ReferencesMoos, T, Morgan, EH. The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann N Y Acad Sci 2004; 1012: 14–26.
Berg, D, Youdim MB. Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 2006; 17: 5–17.
Vymazal, J, Brooks, RA, Baumgarner, C, et al. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 1996; 35: 56–61.
Haacke, EM, Cheng, NY, House, MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23: 1–25.
Haacke, EM, Ayaz, M, Khan, A, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 2007; 26: 256–264.
Duyn, JH, van Gelderen, P, Li, TQ, et al. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 2007; 104: 11796–11801.
Ogg, RJ, Langston, JW, Haacke, EM, Steen, RG, Taylor, JS. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 1999; 17: 1141–1148.
Abduljalil, AM, Schmalbrock, P, Novak, V, Chakeres DW. Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging. J Magn Reson Imaging 2003; 18: 284–290.
Haacke, EM, Xu, Y, Cheng, YC, Reichenbach, JR.Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612–618.
Sehgal, V, Delproposto, Z, Haacke, EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 2005; 22: 439–450.
Stark, DD, Moseley, ME, Bacon, BR, et al. Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology 1985; 154: 137–142.
Runge, VM, Clanton, JA, Smith, FW, et al. Nuclear magnetic resonance of iron and copper disease states. Am J Roentgenol 1983; 141: 943–948.
Drayer, B, Burger, P, Darwin, R, et al. MRI of brain iron. Am J Roentgenol 1986; 147: 103–110.
Breger, RK, Rimm, AA, Fischer, ME, Papke, RA, Haughton VM. T1 and T2 measurements on a 1.5-T commercial MR imager. Radiology 1989; 171: 273–276.
Ordidge, RJ, Gorell, JM, Deniau, JC, Knight, RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn Reson Med 1994; 32: 335–341.
Gelman, N, Gorell, JM, Barker, PB, et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999; 210: 759–767.
Bartzokis, G, Beckson, M, Hance, DB, et al. MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 1997; 15: 29–35.
Bartzokis, G, Aravagiri, M, Oldendorf, WH, Mintz, J, Marder SR. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 1993; 29: 459–464.
Michaeli, S, Oz, G, Sorce, DJ, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Mov Disord 2007; 22: 334–340.
Jensen, JH, Chandra, R, Ramani, A, et al. Magnetic field correlation imaging. Magn Reson Med 2006; 55: 1350–1361.
Pfefferbaum, A, Adalsteinsson, E, Rohlfing, T, Sullivan, EV. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 2008; Epub ahead of print, PMID 18513834.
Hallgren, B, Sourander, P. The effect of age on the non-haemin iron in the human brain. J Neurochem 1958; 3: 41–51.
Aoki, S, Okada, Y, Nishimura, K, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 1989; 172: 381–385.
Xu, X, Wang, Q, Zhang, M. Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 2008; 40: 35–42.
Berg, D, Hochstrasser, H.Iron metabolism in parkinsonian syndromes. Mov Disord 2006; 21: 1299–1310.
Dexter, DT, Wells, FR, Agid, F, et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet 1987; 2: 1219–1220.
Sofic, E, Riederer, P, Heinsen, H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988; 74: 199–205.
Drayer, BP, Olanow, W, Burger, P, et al. Parkinson-plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 1986; 159: 493–498.
Vymazal, J, Righini, A, Brooks, RA, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 1999; 211: 489–495.
Bartzokis, G, Tishler, TA, Shin, IS, Lu, PH, Cummings, JL. Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann N Y Acad Sci 2004; 1012: 224–236.
Martin, WR, Wieler, M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 2008; 70: 1411–1417.
Hayflick, SJ, Westaway, SK, Levinson, B, et al. Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N Engl J Med 2003; 348: 33–40.
Hayflick, SJ, Hartman, M, Coryell, J, Gitschier, J, Rowley, H.Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 2006; 27: 1230–1233.
Vinod Desai, S, Bindu, PS, Ravishankar, S, Jayakumar, PN, Pal, PK.Relaxation and susceptibility MRI characteristics in Hallervorden–Spatz syndrome. J Magn Reson Imaging 2007; 25: 715–720.
Whitnall, M, Richardson, DR. Iron: a new target for pharmacological intervention in neurodegenerative diseases. Semin Pediatr Neurol 2006; 13: 186–197.
Bartzokis, G, Lu, PH, Tishler, TA, et al. Myelin breakdown and iron changes in Huntington’s disease: pathogenesis and treatment implications. Neurochem Res 2007; 32: 1655–1664.
Gil, JM, Rego, AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 2008; 27: 2803–2820.
Bartzokis, G, Cummings, J, Perlman, S, Hance, DB, Mintz, J.Increased basal ganglia iron levels in Huntington disease. Arch Neurol 1999; 56: 569–574.
Vymazal, J, Klempir, J, Jech, R, et al. MR relaxometry in Huntington’s disease: correlation between imaging, genetic and clinical parameters. J Neurol Sci 2007; 263: 20–25.
Mantyh, PW, Ghilardi, JR, Rogers, S, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 1993; 61: 1171–1174.
Smith, MA, Harris, PL, Sayre, LM, Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 1997; 94: 9866–9868.
Bartzokis, G, Sultzer, D, Cummings, J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 2000; 57: 47–53.
House, MJ, St. Pierre, TG, Foster, JK, Martins, RN, Clarnette, R.Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR Am J Neuroradiol 2006; 27: 430–439.
House, MJ, St. Pierre, TG, Kowdley, KV, et al. Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients. Magn Reson Med 2007; 57: 172–180.
Jack, CR, Jr., Garwood, M, Wengenack, TM, et al. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 2004; 52: 1263–12671.
Vanhoutte, G, Dewachter, I, Borghgraef, P, van Leuven, F, van der Linden, A. Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 2005; 53: 607–613.
Wadghiri, YZ, Sigurdsson, EM, Sadowski, M, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003; 50: 293–302.
El Tayara Nel T, Volk A, Dhenain, M, Delatour, B.Transverse relaxation time reflects brain amyloidosis in young APP/PS1 transgenic mice. Magn Reson Med 2007; 58: 179–184.
Vernooij, MW, van der Lugt, A, Ikram, MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008; 70: 1208–1214.
Schneider, JA.Brain microbleeds and cognitive function. Stroke 2007; 38: 1730–1731.
O’Rourke, MF. Brain microbleeds, amyloid plaques, intellectual deterioration, and arterial stiffness. Hypertension 2008; 51: e20; author reply e21.
Cordonnier, C, van der Flier, WM, Sluimer, JD, Leys, D, Barkhof, F, Scheltens, P. Prevalence and severity of microbleeds in a memory clinic setting. Neurology 2006; 66: 1356–1360.
Drayer, B, Burger, P, Hurwitz, B, Dawson, D, Cain, J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content?Am J Roentgenol 1987; 149: 357–363.
Bakshi, R, Shaikh, ZA, Janardhan, V.MRI T2 shortening (“black T2”) in multiple sclerosis: frequency, location, and clinical correlation. Neuroreport 2000; 11: 15–21.
Zhang, Y, Zabad, RK, Wei, X, et al. Deep grey matter “black T2” on 3 tesla magnetic resonance imaging correlates with disability in multiple sclerosis. Mult Scler 2007; 13: 880–883.
Bermel, RA, Puli, SR, Rudick, RA, et al. Prediction of longitudinal brain atrophy in multiple sclerosis by gray matter magnetic resonance imaging T2 hypointensity. Arch Neurol 2005; 62: 1371–1376.
Bakshi, R, Dmochowski, J, Shaikh, ZA, Jacobs, L. Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci 2001; 185: 19–26.
Ge, Y, Jensen, JH, Lu, H, et al. Quantitative assessment of iron accumulation in the deep gray matter of multiple sclerosis by magnetic field correlation imaging. AJNR Am J Neuroradiol 2007; 28: 1639–1644.
Brass, SD, Benedict, RH, Weinstock-Guttman, B, Munschauer, F, Bakshi, R. Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Mult Scler 2006; 12: 437–444.