Skip to main content Accessibility help
×
Home
Computational Methods for Integral Equations
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 262
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Integral equations form an important class of problems, arising frequently in engineering, and in mathematical and scientific analysis. This textbook provides a readable account of techniques for their numerical solution. The authors devote their attention primarily to efficient techniques using high order approximations, taking particular account of situations where singularities are present. The classes of problems which arise frequently in practice, Fredholm of the first and second kind and eigenvalue problems, are dealt with in depth. Volterra equations, although attractive to treat theoretically, arise less often in practical problems and so have been given less emphasis. Some knowledge of numerical methods and linear algebra is assumed, but the book includes introductory sections on numerical quadrature and function space concepts. This book should serve as a valuable text for final year undergraduate or postgraduate courses, and as an introduction or reference work for practising computational mathematicians, scientists and engineers.

Reviews

Review of the hardback:‘The material within the book is clear, readable, and well-presented and the task of reading the book proved to be no task at all. Delves and Mohamed’s enjoyment of the topic, tempered by their concern for the user’s needs, is evident on every page.’

Source: Applied Mathematical Modelling

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed