Skip to main content Accessibility help
×
  • Cited by 63
Publisher:
Cambridge University Press
Online publication date:
July 2014
Print publication year:
2010
Online ISBN:
9781139192309

Book description

Most astronomers and physicists now believe that the matter content of the Universe is dominated by dark matter: hypothetical particles which interact with normal matter primarily through the force of gravity. Though invisible to current direct detection methods, dark matter can explain a variety of astronomical observations. This book describes how this theory has developed over the past 75 years, and why it is now a central feature of extragalactic astronomy and cosmology. Current attempts to directly detect dark matter locally are discussed, together with the implications for particle physics. The author comments on the sociology of these developments, demonstrating how and why scientists work and interact. Modified Newtonian Dynamics (MOND), the leading alternative to this theory, is also presented. This fascinating overview will interest cosmologists, astronomers and particle physicists. Mathematics is kept to a minimum, so the book can be understood by non-specialists.

Reviews

‘This is a fascinating detective story, described in a personal and very readable way … The appendix presents a beautiful summary of relevant definitions of astronomy. Black and white photos, graphs and drawings accompany the text. There are 6 pages of references and a 4-page index.’

Bill Howard Source: CHOICE

‘This is a splendid and timely book and the reader is rewarded with an insight into the tantalising conflict between the majority proponent view of dark matter and the competing viewpoint embodied in the Modified Newtonian Dynamics (MOND) hypothesis … Professor Sanders is an experienced theorist in the field of dark matter astrophysics and is eminently qualified to address this question and he does so with notable clarity. His book is written with the scientific community in mind and the language is uncompromisingly scientific but it is nonetheless fathomable by the non-specialist. The Dark Matter Problem will find an easily accessible place on this reviewer's bookshelf for some time.’

Brian Parsons Source: FAS Newsletter

'In this readable and enjoyable book, Sanders takes us through the historical development of the theory of dark matter … The Dark Matter Problem will benefit advanced undergraduates, graduate students, and some researchers. … Students and professionals working in the field may receive this book as a training tool that highlights the current deficiencies of the dark matter paradigm.'

Source: Physics Today

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Ahmed, Z.et al. (2009). Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102, 011301.
Ahronian, F. A., Hofmann, W., Konopelko, A. K. and Voelk, H. J. (1997). The potential of ground based arrays of imaging atmospheric Cherenkov telescopes, Astropart. Phys. 6, 343-368.
Allen, R. J. and Shu, F. H. (1979). The extrapolated central surface brightness of galaxies, Astrophys. J. III, 67-72.
Alpher, R. A., Bethe, H. A., and Gamow, G. (1948). The origin of chemical elements, Phys. Rev. 13, 8034.
Alpher, R. A. and Herman, R. C. (1949). Remarks on the evolution of the expanding Universe, Phys. Rev. 15, 1089–95.
Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M., and Turyshev, S. G. (1998). Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration, Phys. Rev. Lett. 81, 2858–61.
Aprile, E.et al. 2012. Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109, 181301.
Athanassoula, E. and Sellwood, J. A. (1986). Bi-symmetric instabilities of the Kuz'min/Toomre disc, Mon. Not. Roy. Astron. Soc. 221, 213–32.
Babcock, H. (1939). The rotation of the Andromeda nebula, Lick Obs. Bull., no. 498, Berkeley, Univ. ofCalif. Press, pp. 41-51.
Bahcall, J. N. and Davis, R. (1976), Solar neutrinos, a scientific puzzle, Science 191, 264-267.
Baugh, C. (2006). A primer on hierarchical galaxy formation: the semi-analytical approach, Rep. Prog. Phys. 69, 3101–56.
Begeman, K. G. (1987). HI rotation curves of spiral galaxies, PhD dissertation, Univ. of Groningen.
Begeman, K. G. (1989). HI rotation curves of spiral galaxies, Astron. Astrophys. 223, 47-60.
Behnke, I. E.et al. (2008) Spin-dependent WIMP limits from a bubble chamber, Science 319, 933–6.
Bekenstein, J. D. (2004). Relativistic gravitation theory for the modified Newtonian dynamics paradigm, Phys. Rev. D 10, 083509.
Bekenstein, J. D. and Milgrom, M. (1984). Does the missing mass problem signal the breakdown of Newtonian gravity?, Astrophys. J. 286, 7-14.
Bekenstein, J. D. and Sanders, R. H. (1994) Gravitational lenses and unconventional gravity theories, Astrophys. J. 429, 480–90.
Bernabei, R.et al. (2008). First results from DAMA/LIBRA and the combined results with DAMA/Nal, Eur. Phys. J. C56, 333–55.
Blumenthal, G. R., Faber, S. M., Primack, J. R., and Rees, M. J. (1984). Formation of galaxies and large-scale structure with cold dark matter, Nature 311, 517–25.
Blumenthal, G. R., Pagels, H., and Primack, J. R. (1982). Galaxy formation by dissipationless particles heavier than neutrinos, Nature 299, 37–8.
Bond, J. R., Efstathiou, G., and Silk, J. (1980). Massive neutrinos and the large scale structure of the Universe, Phys. Rev. Lett. 45, 1980–4.
Bond, J. R. and Efstathiou, G. (1984). Cosmic background radiation anisotropies in universes dominated by non-baryonic dark matter, Astrophys. J. 285, L45-L48.
Bond, J. R. and Szalay, A. S. (1983). The collisionless damping of density fluctuations in an expanding universe, Astrophys. J. 214, 443–68.
Bondi, H. and Gold, T. (1948). The steady state theory of the expanding Universe, Mon. Not. Roy. Astron. Soc. 108, 252–70.
Bosma, A. (1978). The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, PhD dissertation, The University of Groningen.
Bosma, A. (1981). 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, Astron. J. 86, 1825–46.
Broeils, A. H. (1992) Dark and visible matter in spiral galaxies, PhD dissertation, The University of Groningen.
Burbidge, M. E., Burbidge, G. B., Fowler, W. A., and Hoyle, F. (1957). Synthesis of elements in stars, Rev. Mod. Phys. 29, 547-650.
Casertano, S. (1983). Rotation curve of the edge-on spiral galaxy NGC 5907: disk and halo masses, Mon. Not. RAS 203, 735–7.
Casertano, S. and van Gorkom, J. (1991). Declining rotation curves -the end of a conspiracy?, Astron. J. 101, 1231–41.
Chandrasekhar, S. (1941). The time of relaxation of stellar systems, Astrophys. J. 93, 285-304.
Chang, J.et al. (2008). An excess of cosmic ray electrons at energies of 300-800 GeV, Nature 456, 362–5.
Clowe, D., Bradac, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., and Zaritsky, D. (2006). A direct empirical proof of the existence of dark matter, Astrophys. J. 648, L109-L113.
Cowsik, R. and McClelland, J. (1973). Gravity of neutrinos of nonzero mass in astrophysics, Astrophys. J. 180, 7-10.
de Bernardis, P.et al. (2000). First Results from the BOOMERanG Experiment, Am. Inst. Phys. Conf. Proc. 555, 85-94.
de Lapparent, V., Geller, M. J., and Huchra, J. P. (1986). A slice of the Universe, Astrophys. J. 302, L1-L5.
Dicke, R. H., Peebles, P. J. E., Roll, P. G., and Wilkinson, D. T. (1965). The cosmic black body radiation, Astrophys. J. 142, 414–9.
Disney, M. J. (1976). Visibility of galaxies, Nature 263, 573–5.
Duffy, L. D.et al. (2006). High resolution search for dark matter axions, Phys. Rev. D 14, 012006.
Efstathiou, G. and Bond, J. R. (1986). Microwave background fluctuations and dark matter, Phil. Trans. Roy. Soc. London, Series A, Math. Phys. Sci. 320, 585–94.
Emden, R. (1907), Gaskugeln, Teubner (Leipzig, Berlin).
Ewen, H. and Purcell, E. (1951). Observations of a line in the galactic radio spectrum; radiation from galactic hydrogen at 1,420 Mc/s, Nature 168, 356.
Faber, S. M. and Gallagher, J. (1979). Masses and mass-to-light ratios ofgalaxies, Ann. Rev. Astron. Astrophys. 11, 135–87.
Faber, S. M. and Jackson, R. E. (1976). Velocity dispersions and mass-to-light ratios for elliptical galaxies, Astrophys. J. 204, 668–83.
Finzi, A. (1963). On the validity of Newton's law at a long distance, Mon. Not. RAS 121, 21-30.
Freeman, K. C. (1970). On the disks ofspiral and S0 Galaxies, Astrophys. J. 160, 811–30.
Freeman, K. C. and McNamara, G. (2006). In Search of Dark Matter,Springer-Praxis (Berlin).
Friedmann, A. (1922). Uber die Kruemming des Raumes, Z. Phys. 10, 377–38.
Gaitskell, R. J. (2004). Direct detection of dark matter, Ann. Rev. Nuc. Part. Sci. 54, 315–59.
Garnavich, P. M.et al. (1998). Constraints on cosmological models from Hubble space telescope observations of high-z supernovae, Astrophys. J. 493, L53-L57.
Gershtein, S. S. and Zeldovich, Ya. B. (1966). Rest mass of muonic neutrino and cosmology, ZhETF Pis, ma 4, 174–5.
Gott, J. R., Gunn, J. E., Schramm, D. N., and Tinsley, B. M. (1974). An unbound Universe?, Astrophys. J. 194, 543–53.
Gunn, J. E., Lee, B. W., Lerche, I., Schramm, D. N., and Steigman, G. (1978). Some astrophysical consequences of the existence of a heavy stable neutral lepton, Astrophys. J. 223, 1015–31.
Hoekstra, H., Franx, M., Kuijken, K., and Squires, G. (1998). Weak lensing analysis of Cl 1358+62 using Hubble space telescope observations, Astrophys. J. 504, 636–60.
Hohl, F. (1971). Numerical experiments with a disk of stars, Astrophs. J. 168, 343–59.
Hohl, F. and Hockney, R. W. (1969). A computer model of disks of stars, J. Comp. Phys. 4, 306-312.
Hoyle, F. (1948). A new model of the expanding Universe, Mon. Not. Roy. Astron. Soc. 108, 372–82.
Hoyle, F. and Taylor, R. J. (1964). The mystery of the cosmic helium abundance, Nature 204, 1108–10.
Hu, W. and Sugiyama, N. (1995). Toward understanding the CMB anisotropies and their implications, Phys. Rev. D 51, 2559–630.
Jansky, K. G. (1933). Radio waves from outside the Solar System, Nature 132, 66.
Jones, C. and Forman, W. (1984). The structure of clusters of galaxies observed with Einstein, Astrophys. J. 216, 38-55.
Jungman, G., Kamionkowski, M., and Greist, K. (1996). Supersymmetric dark matter, Phys. Rep. 261, 195-373.
Kahn, F. D. and Woltjer, L. (1959). Intergalactic matter and the galaxy, Astrophys. J. 130, 705–17.
Kalnajs, A.J. (1983). IAU Symp. 100: Internal Kinematics and Dynamics of Galaxies, ed. E., Athanassoula, Reidel (Dordrecht), p. 87.
Kane, G. (2000). Supersymmetry: Squarks, Photinos and Unveiling the Ultimate Laws of Nature, Perseus Publishing (Cambridge, Mass).
Kent, S. M. (1986). Dark matter in spiral galaxies. I – Galaxies with optical rotation curves, Astron. J. 91, 1301–27.
Klypin, A., Gottloeber, S., Kravtsov, A. V., and Khokhlov, A. M. (1999). Galaxies in N-body simulations: overcoming the overmerging problem, Astrophys. J. 516, 530–51.
Klypin, A. A. and Shandarin, S. F. (1983). Three-dimensional formation of large scale structure in the Universe, Mon. Not. RAS 204, 891-907.
Kuhn, T. S. (1962). The Structure of Scientific Revolutions,Univ. of Chicago Press (Chicago).
Lamaitre, G. (1927). Un Univers homogene' et de rayon croissant rendant des nebuleuses extra-galactique, Ann. Soc. Sci. de Bruxelles A41, 49-59.
Lifshitz, E. M. (1946). On the gravitational instability of the expanding Universe, Journ. Phys. USSR 10, 116–22.
Lin, C. C. and Shu, F. H. (1964). On the spiral structure of disk galaxies, Astrophys. J. 140, 646-655.
Lynds, R. and Petrosian, V. (1986). Giant luminous arcs in galaxy clusters, Bull. Am. Astron. Soc. 18, 1014.
Mayall, N. (1951). Comparison of rotational motions observed in spirals M 31 and M 33 and in the Galaxy, Pub. Obs. Michigan 10, 19.
McGaugh, S. S. and de Blok, W. J. G. (1998). Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence, Astrophys. J. 499, 66-81.
McGaugh, S. S., Schombert, J. M., Bothun, G. D. and de Blok, W. J. G. (2000). The baryonic Tully-Fisher relation, Astrophys. J. 533, L99-L102.
Milgrom, M. (1983). A modification of Newtonian dynamics as a possible alternative to the hidden matter hypothesis, Astrophys. J 210, 365–70.
Milgrom, M. (1984). Isothermal spheres in the modified dynamics, Astrophys. J. 281, 571–6.
Miller, R. H. and Prendergast, K. H. (1968). Stellar dynamics in a discrete phase space, Astrophys. J., 151, 699-701.
Miller, R. H., Prendergast, K.H., and Quirk, W. J. (1970). Numerical experiments on spiral structure, Astrophys. J. 161, 903–16.
Moore, B., Ghigna, S., Governato, R., Lake, G., Quinn, T., and Stadel, J. (1999). Dark matter substructure within galactic halos, Astrophys. J. 534, L19-L22.
Muller, C. A. and Oort, J. H. (1951). Observations of a line in the galactic radio spectrum: the interstellar hydrogen line at 1420 Mc/s and an estimate of galactic rotation, Nature 168, 357.
Navarro, J. F., Frenk, C. S., and White, S. D. M. (1996). The structure ofcold dark matter halos, Astrophys. J. 463, 563–75.
Navarro, J. F. and Steinmetz, M. (2000). Dark halo and disk galaxy scaling relations in hierarchical universes, Astrophys. J. 538, 477–88.
Oort, J. H. (1932). The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems, Bull. Astro. Inst. Neth. 6, 289–94.
Oort, J. H. (1960). Note on the determination of Kzand on the mass density near the Sun, Bull. Astro. Inst. Neth. 494, 45-63.
Ostriker, J. P. and Peebles, P. J. E. (1973). A numerical study of flattened galaxies: or can cold galaxies survive, Astrophys. J. 186, 467–80.
Ostriker, J. P., Peebles, P. J. E. and Yahil, A. (1974). The size and mass of galaxies and the mass of the Universe, Astrophys. J. 193, L1-L4.
Ostriker, J. P. and Steinhardt, P. J. (1995). The observational case for a low density universe with a non-zero cosmological constant, Nature 311, 600–2.
Paczynski, B. (1987). Giant luminous arcs discovered in two clusters of galaxies, Nature 325, 572.
Peebles, P. J. E. (1965). The black-body radiation content of the Universe and the formation of galaxies, Astrophys. J. 142, 1317–25.
Peebles, P. J. E. (1966). Primordial helium abundance and the primordial fireball II, Astrophys. J. 146, 542–52.
Peebles, P. J. E. (1968). Recombination of the primeval plasma, Astrophys. J. 153, 1-11.
Peebles, P. J. E. (1982). Large scale temperature and mass fluctuations due to scale invariant primeval perturbations, Astrophys. J. 263, L1-L5.
Peebles, P. J. E., Page, L. A., and Partridge, B. (2009). Finding the Big Bang,Cambridge University Press (Cambridge).
Penzias, A. A. and Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s, Astrophys. J. 142, 419-421.
Perlmutter, S. (2003). Supernovae, dark energy, and the accelerating universe, Physics Today 56, 53-62.
Perlmutter, S.et al. (1997). Measurements of the cosmological parameters omega and lambda from high-redshift supernovae, Bull. Am. Astron. Soc. 29, 1351 (see also arXiv.com, astro-ph/9812473).
Perlmutter, S.et al. (1999). Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J. 511, 565–86.
Riess, A.et al. (2009). Observational evidence from suprenovae for an accelerating Universe and a cosmological constant, Astron. J. 116, 1009-1038.
Roberts, M. S. (1975a). Radio observations of neutral hydrogen in galaxies, Stars and stellar systems, Vol. 9 Galaxies and the Universe, 309-358.
Roberts, M. S. (1975b). The rotation curves of galaxies, IAU Symp. 69, The Dynamics of Galaxies, ed. A., Hayli, Reidel (Dordrecht), pp. 331-339.
Roberts, M. S. and Whitehurst, R. N. (1975). The rotation curve and geometry of M31 at large galactocentric distances, Astrophys. J. 201, 327–46.
Rogstad, D. H. and Shostak, G. S. (1972). Gross properties of five SCD galaxies as determined by 21-centimeter line observations, Astrophys. J. 116, 315–21.
Rood, H. J. (1965). The dynamics of the Coma cluster of galaxies, PhD dissertation, University of Michigan.
Rubin, V. C., Ford, W. K., Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc), Astrophys. J. 238, 471–87.
Sachs, R. K. and Wolfe, A. M. (1967). Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 143, 73-90.
Sadoulet, B. (2007). Particle dark matter in the Universe: at the brink of discovery?, Science 315, 61–3.
Sancisi, R. (2004). The visible matter - dark matter coupling, IAU Symp. 220, Dark Matter in Galaxies, eds. S. D., Ryder, D. J., Pisano, M. A., Walker, and K. C., Freeman, Astron. Soc.Pac. (San Francisco), pp. 233–40.
Sanders, R. H. (1997). A stratified framework for scalar-tensor theories of modified dynamics, Astrophys. J. 480, 492-502.
Sanders, R. H. and Verheijen, M. A. W. (1998). Rotation curves of Ursa Major galaxies in the context of modified Newtonian dynamics, Astrophys. J. 503, 97-108.
Sanders, R. H. and McGaugh, S. S. (2002). Modified Newtonian dynamics as an alternative to dark matter, Ann. Rev. Astron. Astrophys. 40, 263-317.
Schwarzschild, M. (1954). Mass distribution and mass-luminosity ratios in galaxies, Astron. J. 59, 273–84.
Schwarzschild, M. and Schwarzschild, B. (1950). A spectroscopic comparison between high and low velocity F dwarfs, Astrophys. J. 112, 248–65.
Seljak, U. and Zaldarriaga, M. (1996). A line-of-sight integration approach to cosmic microwave background anisotropies, Astrophys. J. 469, 437-444.
Shectman, S. A., Landy, S. D., Oemler, A., Tucker, D. L., Lin, H., Kirshner, R. P., and Schechter, P. L. (1996). The Las Companas redshift survey, Astrophys. J. 410, 172–88.
Shostak, G. S. (1973). Aperture synthesis study of neutral hydrogen in NGC 2403 and NGC 4237: II. Discussion, Astron. Astrophys. 24, 411–19.
Shostak, G. S. and Rogstad, D. H. (1973). Aperture synthesis study of neutral hydrogen in NGC 2403 and NGC 4236: I. Observations, Astron. Astrophys. 24, 405–10.
Silk, J. (1967). Fluctuations in the primordial fireball, Nature 215, 1155–6.
Skordis, C., Mota, D. F., Ferreira, P. G., and Boehm, C. (2006). Large scale structure in Bekenstein's theory of relativistic modified Newtonian dynamics, Phys. Rev. Lett 96, 011301.
Smith, S. (1936). The mass of the Virgo cluster, Astrophys. J. 83, 23-30.
Smoot, G. F.et al. (1992). Structure in the COBE differential microwave radiometer first-year maps, Astrophys. J. 396, L1-L5.
Soucail, G., Fort, B., Mellier, Y., and Picat, J. P. (1987). A blue ring-like structure in the centerofthe A 370 clusterofgalaxies, Astron. Astrophys. 112, L14-L16.
Spergel, D. N.et al. (2007). Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology, Astrophys. J. Suppl. 110, 377-408.
Steinmetz, M. and Navarro, J. F. (1999). The cosmological origin of the Tully-Fisher relation, Astrophys. J. 513, 555–60.
Sunyaev, R. A. and Zeldovich, Ya. B. (1970). Small-scale fluctuations of relic radiation, Astrophys. Sp. Sci. 1, 3-19.
Swaters, R. A. (1999). Dark matter in late-type dwarf galaxies, PhD thesis, University of Groningen.
Szalay, A. S. and Marx, G. (1976). Neutrino rest mass from cosmology, Astron. Astrophys. 49, 437–41.
Tonry, J. L.et al. (2003). Cosmological results from high-z supernovae, Astrophys. J. 594, 1-24.
Tremaine, S. and Gunn, J. E. (1979). The dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407–10.
Tully, R. B. and Fisher, J. R. (1977). A new method for determining the distances to galaxies, Astron. Astrophys. 54, 661–73.
Uson, J. M. and Wilkinson, D. T. (1982). Search for small scale anisotropy in the cosmic microwave background, Phys. Rev. Lett. 49, 1463–5.
van Albada, T. S., Bahcall, J. N., Begeman, K., and Sancisi, R. (1985). Distribution of dark matter in the spiral galaxy NGC 3198, Astrophys. J. 295, 305–13.
van Albada, T. S. and Sancisi, R. (1986). Dark matter in spiral galaxies, Phil. Trans. Roy. Soc. 320, 447–64.
van de Hulst, H. C., Raimond, E., and van Woerden, H. (1957). Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line, Bull. Astr. Inst. Neth. 14, 1-16.
van derKruit, P. C. and Searle, L. E. (1981). Surface photometry ofedge on spiral galaxies. I. A model for the three-dimensional distribution of light in galactic disks, Astron. Astrophys. 95, 105–15.
Verheijen, M. A. W. (2001). The Ursa Major cluster of galaxies. V. HI rotation curve shapes and the Tully-Fisher relations, Astrophys. J. 563, 694-715.
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S. and Van Speybroeck, L. (2006). Chandra sample of nearby relaxed galaxy clusters: mass, gas fraction, and mass-temperature relation, Astrophys. J. 640, 691-709.
Vittorio, N. and Silk, J. (1984). Fine scale anisotropies of the cosmic background radiation in a Universe dominated by cold dark matter, Astrophys. J. 285, L39-L43.
Walsh, D., Carswell, R. F. and Weymann, R. J. (1979). 0957 + 561 A, B - Twin quasistellar objects orgravitational lens, Nature 219, 381–4.
White, S. D. M. (1977). Mass segregation and missing mass in the Coma cluster, Mon. Not. Roy. Astron. Soc. 119, 33-41.
White, S. D. M., Frenk, C. S., and Davis, M. (1983). Clustering in a neutrino dominated Universe, Astrophys. J. 214, L1-L5.
White, S. D. M., Navarro, J. F., Evrard, A. E., and Frenk, C. S. (1993). The baryon content of galaxy clusters: a challenge to cosmological orthodoxy, Nature 366, 429-433.
Zeldovich, Ya. B. (1977). The theory of the large scale structure of the Universe, Large Scale Structure of the Universe, IAU Symp. 79, eds. M., Longair and J., Einasto, Reidel (Dordrecht), pp. 409-419.
Zeldovich, Ya. B. and Novikov, I. (1983). Relativistic astrophysics Vol. II: The structure and evolution of the Universe, Univ. of Chicago Press(Chicago).
Zwicky, F. (1933). Der Rotverschiebung von extragalaktischen Neblen, Act. Helv. Phys. 6, 110-127.
Zwicky, F. (1937). On masses of nebulae and clusters of nebulae, Astrophys. J. 86, 217-246.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.