/chest.14–1677. PubMed PMID: 25320966.CrossRefGoogle Scholar
Mannino, DM, Homa, DM, Akinbami, LJ, Ford, ES, Redd, SC. Chronic obstructive pulmonary disease surveillance–United States, 1971–2000. MMWR Surveill Summ. 2002;51(6):116. Epub 2002/08/30. PubMed PMID: 12198919.Google ScholarPubMed
Vestbo, J, Hurd, SS, Agusti, AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347365. Epub 2012/08/11. doi: 10.1164/rccm.201204-0596PP. PubMed PMID: 22878278.CrossRefGoogle ScholarPubMed
Haland, G, Carlsen, KC, Sandvik, L, et al. Reduced lung function at birth and the risk of asthma at 10 years of age. N Engl J Med. 2006;355(16):16821689. Epub 2006/10/20. doi: 10.1056/NEJMoa052885. PubMed PMID: 17050892.CrossRefGoogle Scholar
Moorman, JE, Zahran, H, Truman, BI, Molla, MT. Current asthma prevalence-United States, 2006-2008. MMWR Surveill Summ. 2011;60 Suppl:8486. Epub 2011/03/25. PubMed PMID: 21430629.Google ScholarPubMed
Sears, MR, Greene, JM, Willan, AR, et al. A longitudinal, population-based, cohort study of childhood asthma followed to adulthood. N Engl J Med. 2003;349(15):14141422. Epub 2003/10/10. doi: 10.1056/NEJMoa022363. PubMed PMID: 14534334.CrossRefGoogle ScholarPubMed
Tai, A, Tran, H, Roberts, M, Clarke, N, Wilson, J, Robertson, CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69(9):805810. Epub 2014/03/22. doi: 10.1136/thoraxjnl-2013-204815. PubMed PMID: 24646659.CrossRefGoogle ScholarPubMed
Turner, SW, Palmer, LJ, Rye, PJ, et al. The relationship between infant airway function, childhood airway responsiveness, and asthma. Am J Respir Crit Care Med. 2004;169(8):921927. Epub 2004/02/07. doi: 10.1164/rccm.200307–891OC. PubMed PMID: 14764431.CrossRefGoogle ScholarPubMed
Morgan, WJ, Stern, DA, Sherrill, DL, et al. Outcome of asthma and wheezing in the first 6 years of life: follow-up through adolescence. Am J Respir Crit Care Med. 2005;172(10):12531258. Epub 2005/08/20. doi: 10.1164/rccm.200504–525OC. PubMed PMID: 16109980; PubMed Central PMCID: PMC2718414.CrossRefGoogle ScholarPubMed
Bisgaard, H, Jensen, SM, Bonnelykke, K. Interaction between asthma and lung function growth in early life. Am J Respir Crit Care Med. 2012;185(11):11831189. Epub 2012/03/31. doi: 10.1164/rccm.201110-1922OC. PubMed PMID: 22461370.CrossRefGoogle ScholarPubMed
Strunk, RC, Weiss, ST, Yates, KP, Tonascia, J, Zeiger, RS, Szefler, SJ. Mild to moderate asthma affects lung growth in children and adolescents. J Allergy Clin Immunol. 2006;118(5):10401047. Epub 2006/11/08. doi: 10.1016/j.jaci.2006.07.053. PubMed PMID: 17088127.CrossRefGoogle ScholarPubMed
Martinez, FD, Wright, AL, Taussig, LM, Holberg, CJ, Halonen, M, Morgan, WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332(3):133138. Epub 1995/01/19. doi: 10.1056/NEJM199501193320301. PubMed PMID: 7800004.CrossRefGoogle Scholar
McKay, KO, Hogg, JC. The contribution of airway structure to early childhood asthma. Med J Aust. 2002;177 Suppl:S4547. Epub 2002/09/13. PubMed PMID: 12225256.CrossRefGoogle ScholarPubMed
Wang, X, Dockery, DW, Wypij, D, et al. Pulmonary function growth velocity in children 6 to 18 years of age. Am Rev Respir Dis. 1993;148(6 Pt 1):15021508. Epub 1993/12/01. doi: 10.1164/ajrccm/148.6_Pt_1.1502. PubMed PMID: 8256891.CrossRefGoogle ScholarPubMed
Stern, DA, Morgan, WJ, Wright, AL, Guerra, S, Martinez, FD. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study. Lancet. 2007;370(9589):758764. Epub 2007/09/04. doi: 10.1016/S0140-6736(07)61379–8. PubMed PMID: 17765525; PubMed Central PMCID: PMC2831283.CrossRefGoogle Scholar
Vestbo, J, Edwards, LD, Scanlon, PD, et al. Changes in forced expiratory volume in 1 second over time in COPD. New Engl J Med. 2011;365(13):11841192. Epub 2011/10/14. doi: 10.1056/NEJMoa1105482. PubMed PMID: 21991892.CrossRefGoogle ScholarPubMed
Klimentidis, YC, Vazquez, AI, de Los Campos, G, Allison, DB, Dransfield, MT, Thannickal, VJ. Heritability of pulmonary function estimated from pedigree and whole-genome markers. Front Genet. 2013;4:174. Epub 2013/09/24. doi: 10.3389/fgene.2013.00174. PubMed PMID: 24058366; PubMed Central PMCID: PMC3766834.CrossRefGoogle ScholarPubMed
Hancock, DB, Eijgelsheim, M, Wilk, JB, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet. 2010;42(1):4552. Epub 2009/12/17. doi: 10.1038/ng.500. PubMed PMID: 20010835; PubMed Central PMCID: PMC2832852.CrossRefGoogle ScholarPubMed
Zhao, J, Li, M, Bradfield, JP, et al. The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med Genet. 2010;11:96. Epub 2010/06/16. doi: 10.1186/1471–2350-11–96. PubMed PMID: 20546612; PubMed Central PMCID: PMC2894790.CrossRefGoogle ScholarPubMed
Repapi, E, Sayers, I, Wain, LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):3644. Epub 2009/12/17. doi: 10.1038/ng.501. PubMed PMID: 20010834; PubMed Central PMCID: PMC2862965.CrossRefGoogle ScholarPubMed
Soler Artigas, M, Loth, DW, Wain, LV, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011;43(11):10821090. Epub 2011/09/29. doi: 10.1038/ng.941. PubMed PMID: 21946350; PubMed Central PMCID: PMC3267376.CrossRefGoogle ScholarPubMed
Kreiner-Moller, E, Bisgaard, H, Bonnelykke, K. Prenatal and postnatal genetic influence on lung function development. J Allergy Clin Immunol. 2014. Epub 2014/05/27. doi: 10.1016/j.jaci.2014.04.003. PubMed PMID: 24857373.CrossRefGoogle Scholar
Galambos, C, Ng, YS, Ali, A, et al. Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol. 2002;27(2):194203. Epub 2002/08/02. doi: 10.1165/ajrcmb.27.2.4703. PubMed PMID: 12151311.CrossRefGoogle ScholarPubMed
Akeson, AL, Cameron, JE, Le Cras, TD, Whitsett, JA, Greenberg, JM. Vascular endothelial growth factor-A induces prenatal neovascularization and alters bronchial development in mice. Pediatr Res. 2005;57(1):8288. Epub 2004/11/24. doi: 10.1203/01.PDR.0000148070.89006.3F. PubMed PMID: 15557114.CrossRefGoogle ScholarPubMed
Simpson, A, Custovic, A, Tepper, R, et al. Genetic variation in vascular endothelial growth factor-a and lung function. Am J Respir Crit Care Med. 2012;185(11):11971204. Epub 2012/03/31. doi: 10.1164/rccm.201112–2191OC. PubMed PMID: 22461367; PubMed Central PMCID: PMC3373065.CrossRefGoogle ScholarPubMed
Northway, WH Jr, Moss, RB, Carlisle, KB, et al. Late pulmonary sequelae of bronchopulmonary dysplasia. New Engl J Med. 1990;323(26):17931799. Epub 1990/12/27. doi: 10.1056/NEJM199012273232603. PubMed PMID: 2247118.CrossRefGoogle ScholarPubMed
Vrijlandt, EJ, Gerritsen, J, Boezen, HM, Grevink, RG, Duiverman, EJ. Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med. 2006;173(8):890896. Epub 2006/02/04. doi: 10.1164/rccm.200507-1140OC. PubMed PMID: 16456146.CrossRefGoogle ScholarPubMed
Kirkby, J, Stanojevic, S, Stocks, J. Appropriate interpretation of lung function and exercise capacity in a longitudinal follow-up of preterm children. Am J Respir Crit Care Med. 2007;175(1):9697; author reply 97. Epub 2006/12/21. doi: 10.1164/ajrccm.175.1.96. PubMed PMID: 17179500.CrossRefGoogle Scholar
Crump, C, Winkleby, MA, Sundquist, J, Sundquist, K. Risk of asthma in young adults who were born preterm: a Swedish national cohort study. Pediatrics. 2011;127(4):e913920. Epub 2011/03/23. doi: 10.1542/peds.2010–2603. PubMed PMID: 21422091; PubMed Central PMCID: PMC3387891.CrossRefGoogle ScholarPubMed
Coalson, JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006;30(4):179184. Epub 2006/07/25. doi: 10.1053/j.semperi.2006.05.004. PubMed PMID: 16860157.CrossRefGoogle ScholarPubMed
Friedrich, L, Pitrez, PM, Stein, RT, Goldani, M, Tepper, R, Jones, MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):12691273. Epub 2007/09/22. doi: 10.1164/rccm.200703–476OC. PubMed PMID: 17885265; PubMed Central PMCID: PMC2176107.CrossRefGoogle ScholarPubMed
Fawke, J, Lum, S, Kirkby, J, et al. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237245. Epub 2010/04/10. doi: 10.1164/rccm.200912-1806OC. PubMed PMID: 20378729; PubMed Central PMCID: PMC2913237.CrossRefGoogle ScholarPubMed
Vom Hove, M, Prenzel, F, Uhlig, HH, Robel-Tillig, E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–45.e4. Epub 2013/09/24. doi: 10.1016/j.jpeds.2013.07.045. PubMed PMID: 24055328.CrossRefGoogle ScholarPubMed
Kotecha, SJ, Edwards, MO, Watkins, WJ, et al. Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax. 2013;68(8):760766. Epub 2013/04/23. doi: 10.1136/thoraxjnl-2012–203079. PubMed PMID: 23604458.CrossRefGoogle ScholarPubMed
Filbrun, AG, Popova, AP, Linn, MJ, McIntosh, NA, Hershenson, MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46(4):369375. Epub 2011/03/26. doi: 10.1002/ppul.21378. PubMed PMID: 21438170; PubMed Central PMCID: PMC3801101.CrossRefGoogle ScholarPubMed
Jobe, AH. Let's feed the preterm lung. J Pediatr (Rio J). 2006;82(3):165166. Epub 2006/06/15. doi: 10.2223/JPED.1481. PubMed PMID: 16773171.Google ScholarPubMed
Kotecha, SJ, Watkins, WJ, Paranjothy, S, Dunstan, FD, Henderson, AJ, Kotecha, S. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents. Thorax. 2012;67(1):5461. Epub 2011/09/29. doi: 10.1136/thoraxjnl-2011-200329. PubMed PMID: 21953066.CrossRefGoogle ScholarPubMed
Guerra, S, Sherrill, DL, Venker, C, Ceccato, CM, Halonen, M, Martinez, FD. Morbidity and mortality associated with the restrictive spirometric pattern: a longitudinal study. Thorax. 2010;65(6):499504. Epub 2010/06/05. doi: 10.1136/thx.2009.126052. PubMed PMID: 20522846; PubMed Central PMCID: PMC3036842.CrossRefGoogle ScholarPubMed
Parker, RA, Lindstrom, DP, Cotton, RB. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia. Semin Perinatol. 1996;20(3):206209. Epub 1996/06/01. PubMed PMID: 8870123.CrossRefGoogle ScholarPubMed
Lavoie, PM, Pham, C, Jang, KL. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics. 2008;122(3):479485. Epub 2008/09/03. doi: 10.1542/peds.2007–2313. PubMed PMID: 18762515.CrossRefGoogle Scholar
Hadchouel, A, Durrmeyer, X, Bouzigon, E, et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2011;184(10):11641170. Epub 2011/08/13. doi: 10.1164/rccm.201103-0548OC. PubMed PMID: 21836138.CrossRefGoogle ScholarPubMed
Morales Johansson, H, Newman, DR, Sannes, PL. Whole-genome analysis of temporal gene expression during early transdifferentiation of human lung alveolar epithelial type 2 cells in vitro. PLoS One. 2014;9(4):e93413. Epub 2014/04/03. doi: 10.1371/journal.pone.0093413. PubMed PMID: 24690998; PubMed Central PMCID: PMC3972118.CrossRefGoogle ScholarPubMed
Wang, H, St Julien, KR, Stevenson, DK, et al. A genome-wide association study (GWAS) for bronchopulmonary dysplasia. Pediatrics. 2013;132(2):290297. Epub 2013/07/31. doi: 10.1542/peds.2013-0533. PubMed PMID: 23897914; PubMed Central PMCID: PMC3727675.CrossRefGoogle ScholarPubMed
Burchard, EG. Medical research: missing patients. Nature. 2014;513(7518):301302. Epub 2014/09/19. doi: 10.1038/513301a. PubMed PMID: 25230631.CrossRefGoogle ScholarPubMed
Moreno-Estrada, A, Gignoux, CR, Fernandez-Lopez, JC, et al. Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science. 2014;344(6189):12801285. Epub 2014/06/14. doi: 10.1126/science.1251688. PubMed PMID: 24926019; PubMed Central PMCID: PMC4156478.CrossRefGoogle ScholarPubMed
Albertine, KH. Progress in understanding the pathogenesis of BPD using the baboon and sheep models. Semin Perinatol. 2013;37(2):6068. Epub 2013/04/16. doi: 10.1053/j.semperi.2013.01.001. PubMed PMID: 23582959; PubMed Central PMCID: PMC3664547.CrossRefGoogle ScholarPubMed
Pierce, RA, Albertine, KH, Starcher, BC, Bohnsack, JF, Carlton, DP, Bland, RD. Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol. 1997;272(3 Pt 1):L452460. Epub 1997/03/01. PubMed PMID: 9124602.Google ScholarPubMed
Coalson, JJ, Winter, V, deLemos, RA. Decreased alveolarization in baboon survivors with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1995;152(2):640646. Epub 1995/08/01. doi: 10.1164/ajrccm.152.2.7633720. PubMed PMID: 7633720.CrossRefGoogle ScholarPubMed
De Matteo, R, Blasch, N, Stokes, V, Davis, P, Harding, R. Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth. Reprod Sci. 2010;17(8):724733. Epub 2010/05/07. doi: 10.1177/1933719110369182. PubMed PMID: 20445008.CrossRefGoogle ScholarPubMed
De Matteo, R, Stacy, V, Probyn, ME, Brew, N, Blasch, N, Harding, R. Does moderate preterm birth lead to altered arterial pressure? Studies in sheep. Clin Exp Pharmacol Physiol. 2008;35(12):14261432. Epub 2008/08/02. doi: 10.1111/j.1440–1681.2008.05014.x. PubMed PMID: 18671717.CrossRefGoogle ScholarPubMed
Maritz, G, Probyn, M, De Matteo, R, Snibson, K, Harding, R. Lung parenchyma at maturity is influenced by postnatal growth but not by moderate preterm birth in sheep. Neonatology. 2008;93(1):2835. Epub 2007/07/17. doi: 10.1159/000105522. PubMed PMID: 17630495.CrossRefGoogle Scholar
Barker, DJ. The intrauterine origins of cardiovascular and obstructive lung disease in adult life. The Marc Daniels Lecture 1990. J R Coll Physicians Lond. 1991;25(2):129133. Epub 1991/04/01. PubMed PMID: 2066923.Google Scholar
Lawlor, DA, Ebrahim, S, Davey Smith, G. Association of birth weight with adult lung function: findings from the British Women's Heart and Health Study and a meta-analysis. Thorax. 2005;60(10):851858. Epub 2005/08/02. doi: 10.1136/thx.2005.042408. PubMed PMID: 16055617; PubMed Central PMCID: PMC1747204.CrossRefGoogle ScholarPubMed
Hancox, RJ, Poulton, R, Greene, JM, McLachlan, CR, Pearce, MS, Sears, MR. Associations between birth weight, early childhood weight gain and adult lung function. Thorax. 2009;64(3):228232. Epub 2008/12/05. doi: 10.1136/thx.2008.103978. PubMed PMID: 19052051.CrossRefGoogle ScholarPubMed
Dezateux, C, Lum, S, Hoo, AF, Hawdon, J, Costeloe, K, Stocks, J. Low birth weight for gestation and airway function in infancy: exploring the fetal origins hypothesis. Thorax. 2004;59(1):6066. Epub 2003/12/25. PubMed PMID: 14694251; PubMed Central PMCID: PMC1758850.Google ScholarPubMed
Greenough, A, Yuksel, B, Cheeseman, P. Effect of in utero growth retardation on lung function at follow-up of prematurely born infants. Eur Respir J. 2004;24(5):731733. Epub 2004/11/02. doi: 10.1183/09031936.04.00060304. PubMed PMID: 15516664.CrossRefGoogle ScholarPubMed
Rona, RJ, Gulliford, MC, Chinn, S. Effects of prematurity and intrauterine growth on respiratory health and lung function in childhood. BMJ. 1993;306(6881):817820. Epub 1993/03/27. PubMed PMID: 8490372; PubMed Central PMCID: PMC1677317.CrossRefGoogle ScholarPubMed
Suresh, S, O’Callaghan, M, Sly, PD, Mamun, AA. Impact of childhood anthropometry trends on adult lung function. Chest. 2014. Epub 2014/10/24. doi: 10.1378/chest.14-0698. PubMed PMID: 25340561.CrossRefGoogle Scholar
Roseboom, TJ, Painter, RC, van Abeelen, AF, Veenendaal, MV, de Rooij, SR. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas. 2011;70(2):141145. Epub 2011/08/02. doi: 10.1016/j.maturitas.2011.06.017. PubMed PMID: 21802226.CrossRefGoogle ScholarPubMed
Lopuhaa, CE, Roseboom, TJ, Osmond, C, et al. Atopy, lung function, and obstructive airways disease after prenatal exposure to famine. Thorax. 2000;55(7):555561. Epub 2000/06/17. PubMed PMID: 10856314; PubMed Central PMCID: PMC1745806.CrossRefGoogle ScholarPubMed
Langley-Evans, SC, Daniel, ZC, Wells, CA, Ryan, KJ, Plant, R, Welham, SJ. Protein restriction in the pregnant mouse modifies fetal growth and pulmonary development: role of fetal exposure to {beta}-hydroxybutyrate. Exp Physiol. 2011;96(2):203215. Epub 2010/09/21. doi: 10.1113/expphysiol.2010.054460. PubMed PMID: 20851857.CrossRefGoogle ScholarPubMed
van Abeelen, AF, Elias, SG, de Jong, PA, et al. Famine in the young and risk of later hospitalization for COPD and asthma. PLoS One. 2013;8(12):e82636. Epub 2014/01/01. doi: 10.1371/journal.pone.0082636. PubMed PMID: 24376558; PubMed Central PMCID: PMC3871614.CrossRefGoogle Scholar
Gaultier, C, Harf, A, Balmain, N, Cuisinier-Gleizes, P, Mathieu, H. Lung mechanics in rachitic rats. Am Rev Respir Dis. 1984;130(6):11081110. Epub 1984/12/01. PubMed PMID: 6508008.Google ScholarPubMed
Yurt, M, Liu, J, Sakurai, R, et al. Vitamin D supplementation blocks pulmonary structural and functional changes in a rat model of perinatal vitamin D deficiency. Am J Physiol Lung Cell Mol Physiol. 2014;307(11):L859867. Epub 2014/10/12. doi: 10.1152/ajplung.00032.2014. PubMed PMID: 25305247.CrossRefGoogle Scholar
Cremers, E, Thijs, C, Penders, J, Jansen, E, Mommers, M. Maternal and child's vitamin D supplement use and vitamin D level in relation to childhood lung function: the KOALA Birth Cohort Study. Thorax. 2011;66(6):474480. Epub 2011/03/23. doi: 10.1136/thx.2010.151985. PubMed PMID: 21422038.CrossRefGoogle ScholarPubMed
Chawes, BL, Bonnelykke, K, Jensen, PF, Schoos, AM, Heickendorff, L, Bisgaard, H. Cord blood 25(OH) – vitamin D deficiency and childhood asthma, allergy and eczema: the COPSAC2000 birth cohort study. PLoS One. 2014;9(6):e99856. Epub 2014/06/14. doi: 10.1371/journal.pone.0099856. PubMed PMID: 24925304; PubMed Central PMCID: PMC4055727.CrossRefGoogle Scholar
Goldring, ST, Griffiths, CJ, Martineau, AR, et al. Prenatal vitamin d supplementation and child respiratory health: a randomised controlled trial. PLoS One. 2013;8(6):e66627. Epub 2013/07/05. doi: 10.1371/journal.pone.0066627. PubMed PMID: 23826104; PubMed Central PMCID: PMC3691177.CrossRefGoogle Scholar
Litonjua, AA, Lange, NE, Carey, VJ, et al. The Vitamin D Antenatal Asthma Reduction Trial (VDAART): rationale, design, and methods of a randomized, controlled trial of vitamin D supplementation in pregnancy for the primary prevention of asthma and allergies in children. Contemp Clin Trials. 2014;38(1):3750. Epub 2014/03/13. doi: 10.1016/j.cct.2014.02.006. PubMed PMID: 24614387; PubMed Central PMCID: PMC4086903.CrossRefGoogle ScholarPubMed
Checkley, W, West, KP Jr, Wise, RA, et al. Maternal vitamin A supplementation and lung function in offspring. New Engl J Med. 2010;362(19):17841794. Epub 2010/05/14. doi: 10.1056/NEJMoa0907441. PubMed PMID: 20463338.CrossRefGoogle ScholarPubMed
Maritz, GS, Harding, R. Life-long programming implications of exposure to tobacco smoking and nicotine before and soon after birth: evidence for altered lung development. Int J Environ Res Public Health. 2011;8(3):875898. Epub 2011/05/11. doi: 10.3390/ijerph8030875. PubMed PMID: 21556184; PubMed Central PMCID: PMC3083675.CrossRefGoogle ScholarPubMed
Cook, DG, Strachan, DP, Carey, IM. Health effects of passive smoking. 9. Parental smoking and spirometric indices in children. Thorax. 1998;53(10):884893. Epub 1999/04/08. PubMed PMID: 10193379; PubMed Central PMCID: PMC1745082.CrossRefGoogle ScholarPubMed
Hollams, EM, de Klerk, NH, Holt, PG, Sly, PD. Persistent effects of maternal smoking during pregnancy on lung function and asthma in adolescents. Am J Respir Crit Care Med. 2014;189(4):401407. Epub 2013/11/21. doi: 10.1164/rccm.201302-0323OC. PubMed PMID: 24251622.CrossRefGoogle ScholarPubMed
Svanes, C, Omenaas, E, Jarvis, D, Chinn, S, Gulsvik, A, Burney, P. Parental smoking in childhood and adult obstructive lung disease: results from the European Community Respiratory Health Survey. Thorax. 2004;59(4):295302. Epub 2004/03/30. PubMed PMID: 15047948; PubMed Central PMCID: PMC1763798.CrossRefGoogle ScholarPubMed
Guerra, S, Stern, DA, Zhou, M, et al. Combined effects of parental and active smoking on early lung function deficits: a prospective study from birth to age 26 years. Thorax. 2013;68(11):10211028. Epub 2013/07/13. doi: 10.1136/thoraxjnl-2013–203538. PubMed PMID: 23847259.CrossRefGoogle ScholarPubMed
Martinez, FD, Vercelli, D. Asthma. Lancet. 2013;382(9901):13601372. Epub 2013/09/18. doi: 10.1016/S0140-6736(13)61536-6. PubMed PMID: 24041942.CrossRefGoogle ScholarPubMed
Guerra, S, Martinez, FD. Epidemiology of the origins of airflow limitation in asthma. Proc. Am Thor Soc. 2009;6(8):707711. Epub 2009/12/17. doi: 10.1513/pats.200908-085DP. PubMed PMID: 20008881; PubMed Central PMCID: PMC2797072.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×